# Frequency Magnetically Tunable Terahertz Perfect Absorber Based on Graphene and Silica Layered Dielectric

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Model and Method

#### 2.1. Absorber and Magnetized Graphene Models

#### 2.2. Research Methods

## 3. Results and Discussion

#### 3.1. Absorption for Various Period Numbers N

#### 3.2. Frequency Tuning with Various SBMFs B

#### 3.3. Influence of Incident Angle $\theta $ on Magnetic Tuning

#### 3.4. Influence of the Nonmagnetic Dielectric Loss

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Tse, W.K.; Qiao, Z.; Yao, Y.; MacDonald, A.; Niu, Q. Quantum anomalous Hall effect in single-layer and bilayer graphene. Phys. Rev. B
**2011**, 83, 155447. [Google Scholar] [CrossRef] [Green Version] - Yi, Z.; Liu, L.; Wang, L.; Cen, C.; Chen, X.; Zhou, Z.; Ye, X.; Yi, Y.; Tang, Y.; Yi, Y.; et al. Tunable dual-band perfect absorber consisting of periodic cross-cross monolayer graphene arrays. Results Phys.
**2019**, 13, 102217. [Google Scholar] [CrossRef] - Grigorenko, A.N.; Polini, M.; Novoselov, K. Graphene plasmonics. Nat. Photonics
**2012**, 6, 749–758. [Google Scholar] [CrossRef] - Weis, P.; Garcia-Pomar, J.L.; Hoh, M.; Reinhard, B.; Brodyanski, A.; Rahm, M. Spectrally wide-band terahertz wave modulator based on optically tuned graphene. ACS Nano
**2012**, 6, 9118–9124. [Google Scholar] [CrossRef] - Zhang, D.; Zhang, L. Tunable terahertz dual-band band-stop filter based on surface magnetoplasmons in graphene sheet array. Opt. Laser Technol.
**2020**, 132, 106484. [Google Scholar] [CrossRef] - Chen, M.; Zhang, W.; Deng, S.; Liu, H.; Teng, C.; Deng, H.; Yang, H.; Xu, R.; Yin, J.; Yu, L.; et al. Wide-range frequency tunable absorber based on cross-groove metamaterials and graphene-sheet. J. Phys. D Appl. Phys.
**2020**, 53, 255102. [Google Scholar] [CrossRef] - Zaky, Z.A.; Al-Dossari, M.; Zohny, E.I.; Aly, A.H. Refractive index sensor using Fibonacci sequence of gyroidal graphene and porous silicon based on Tamm plasmon polariton. Opt. Quantum Electron.
**2023**, 55, 6. [Google Scholar] [CrossRef] - Zaky, Z.A.; Singh, M.R.; Aly, A.H. Tamm resonance excited by different metals/graphene. Photonics Nanostruc.
**2022**, 49, 100995. [Google Scholar] [CrossRef] - Zaky, Z.A.; Aly, A.H. Gyroidal graphene/porous silicon array for exciting optical Tamm state as optical sensor. Sci. Rep.
**2021**, 11, 19389. [Google Scholar] [CrossRef] - Zaky, Z.A.; Sharma, A.; Aly, A.H. Gyroidal graphene for exciting tamm plasmon polariton as refractive index sensor: Theoretical study. Opt. Mater.
**2021**, 122, 111684. [Google Scholar] [CrossRef] - Divdel, H.; Taghipour-Farshi, H.; Saghai, H.R.; Jahani, M.A.T.G. Thermally switchable terahertz metasurface absorber composed of H-fractal and enabled by phase-change material of vanadium dioxide. Frequenz
**2022**, 76, 169–175. [Google Scholar] [CrossRef] - Butt, M.; Khonina, S.; Kazanskiy, N.; Piramidowicz, R. Hybrid metasurface perfect absorbers for temperature and biosensing applications. Opt. Mater.
**2022**, 123, 111906. [Google Scholar] [CrossRef] - Chung, M.; Jeong, H.; Kim, Y.K.; Lim, S.; Baek, C.W. Design and Fabrication of Millimeter-Wave Frequency-Tunable Metamaterial Absorber Using MEMS Cantilever Actuators. Micromachines
**2022**, 13, 1354. [Google Scholar] [CrossRef] [PubMed] - Bilal, R.; Baqir, M.; Iftikhar, A.; Naqvi, S.; Mughal, M.; Ali, M. Polarization-controllable and angle-insensitive multiband Yagi-Uda-shaped metamaterial absorber in the microwave regime. Opt. Mater. Express
**2022**, 12, 798–810. [Google Scholar] [CrossRef] - Jornet, J.M.; Akyildiz, I.F. Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band. IEEE Trans. Wireless Commun.
**2011**, 10, 3211–3221. [Google Scholar] [CrossRef] [Green Version] - Koppens, F.H.; Chang, D.E.; García de Abajo, F.J. Graphene plasmonics: A platform for strong light–matter interactions. Nano Lett.
**2011**, 11, 3370–3377. [Google Scholar] [CrossRef] [Green Version] - Rashidi, A.; Namdar, A.; Abdi-Ghaleh, R. Magnetically tunable enhanced absorption of circularly polarized light in graphene-based 1D photonic crystals. Appl. Opt.
**2017**, 56, 5914–5919. [Google Scholar] [CrossRef] - Jin, X.; Wang, F.; Huang, S.; Xie, Z.; Li, L.; Han, X.; Chen, H.; Zhou, H. Coherent perfect absorber with independently tunable frequency based on multilayer graphene. Opt. Commun.
**2019**, 446, 44–50. [Google Scholar] [CrossRef] - Yi, Z.; Chen, J.; Cen, C.; Chen, X.; Zhou, Z.; Tang, Y.; Ye, X.; Xiao, S.; Luo, W.; Wu, P. Tunable graphene-based plasmonic perfect metamaterial absorber in the THz region. Micromachines
**2019**, 10, 194. [Google Scholar] [CrossRef] [Green Version] - Zhang, B.; Qi, Y.; Zhang, T.; Zhang, Y.; Liu, W.; Wang, L.; Ding, J.; Wang, X.; Yi, Z. Tunable multi-band terahertz absorber based on composite graphene structures with square ring and Jerusalem cross. Results Phys.
**2021**, 25, 104233. [Google Scholar] [CrossRef] - Norouzi-Razani, A.; Rezaei, P. Multiband polarization insensitive and tunable terahertz metamaterial perfect absorber based on the heterogeneous structure of graphene. Opt. Quantum Electron.
**2022**, 54, 407. [Google Scholar] [CrossRef] - Fu, P.; Liu, F.; Ren, G.J.; Su, F.; Li, D.; Yao, J.Q. A broadband metamaterial absorber based on multi-layer graphene in the terahertz region. Opt. Commun.
**2018**, 417, 62–66. [Google Scholar] [CrossRef] - Ye, L.; Zeng, F.; Zhang, Y.; Xu, X.; Yang, X.; Liu, Q.H. Frequency-reconfigurable wide-angle terahertz absorbers using single-and double-layer decussate graphene ribbon arrays. Nanomaterials
**2018**, 8, 834. [Google Scholar] [CrossRef] [Green Version] - Gong, J.; Shi, X.; Lu, Y.; Hu, F.; Zong, R.; Li, G. Dynamically tunable triple-band terahertz perfect absorber based on graphene metasurface. Superlattices Microstruct.
**2021**, 150, 106797. [Google Scholar] [CrossRef] - Mou, N.; Sun, S.; Dong, H.; Dong, S.; He, Q.; Zhou, L.; Zhang, L. Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces. Opt. Express
**2018**, 26, 11728–11736. [Google Scholar] [CrossRef] [Green Version] - Kumar, P.; Lakhtakia, A.; Jain, P.K. Graphene pixel-based polarization-insensitive metasurface for almost perfect and wideband terahertz absorption. JOSA B
**2019**, 36, F84–F88. [Google Scholar] [CrossRef] - Kong, X.K.; Shi, X.Z.; Mo, J.J.; Fang, Y.T.; Chen, X.L.; Liu, S.B. Tunable multichannel absorber composed of graphene and doped periodic structures. Opt. Commun.
**2017**, 383, 391–396. [Google Scholar] [CrossRef] - Wang, X.; Jiang, X.; You, Q.; Guo, J.; Dai, X.; Xiang, Y. Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene. Photonics Res.
**2017**, 5, 536–542. [Google Scholar] [CrossRef] - Bian, L.A.; Deng, Z.; Hong, Y.; Qiu, Y.; Liu, Z.; Xiao, P.; Li, G. Double-mode absorption in double-defect photonic crystal with one graphene multilayer. Opt. Quantum Electron.
**2020**, 52, 1–10. [Google Scholar] [CrossRef] - Wei, Z.; Jiang, Y.; Zhang, S.; Zhu, X.; Li, Q. Graphene-Based Magnetically Tunable Broadband Terahertz Absorber. IEEE Photonics J.
**2021**, 14, 1–6. [Google Scholar] [CrossRef] - Cheng, R.; Zhou, Y.; Liu, H.; Liu, J.; Sun, G.; Zhou, X.; Shen, H.; Wang, Q.; Zha, Y. Tunable graphene-based terahertz absorber via an external magnetic field. Opt. Mater. Express
**2020**, 10, 501–512. [Google Scholar] [CrossRef] - Rashidi, A.; Nayak, C.; Bezerra, C.G.; Costa, C.H.; Pinheiro, F.A. Tunable terahertz absorption in Si/SiO
_{2}-graphene multilayers: Disorder and magneto-optical effects. Appl. Opt.**2020**, 59, 11034–11040. [Google Scholar] [CrossRef] [PubMed] - Entezar, S.R.; Habil, M.K. Nonreciprocal optical isolation via graphene based photonic crystals. J. Magn. Magn. Mater.
**2018**, 449, 33–39. [Google Scholar] [CrossRef] - Mahesh, P.; Nayak, C. Multimode absorption in single-layer graphene: Disordered photonics and magneto-optic effect. Opt. Mater.
**2022**, 126, 112172. [Google Scholar] [CrossRef] - Crassee, I.; Levallois, J.; Walter, A.L.; Ostler, M.; Bostwick, A.; Rotenberg, E.; Seyller, T.; Van Der Marel, D.; Kuzmenko, A.B. Giant Faraday rotation in single-and multilayer graphene. Nat. Phys.
**2011**, 7, 48–51. [Google Scholar] [CrossRef] [Green Version] - Lin, X.; Wang, Z.; Gao, F.; Zhang, B.; Chen, H. Atomically thin nonreciprocal optical isolation. Sci. Rep.
**2014**, 4, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Berreman, D.W. Optics in stratified and anisotropic media: 4× 4-matrix formulation. Josa
**1972**, 62, 502–510. [Google Scholar] [CrossRef] - Molina, I.; Adrián Reyes, J.; Avendaño, C.G. Electrically controlled optical bandgap in a twisted photonic liquid crystal. J. Appl. Phys.
**2011**, 109, 113510. [Google Scholar] [CrossRef] - Habil, M.K.; Entezar, S.R. Polarization conversion and phase modulation of terahertz electromagnetic waves via graphene-dielectric structure. Phys. Scr.
**2019**, 95, 015503. [Google Scholar] [CrossRef] - Hung, H.C.; Wu, C.J.; Chang, S.J. Terahertz temperature-dependent defect mode in a semiconductor-dielectric photonic crystal. J. Appl. Phys.
**2011**, 110, 093110. [Google Scholar] [CrossRef] - Wang, X.; Zhao, M.; Nolte, D.D. Optical contrast and clarity of graphene on an arbitrary substrate. Appl. Phys. Lett.
**2009**, 95, 081102. [Google Scholar] [CrossRef] - Stephens, P.J. Magnetic circular dichroism. Annu. Rev. Phys. Chem.
**1974**, 25, 201–232. [Google Scholar] [CrossRef] - Wang, W.; Qu, Y.; Du, K.; Bai, S.; Tian, J.; Pan, M.; Ye, H.; Qiu, M.; Li, Q. Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε′′ metals. Appl. Phys. Lett.
**2017**, 110, 101101. [Google Scholar] [CrossRef] - Madani, A.; Entezar, S.R. Optical properties of one-dimensional photonic crystals containing graphene sheets. Phys. B
**2013**, 431, 1–5. [Google Scholar] [CrossRef] - Kim, T.T.; Oh, S.S.; Kim, H.D.; Park, H.S.; Hess, O.; Min, B.; Zhang, S. Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials. Sci. Adv.
**2017**, 3, e1701377. [Google Scholar] [CrossRef] [Green Version] - Qi, L.; Liu, C. Complex band structures of 1D anisotropic graphene photonic crystal. Photonics Res.
**2017**, 5, 543–551. [Google Scholar] [CrossRef]

**Figure 1.**Schematics of the proposed absorber model. (

**a**) ${\left(DG\right)}^{N}$ model and (

**b**) ${\left(DG\right)}^{1}$ model.

**Figure 2.**(

**a**) Absorption (${A}_{L}$ and ${A}_{R}$), (

**c**) transmittance (${T}_{LL}$), and (

**d**) reflectance (${R}_{RL}$) of ${\left(DG\right)}^{N}$ with various N, and (

**b**) reflectance, transmittance, and absorption of $DG$ and G for the LCP wave, when B = 1 T.

**Figure 3.**Electric field amplitude distributions of the (

**a**) LCP and (

**b**) RCP waves in ${\left(DG\right)}^{6}$ when B = 1 T.

**Figure 4.**(

**a**) Absorption of ${\left(DG\right)}^{6}$ for the LCP wave; (

**b**) imaginary part of the relative permittivity $xx$-component of graphene for B = 1, 3, and 5 T.

**Figure 6.**$\theta $- and B-dependent absorption of the LCP wave for ${\left(DG\right)}^{6}$; (

**a**) B = 1 T, (

**b**) B = 3 T, and (

**c**) B = 5 T.

**Figure 7.**Absorption of the LCP wave for the proposed model ${\left(DG\right)}^{6}$ with various extinction coefficients: (

**a**) B = 1 T, (

**b**) B = 3 T, and (

**c**) B = 5 T.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wei, Z.; Jiang, Y.; Wang, J.
Frequency Magnetically Tunable Terahertz Perfect Absorber Based on Graphene and Silica Layered Dielectric. *Crystals* **2023**, *13*, 553.
https://doi.org/10.3390/cryst13040553

**AMA Style**

Wei Z, Jiang Y, Wang J.
Frequency Magnetically Tunable Terahertz Perfect Absorber Based on Graphene and Silica Layered Dielectric. *Crystals*. 2023; 13(4):553.
https://doi.org/10.3390/cryst13040553

**Chicago/Turabian Style**

Wei, Zhenyan, Yannan Jiang, and Jiao Wang.
2023. "Frequency Magnetically Tunable Terahertz Perfect Absorber Based on Graphene and Silica Layered Dielectric" *Crystals* 13, no. 4: 553.
https://doi.org/10.3390/cryst13040553