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Abstract: Cellular automata (CA) modeling is a powerful and efficient tool for simulating the dynamic
evolution of polycrystalline microstructures in modern materials and metallurgy studies, such as
solidification, plastic deformation and recrystallization. We propose a novel model to calculate the
shape factor of grains in three-dimensional hexagonal grid (3D-HEX) CA, which overcomes the
disadvantages of 3D-HEX CA, such as complex algorithms and a long computation time. The shape
factor is a quantitative measure of grain morphology based on the ratio of the surface area of the
grain to its volume-equivalent-sphere and volume-equivalent-chain. It indicates how the shape of
a grain or phase affects its mechanical properties, such as stiffness, deformation and fracture. Our
model can easily calculate the shape factor for any grain by counting its surface cells and volume
cells. We test our model on 1000 grains with different shapes (equiaxed, irregular and chain-like) by
Monte Carlo (MC) methods. MC methods evaluate the validity of a calculation model by comparing
the simulated outcomes with the observed or expected outcomes. The results show that our model
can accurately describe the grain morphology and has a good comparability and generality.

Keywords: shape factor; cellular automaton; 3D hexagonal grid; Monte Carlo; modeling; microstructure

1. Introduction

Cellular automata (CA) modeling is a powerful and efficient tool for simulating
polycrystalline dynamic microstructure evolution in modern material and metallurgy
studies, such as solidification, plastic deformation and recrystallization [1]. In recent
years, CA have been applied to various material science problems involving complex
topological changes at different length scales [2–4]. Some examples include recrystallization
phenomena, eutectic transformation during solidification, phase-field modeling of dendritic
growth, fracture mechanics, corrosion processes, etc. These applications demonstrate that
CA can capture the essential physics of materials’ behavior with a high computational
efficiency and flexibility [5–8].

For example, the model of a cellular-automata simulation of the grain growth of
a powder metallurgy Ni-based superalloy [9] incorporates thermodynamic and kinetic
mechanisms to describe the microstructural evolution of a Ni-based superalloy during
hot isostatic pressing. The model can predict the grain-size distribution, grain-boundary
migration velocity and grain-boundary energy under different processing conditions. A
cellular-automata model for modeling phase-change materials [10] describes the tempera-
ture distribution and phases (liquid/solid) evolution for multi-component materials with
a complex geometry. The model can handle phase-change phenomena, such as melting,
solidification, latent heat storage and release. These research outcomes show that CA
modeling is a versatile and promising technique for studying various aspects of materials
science at different scales.

CA modeling, especially on a two-dimensional square grid (2D-SQR), is widely used
to describe or predict microstructural characteristics [11]. The spatial discretization used
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by 2D-SQR can sometimes produce unnatural anisotropic patterns due to the imperfect
symmetry. As an inherently grid-based system, 2D-SQR is better suited for representing
map-like changes. However, a crystalline structure may not be as well represented within
this framework [12]. The three-dimensional hexagonal grid (3D-HEX) has some special
advantages over 2D-SQR, such as its intrinsic isotropic properties and good consistency
with a metal crystalline structure [13]. This is because first, 3D grids provide accurate
structural information on bulk material, while 2D grids only give representation character-
istics. This is essential for studying the mechanism of microstructure evolution; second,
3D-HEX is closer to the real atom stacking mode in metal, which makes it easier to simulate
the real mechanism when designing CA transition rules. This is very beneficial for the
microstructure simulation at a near-atom scale [14,15].

According to some recent studies, 3D-HEX CA can be used to simulate various phe-
nomena, such as cleavage propagation across crystal boundaries [16], a coupled hydrogen
porosity and microstructure during the solidification of ternary aluminum alloys [17,18],
and grain refinement during the severe plastic deformation of micro-alloyed steel. These
simulations can help understand the mechanisms and effects of different factors on the
microstructure evolution and properties of materials [1–4].

Furthermore, some advantages of 3D-HEX CA over other methods, such as phase-field
models, front tracking methods, and vertex models, are that they are simpler, faster, more
flexible, and more scalable [19–21]. They can also capture complex features, such as grain
boundaries, crack fronts, dislocation structures, and phase transformations, with a high
accuracy [16,17]. For example, 3D-HEX CA can simulate the evolution of grain boundaries
in polycrystalline materials under different driving forces and boundary conditions [16]. 3D-
HEX CA can model the propagation of crack fronts in brittle materials with arbitrary shapes
and orientations [22]. 3D-HEX CA can represent the dynamics of dislocation structures
in metallic materials under various loading scenarios [23]. 3D-HEX CA can describe the
phase transformations in alloy systems with multiple components and phases [24]. These
instances demonstrate the versatility and applicability of 3D-HEX CA for various material
science problems.

However, 3D-HEX also has some natural disadvantages that limit its usage. First,
the algorithm and calculation model are more complex and time-consuming; second,
unlike 2D-SQR, there is no general calculation model for the 3D-HEX microstructure
simulation [10,14].

The shape factor is a useful parameter for quantitatively describing the morphology of
a grain or phase [25]. It is a numerical value that depends on the geometry of a shape and
the type of property being considered. It also indicates how the shape of a grain or phase
affects its mechanical properties, such as stiffness, deformation and fracture. Therefore,
the shape factor is an important consideration for material selection and design in various
engineering applications. There are some examples of shape factors for macro-object with
different shapes: A square rod has a shape factor of 1.12 for elastic bending stiffness,
1.33 for elastic torsional stiffness, 1.12 for bending strength, and 1.33 for torsional strength;
a rectangular rod with an aspect ratio of 2:1 has a shape factor of 1.17 for elastic bending
stiffness, 2.00 for elastic torsional stiffness, 1.17 for bending strength, and 2.00 for torsional
strength. In 2D-SQR, there are many general calculation models of the grain shape factor
based on a mature 2D image technology algorithm. However, in 3D-HEX, there is no such
general calculation model available [26].

This paper proposes a novel, simple, and efficient model for calculating grain shape
factors in 3D-HEX. The model is based on the ratio of the grain’s surface area to its volume-
equivalent-sphere and volume-equivalent-chain. By counting the grain’s surface and
volume cells, our model can easily calculate the shape factor for any grain.

2. Model and Calculation

3D CA is a system consisting of a 3D grid of cells that change their states according
to a rule that depends on the number of neighboring cells [12]. Each cell can be either on
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or off, and the rule determines whether a cell will turn on, turn off, or stay unchanged at
each step. The spatial arrangement of 3D cellular automata can vary depending on the
shape and size of the grid, the initial configuration of cells, and the rule applied. Some
possible shapes for the grid are cubes, spheres, cylinders, or irregular shapes. The initial
configuration can be a single cell, a random pattern, or a predefined pattern. The rule can
be specified by a number that indicates which values of neighboring cells will trigger a
change in state.

Specifically, we use a 3D-HEX grid with one million cells (100 × 100 × 100), as shown
in Figure 1. Each cell has 12 neighbors: 3 on the upper Z-plane (Layer A), 3 on the lower
Z-plane (Layer C), and 6 on the same Z-plane (Layer B). The Z-axis stacking sequence is
ABCABC . . . For clarity, Figure 1 shows cells as spheres, but they are actually rhombic
dodecahedrons that fill the space completely.

Figure 1. Schematic view of 3D-HEX grid and spatial arrangement of a cell and its neighbors.

To describe the grain morphology, we use the sphericity degree as a shape factor [27–29].
It is the ratio of the diameter of a sphere with the same volume as the grain to the diameter
of a sphere with the same surface area as the grain. The sphericity degree varies between
0 and 1, where 0 corresponds to a perfect sphere and 1 signifies a chain-like shape. The
sphericity degree reflects how closely the grain resembles a spherical shape and can be
used to quantify the effects of grain growth and deformation on microstructure evolution.

Based on this idea, we propose a new model to calculate the grain shape factor in
3D-HEX using the surface area and volume of an actual grain. The steps are: (1) Calculate
the surface area of the grain by Equation (1). (2) Construct a sphere and a chain with the
same volume as the grain. These have the minimum and maximum possible surface areas,
respectively. (3) Normalize the surface area of the grain to a value between 0 and 1 by
Equation (2). This is the shape factor (A) of the grain. A lower A means a higher sphericity
degree and more spherical shape, as in Figure 2a. A higher A means a lower sphericity
degree and more chain-like shape, as in Figure 2b.

Sgrain = Scell ·Ngrain_sur f (1)

A =
(

Sgrain − Ssphere

)
/
(

Schain − Ssphere

)
(2)

Ssphere = Scell ·Nsphere (3)

Schain = Scell ·Nchain (4)

where Sgrain is the surface area of the actual grain, Ssphere is the surface area of the sphere
with the same volume as the grain, and Schain is the surface area of the chain with the
same volume as the grain. Ssphere and Schain can be calculated by Equations (3) and (4),
respectively. Ngrain_surf is the number of surface cells of the grain (blue spheres in Figure 2c
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or Figure 2d), Nsphere is the number of surface cells of the sphere (Figure 2a), and Nchain is
the number of surface cells of the chain (Figure 2b). Scell is the area of a cell’s great circle
on its circumscribed sphere. This value can be ignored because it cancels out. Therefore,
Equation (2) turns into:

A =
∣∣∣Ngrain_sur f − Nsphere

∣∣∣/(Nchain − Nsphere

)
(5)

Figure 2. Schematic view of (a) volume-equivalent-sphere, (b) volume-equivalent-chain, and
(c,d) two grains with volume of 500.

Note that Equations (1)–(4) are used to derive Equation (5) and that Equation (5)
should be used directly instead of calculating it from Equation (1). To calculate Nsphere and
Nchain in Equation (5), we need to build models of spheres and chains with the same volume
as the grain. The volume is Nvolume, which is the number of cells in the grain. We use a
step-by-step growth CA method to add cells to the models. For spheres, we choose the cell
that minimizes the surface-area increase. For chains, we choose the cell that maximizes it.
This way, we can simulate different grain morphologies with different sphericity degrees.
The spheres have a high sphericity degree close to 0, while the chains have a low sphericity
degree close to 1. The step-by-step growth CA method allows us to control the size and
shape of the grains by adjusting the number and location of the cells added. Then, we
count Nsphere and Nchain for each model with different Nvolume values (from 1 to 5000). We
fit curves for Nsphere and Nchain as functions of Nvolume by least squares and plot them in
Figure 3 with the actual values [30].

Nchain = 6Nvolume + 6 (6)

Nsphere = 5.037Nvolume
2
3 + 45.940 (7)

Figure 3 shows that Nchain and Nvolume have a linear relationship in the chain model, im-
plying that each Nvolume adds six units of surface area. In contrast, Nsphere has a more complex
relationship with Nvolume in the sphere model, which can be approximated by Equation (7).
To assess the quality of this approximation, we use residual analysis (Equation (8)), where
R is the average residual, and a good fit is expected to have R < 0.05 [31]. Ni and N̂i are
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the actual and fitted values of Nsphere when Nvolume = i. However, Equation (7) has a high
R value of 0.115, indicating a poor fit, especially when Nvolume < 200 (see red dotted curves
in Figure 4a,b).

Figure 3. Relationships between surface cell number of volume-equivalent-sphere (red curve and
blue dots), volume-equivalent-chain (black curve and green dots), and their corresponding grain
volume number.

Figure 4. Comparison of fitting effect between Equation (9) and Equation (7) with volume number
within a range of (a) 1~79, (b) 80~199, (c) 200~599, (d) 600~1199, (e) 1200~1799, and (f) 1800~5000.

Piecewise fitting can improve the fitting accuracy by dividing the data into segments
and using different functions for each segment that best fit the data within that segment [30].
In this way, the piecewise function can capture nonlinear patterns and discontinuities in
the data that a single function might miss. To perform piecewise fitting, we need to specify
the number of segments of Nvolume, the functions for each segment, and the breakpoints
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between segments. Then, we can use various methods to estimate the parameters of each
function and minimize the error between the fitted values and the actual values.

Therefore, we use piecewise fitting to improve the accuracy and obtain Equation (9) [30,31].
Figure 4 shows the piecewise fitting results. We recommend using Equation (9) instead of
Equation (7) to calculate Nsphere for any given Nvolume. Therefore, with Equations (5) and (9), we
can compute the shape factor A of any grain in 3D-HEX using its Nvolume and Ngrain_surf, which
are easy and efficient to obtain.

R =

√√√√∑
i
(

Ni − N̂i
Ni

)
2

(8)

Nsphere =


⌊

5.738Nvolume
2
3 + 14.662

⌋
Nvolume ∈ [1, 80)⌊

5.267Nvolume
2
3 + 28.412

⌋
Nvolume ∈ [80, 200)⌊

4.985Nvolume
2
3 + 53.979

⌋
Nvolume ∈ [200, ∞)

(9)

3. Model Validation

Monte Carlo (MC) methods evaluate the validity of a calculation model by comparing
the simulated outcomes with the observed or expected outcomes [32]. MC methods use
random sampling to generate a large number of possible scenarios based on the input
variables and parameters of the model. Then, they analyze the distribution and statistics of
the output values to estimate the probabilities, uncertainties, and risks associated with the
model. If the simulated outcomes are consistent with the observed or expected outcomes
within a certain confidence level, then the model is considered valid. Otherwise, the
model may need to be revised or improved. MC methods are widely used in various
fields, such as physics, engineering, biology and social sciences. They can handle complex
and nonlinear models that are difficult to solve analytically or numerically. They can
also incorporate different sources of uncertainty and variability in the input data and
parameters. However, MC methods also have some limitations, such as a dependence on
random number generators and a difficulty in determining convergence criteria.

We use MC methods to generate 1000 grains in 3D-HEX, including spherical, irregular,
and chain grains, to evaluate the validity of A as a shape descriptor. For spherical grains,
we choose the cell that minimizes the surface area increase. For chain grains, we choose the
cell that maximizes it. For irregular grains, we choose the cell randomly. This way, we can
generate different grain morphologies with different sphericity degrees. The step-by-step
growth method also allows us to control the size and shape of the grains by adjusting the
number and location of the cells added. Figure 5 shows the distribution of A values for
these grains.

Figure 5 reveals that most spherical grains have A values between 0 and 0.2 (green
dots), and most irregular grains have A values between 0.3 and 0.6 (red dots). This agrees
with the expected behavior of MC methods, confirming that A can capture the degree
of sphericity quantitatively. Note that we use transition rules based on equiaxed grain
formation rather than dendrite formation for MC methods in this paper, which results
in more low-A grains. However, since chain-like grains have a similar morphology to
dendrites and since they always have high A values (blue dots), we can infer that A is also
effective for dendrites.



Crystals 2023, 13, 544 7 of 9

Figure 5. Distribution of shape factor of spherical grain, irregular grain, and chain grain.

4. Conclusions

The shape factor is a quantitative measure of grain morphology based on the ratio of
the surface area of the grain to its volume-equivalent-sphere and volume-equivalent-chain.
It indicates how the shape of a grain or phase affects its mechanical properties, such as
stiffness, deformation, and fracture. For example, spherical grains tend to have a higher
stiffness and lower ductility than chain-like grains. Therefore, controlling the shape factor
of grains can be an effective way to optimize the performance of materials.

We propose a novel model to calculate the shape factor of grains in 3D-HEX CA,
which overcomes disadvantages, such as complex algorithms and a long computation time.
The basic idea of this model is to use the ratio of the actual surface area of a grain to the
minimum surface area of a sphere with the same volume as the shape factor for spheres
and to use the ratio of the actual surface area of a grain to the maximum surface area of
a chain with the same volume as the shape factor for chains. The smaller this ratio is for
spheres or the larger it is for chains, the more spherical or chain-like, respectively, the grain
is. This model has the following advantages: (1) it is accurate and effective, especially for
simulating microstructure evolution; (2) it is normalized, so it can compare grains with
different volumes; and (3) it is based on the grain surface area, so it can be integrated with
other models that involve grain boundary, grain surface energy, grain classification, etc.

Author Contributions: Conceptualization, L.B. and J.S. methodology, L.B.; software, L.B. and J.S.;
validation, L.B. and J.S.; formal analysis, L.B.; investigation, L.B. and J.S.; resources, L.B.; data
curation, L.B.; writing—original draft preparation, L.B.; writing—review and editing, L.B. and J.S.;
visualization, J.S.; supervision, L.B.; project administration, L.B.; All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Crystals 2023, 13, 544 8 of 9

References
1. Hashemi, S.; Kalidindi, S.R. A Machine Learning Framework for the Temporal Evolution of Microstructure during Static

Recrystallization of Polycrystalline Materials Simulated by Cellular Automaton. Comput. Mater. Sci. 2021, 188, 110132. [CrossRef]
2. Park, J.; Rout, M.; Min, K.-M.; Chen, S.-F.; Lee, M.-G. A Fully Coupled Crystal Plasticity-Cellular Automata Model for Predicting

Thermomechanical Response with Dynamic Recrystallization in AISI 304LN Stainless Steel. Mech. Mater. 2022, 167, 104248.
[CrossRef]

3. Mohebbi, M.S.; Ploshikhin, V. Implementation of Nucleation in Cellular Automaton Simulation of Microstructural Evolution
during Additive Manufacturing of Al Alloys. Addit. Manuf. 2020, 36, 101726. [CrossRef]

4. Ogawa, J.; Natsume, Y. Three-Dimensional Large-Scale Grain Growth Simulation Using a Cellular Automaton Model. Comput.
Mater. Sci. 2021, 199, 110729. [CrossRef]

5. Gu, C.; Moodispaw, M.P.; Luo, A.A. Cellular Automaton Simulation and Experimental Validation of Eutectic Transformation
during Solidification of Al-Si Alloys. Npj Comput. Mater. 2022, 8, 134. [CrossRef]

6. Liu, S.; Hong, K.; Shin, Y.C. A Novel 3D Cellular Automata-Phase Field Model for Computationally Efficient Dendrite Evolution
during Bulk Solidification. Comput. Mater. Sci. 2021, 192, 110405. [CrossRef]

7. Nutaro, J.; Stump, B.; Shukla, P. Discrete Event Cellular Automata: A New Approach to Cellular Automata for Computational
Material Science. Comput. Mater. Sci. 2023, 219, 111990. [CrossRef]

8. Gu, C.; Ridgeway, C.D.; Cinkilic, E.; Lu, Y.; Luo, A.A. Predicting Gas and Shrinkage Porosity in Solidification Microstructure: A
Coupled Three-Dimensional Cellular Automaton Model. J. Mater. Sci. Technol. 2020, 49, 91–105. [CrossRef]

9. Liu, S.; Jiang, Y.; Lu, R.; Cheng, X.; Li, J.; Chen, Y.; Tian, G. Cellular Automata Simulation of Grain Growth of Powder Metallurgy
Nickel-Based Superalloy. arXiv 2021, arXiv:2106.04888. [CrossRef]

10. El Amri, N.; El Amri, A.; El Bouayadi, R.; El Hassouani, Y.; Bouachrine, M.; Zorkani, I. Modeling Phase Change Materials
Using Cellular Automata. In Advances in Intelligent Systems and Computing; Benyounes, H., Bouchaala, F.M., Eds.; Springer:
Cham, Switzerland, 2020; Volume 1076, pp. 161–170. [CrossRef]

11. Chen, F.; Tian, X.; Wu, G.; Zhu, H.; Ou, H.; Cui, Z. Coupled Quantitative Modeling of Microstructural Evolution and Plastic Flow
during Continuous Dynamic Recrystallization. Int. J. Plast. 2022, 156, 103372. [CrossRef]

12. Bays, C. Cellular Automata in Triangular, Pentagonal, and Hexagonal Tessellations. In Cellular Automata: A Volume in the
Encyclopedia of Complexity and Systems Science, 2nd ed.; Adamatzky, A., Ed.; Encyclopedia of Complexity and Systems Science
Series; Springer: New York, NY, USA, 2018; pp. 1–10, ISBN 978-1-4939-8700-9.

13. Fuyong, S.; Wenli, L.; Zhi, W. Three-Dimensional Cellular Automaton Simulation of Austenite Grain Growth of Fe-1C-1.5Cr Alloy
Steel. J. Mater. Res. Technol. 2020, 9, 180–187. [CrossRef]

14. Rolchigo, M.; Plotkowski, A.; Belak, J. Sensitivity of Cellular Automata Grain Structure Predictions for High Solidification Rates.
Comput. Mater. Sci. 2021, 196, 110498. [CrossRef]

15. Ren, Z.; Pu, Z.; Liu, D.-R. Prediction of Grain-Size Transition during Solidification of Hypoeutectic Al-Si Alloys by an Improved
Three-Dimensional Sharp-Interface Model. Comput. Mater. Sci. 2022, 203, 111131. [CrossRef]

16. Shterenlikht, A.; Margetts, L. Three-Dimensional Cellular Automata Modelling of Cleavage Propagation across Crystal Boundaries
in Polycrystalline Microstructures. Proc. R. Soc. A Math. Phys. Eng. Sci. 2015, 471, 20150039. [CrossRef]

17. Gu, C.; Lu, Y.; Ridgeway, C.D.; Cinkilic, E.; Luo, A.A. Three-Dimensional Cellular Automaton Simulation of Coupled Hydrogen
Porosity and Microstructure during Solidification of Ternary Aluminum Alloys. Sci. Rep. 2019, 9, 13099. [CrossRef]

18. Li, X.; Yang, X.; Xue, C.; Wang, S.; Zhang, Y.; Wang, B.; Wang, J.; Lee, P.D. Predicting Hydrogen Microporosity in Long Solidification
Range Ternary Al-Cu-Li Alloys by Coupling CALPHAD and Cellular Automata Model. Comput. Mater. Sci. 2023, 222, 112120.
[CrossRef]

19. Liu, R.; Li, K.; Zhou, G.; Tang, W.; Shen, Y.; Tang, D.; Li, D. Simulation of Strain Induced Abnormal Grain Growth in Aluminum
Alloy by Coupling Crystal Plasticity and Phase Field Methods. Trans. Nonferrous Met. Soc. China 2022, 32, 3873–3886. [CrossRef]

20. Nabavizadeh, S.A.; Eshraghi, M.; Felicelli, S.D. Three-Dimensional Phase Field Modeling of Columnar to Equiaxed Transition in
Directional Solidification of Inconel 718 Alloy. J. Cryst. Growth 2020, 549, 125879. [CrossRef]

21. Gu, C.; Ridgeway, C.D.; Moodispaw, M.P.; Luo, A.A. Multi-Component Numerical Simulation and Experimental Study of
Dendritic Growth during Solidification Processing. J. Mater. Process. Technol. 2020, 286, 116829. [CrossRef]

22. Wang, Y.; Li, Q.; Zhang, X.; Liu, W. A Continuous-Discontinuous Cellular Automaton Method for Cracks Growth and Coalescence
in Brittle Material. Acta Mech. Sin. 2014, 30, 1239–1255. [CrossRef]

23. Lee, J.; Kim, H.; Lee, C.; Kim, N. A Fully Coupled Crystal Plasticity-Cellular Automata Model for Dynamic Recrystallization of
Metallic Materials. Int. J. Plast. 2022, 149, 103127. [CrossRef]

24. Chen, L.; Liu, F.; Jin, S.; Wang, Y.; Fu, P.; Yang, G. Cellular Automata Simulation of Grain Growth of Powder Metallurgy Ni-Based
FGH98 Superalloys during Solution Treatment. J. Iron Steel Res. Int. 2023, 30, 1–11.

25. Du, L.; Zhang, P.; Wang, L.; Zheng, B.; Du, H. Phase Field Simulation on the Effect of Micropore Morphology on Grain Growth in
Porous Ceramics. Comput. Mater. Sci. 2017, 131, 196–201. [CrossRef]

26. Cagigas-Muñiz, D.; Diaz-del-Rio, F.; Sevillano-Ramos, J.L.; Guisado-Lizar, J.-L. Efficient Simulation Execution of Cellular
Automata on GPU. Simul. Model. Pract. Theory 2022, 118, 102519. [CrossRef]

27. Ye, Z.; Hilden, M.M.; Yahyaei, M. A 3D Cellular Automata Ore Stockpile Model—Part 1: Simulation of Size Segregation. Miner.
Eng. 2022, 187, 107816. [CrossRef]

http://doi.org/10.1016/j.commatsci.2020.110132
http://doi.org/10.1016/j.mechmat.2022.104248
http://doi.org/10.1016/j.addma.2020.101726
http://doi.org/10.1016/j.commatsci.2021.110729
http://doi.org/10.1038/s41524-022-00824-5
http://doi.org/10.1016/j.commatsci.2021.110405
http://doi.org/10.1016/j.commatsci.2022.111990
http://doi.org/10.1016/j.jmst.2020.02.028
http://doi.org/10.48550/arXiv.2106.04888
http://doi.org/10.1007/978-3-031-14926-9_16
http://doi.org/10.1016/j.ijplas.2022.103372
http://doi.org/10.1016/j.jmrt.2019.10.043
http://doi.org/10.1016/j.commatsci.2021.110498
http://doi.org/10.1016/j.commatsci.2021.111131
http://doi.org/10.1098/rspa.2015.0039
http://doi.org/10.1038/s41598-019-49531-0
http://doi.org/10.1016/j.commatsci.2023.112120
http://doi.org/10.1016/S1003-6326(22)66064-3
http://doi.org/10.1016/j.jcrysgro.2020.125879
http://doi.org/10.1016/j.jmatprotec.2020.116829
http://doi.org/10.1007/s10409-014-0002-4
http://doi.org/10.1016/j.ijplas.2021.103127
http://doi.org/10.1016/j.commatsci.2017.01.032
http://doi.org/10.1016/j.simpat.2022.102519
http://doi.org/10.1016/j.mineng.2022.107816


Crystals 2023, 13, 544 9 of 9

28. Rorato, R.; Arroyo, M.; Andò, E.; Gens, A. Sphericity Measures of Sand Grains. Eng. Geol. 2019, 254, 43–53. [CrossRef]
29. Cruz-Matías, I.; Ayala, D.; Hiller, D.; Gutsch, S.; Zacharias, M.; Estradé, S.; Peiró, F. Sphericity and Roundness Computation for

Particles Using the Extreme Vertices Model. J. Comput. Sci. 2019, 30, 28–40. [CrossRef]
30. Ferreira Schon, A.; Apoena Castro, N.; dos Santos Barros, A.; Eduardo Spinelli, J.; Garcia, A.; Cheung, N.; Luiz Silva, B. Multiple

Linear Regression Approach to Predict Tensile Properties of Sn-Ag-Cu (SAC) Alloys. Mater. Lett. 2021, 304, 130587. [CrossRef]
31. Linear Regression Using R: An Introduction to Data Modeling. Available online: https://open.umn.edu/opentextbooks/

textbooks/399 (accessed on 12 March 2023).
32. Crowder, S.; Delker, C.; Forrest, E.; Martin, N. Monte Carlo Methods for the Propagation of Uncertainties. In Introduction to

Statistics in Metrology; Crowder, S., Delker, C., Forrest, E., Martin, N., Eds.; Springer International Publishing: Cham, Switzerland,
2020; pp. 153–180, ISBN 978-3-030-53329-8.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.enggeo.2019.04.006
http://doi.org/10.1016/j.jocs.2018.11.005
http://doi.org/10.1016/j.matlet.2021.130587
https://open.umn.edu/opentextbooks/textbooks/399
https://open.umn.edu/opentextbooks/textbooks/399

	Introduction 
	Model and Calculation 
	Model Validation 
	Conclusions 
	References

