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Abstract: Microscale single-crystal copper is widely used in electronics, communications and other
fields due to its excellent properties such as high ductility, high toughness and good conductivity.
Therefore, it is particularly important to research its fatigue life. In order to explore the influence of
size effect, loading frequency and shear strain on the main slip surface on the fatigue life of microscale
single-crystal copper based on in situ fatigue experimental data of microscale single-crystal copper,
this paper used a BP neural network algorithm to construct a single-crystal copper fatigue life
prediction network model. The data set included 14 groups of training data, with 11 groups as
training sets and 3 groups as testing sets. The input characteristics were length, width, height, loading
frequency and shear strain of the main sliding plane of a microscale single-crystal copper sample.
The output characteristic was the fatigue life of microscale single-crystal copper. After training, the
mean square error (MSE) of the model was 0.03, the absolute value error (MAE) was 0.125, and
the correlation coefficient (R2) was 0.93271, indicating that the BP neural network algorithm can
effectively predict the fatigue life of microscale single-crystal copper and has good generalization
ability. This model can not only save the experimental time of fatigue life measurement of micro-scale
single-crystal copper, but also optimize the properties of the material by taking equidistant points in
the range of characteristic parameters. Therefore, the current study demonstrates an applicable and
efficient methodology to evaluate the fatigue life of microscale materials in industrial applications.

Keywords: microscale single-crystal copper; BP neural network; fatigue life

1. Introduction

In recent years, with the rapid development of the electronic industry and communi-
cation technology, the industry has put forward higher requirements on the performance
of conductors [1]. Under the development trend of integration and miniaturization of
microelectronic components, the mechanical properties, microstructure, fatigue creep pro-
cess and failure modes of micro-scale materials have become important research topics [2],
especially the fatigue life of materials, which has become a considerable research direction.
Due to its special crystal structure, there is no transverse grain boundary in single-crystal
copper, which eliminates the resistance generation source and signal attenuation source so
that it has good conductivity and signal transmission performance [3,4]. At the same time,
it also has high ductility, easy processing, high purity and high toughness. It is widely used
in electronics, communications, audio and other fields [5]. Moreover, with the emergence
of technologies and instruments such as focused ion beam (FIB) and electron microscopes,
it is possible to study the fatigue life of micron-sized single-crystal copper [6–8].

D. Kiener et al. [9] proposed an in situ test method for micro-tensile specimens. Load
was along the direction of <−2 3 4> of the samples. The diameter was between 0.5 µm and
8 µm, and aspect ratio, gauge length, and side length all ranged from 1:1 to 13.5:1. The

Crystals 2023, 13, 539. https://doi.org/10.3390/cryst13030539 https://www.mdpi.com/journal/crystals

https://doi.org/10.3390/cryst13030539
https://doi.org/10.3390/cryst13030539
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0002-1014-3860
https://doi.org/10.3390/cryst13030539
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst13030539?type=check_update&version=1


Crystals 2023, 13, 539 2 of 10

results show that the flow stress increases with the decrease in pipe diameter. When the
diameter was more than 2 µm, the increase was small, and when it was less than 2 µm, it
was slightly larger. These phenomena can be explained by plastic deformation mechanisms
controlled by individual dislocation sources, but the phenomenon is significantly different
when the aspect ratio is low. Obvious hardening and very strong size effects were observed.
Yan et al. [10] analyzed and observed the shear stress change on the main slip surface
of 1 × 1 × 2 µm single-crystal copper and the corresponding evolution of crystal slip
in each period. Finally, the fatigue curve of micro single-crystal copper was obtained.
The fatigue life obviously depended on the strain amplitude and is not sensitive to the
frequency of cyclic loading. In addition, the fatigue life of micro-scale single-crystal copper
is much shorter than that of bulk copper, revealing the strain dependence of the size effect
of the fatigue life of micro-scale single-crystal copper. Kai Huang et al. [11] carried out a
series of complete reverse tensile compression fatigue tests through constant displacement,
including field observation. It was found that the load amplitude significantly affected
the formation of early extrusion. A lower load threshold for crack initiation was observed.
Above the load threshold, no significant load dependence of fatigue crack initiation was
observed. Takashi Sumigawa et al. [12,13] carried out fatigue tests on single-crystal copper
micron specimens under constant displacement amplitude. It was observed by SEM
that strain localization caused by slip bands led to nanoscale extrusion/invasion on the
surface, and crystal slip only occurred near the localized bands in continuous cycles. These
phenomena indicate that the fatigue process of metals at microscale is different from that
of bulk metals, as no characteristic dislocation substructure was formed during extrusion.
Therefore, extrusion/invasion leads to fatigue failure in microscopic metals. These studies
show that the fatigue life of microscale single-crystal copper is affected by size effect,
loading frequency and shear stress on the main slip plane.

Machine learning is a multidisciplinary subject involving probability theory, statistics,
approximation theory, convex analysis, algorithm complexity theory and many other
subjects. It can directly use historical data to constantly adjust parameters in the model,
optimize the model, and learn rules between data without the need to study and analyze
potential physical mechanisms [14]. Driven by Big Data technology, machine learning
algorithms have been widely used in the performance prediction and optimization of
metals, alloys, polymers and other materials [15–17]. For alloy materials, M. Mesbah
et al. [18] used radial basis function (RBF) and multilayer perceptron (MLP) artificial
neural networks to train the mechanical property data of ZK60 magnesium alloy treated by
ptcap and compared the predicted results of their neural networks with the experimental
microscopic analysis results. It was found that both RBF and MLP can be used to accurately
estimate the mechanical properties of ZK60 magnesium alloys treated with ptcap. Liu,
HD et al. [14] established an analysis and prediction model of the correlation between the
composition and mechanical properties of Mg-Al-Zn (AZ) magnesium alloys by using
ANN. This model is based on a multi-layer feedforward neural network, which has good
performance and can be used to simulate and predict the mechanical properties of AZ series
magnesium alloys as a function of composition. Sun, Y et al. [19] developed and trained a
backpropagation neural network (BP neural network) using data from published sources
in the literature to investigate the effects of aluminum, molybdenum and zirconium on the
β transition temperature of titanium alloys. The predicted results are in good agreement
with the experimental results. For alloy metals, Maohua Li et al. [20] used an adaptive
neurofuzzy reasoning system (ANFIS) and support vector machine (SVM) to determine
the relationship between SPD parameters such as metal forming process type, pass and
process temperature. Gene expression programming (GEP) and genetic programming
(GP) were used to further validate the estimation capabilities of neuro-based predictive
machine learning. The results show that the ANFIS and SVM algorithms can predict the
mechanical behavior of UFG magnesium alloy well. For copper, Mayer, AE et al. [15] used
ANNs, artificial neural networks (ANNs) trained with molecular dynamics (MDs) data,
to predict the stress–strain relationship, shear modulus and generalized stratification of
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single-crystal copper in the elastic stage before dislocation nucleation in a wide range of
pressures from−10 GPa to +50 GPa. In addition, when preparing training data, polynomial
extrapolation was carried out on MD data to exceed the nucleation limit and improve the
training accuracy. Li, B et al. [16] derived the constitutive equation of copper pipe and
established the dynamic recrystallization and grain growth model of copper pipe. The grain
distribution of copper pipe was obtained by combining the microstructure evolution model
with finite element simulation. The model used an artificial neural network to predict the
grain size of copper pipe under different parameters and could be used to optimize the
properties of rolled copper pipe. For nanomaterials, Yan et al. [21] modeled the physical
and chemical properties and biological effects of six groups of gold nanoparticles by using
a stochastic forest and a KNN algorithm. The model for the external test set predicted R2

between 0.76 and 0.95. This study provided a new idea for the development of nanomaterial
descriptors. In addition, in order to overcome the problem of insufficient descriptors of
nanomaterials, Yan et al. [22] used CNNs to model and analyze images of nanomaterials and
established prediction models of physical and chemical properties (logP and Zeta potential)
and biological effects (cell uptake and protein adsorption) of nanomaterials. R2 > 0.68 was
used for cross-validation of all endpoints and the prediction effect of external data. With the
progress of microscale experimental studies, the library of microscale material properties is
gradually expanded. However, the application of ML methods on the prediction of fatigue
life for microscale single-crystal copper still remains for further investigation.

Based on the fatigue data of single-crystal copper [10], this paper uses a BP artificial
neural network algorithm to predict the length, width, height, loading frequency and shear
strain of the main slip plane of single-crystal copper as the characteristic parameters, with
the fatigue life as the label parameter.

2. Materials and Methods
2.1. BP Artificial Neural Network

Based on the polysynaptic transmission of human neurons, an artificial neuron was
developed, which allows multiple inputs and gives results based on connection weights
(Wi) and thresholds (b). The working principle of neurons is shown in Figure 1.
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Figure 1. Working principle of neurons.

This model can be calculated by Equation (1).

y = f (
n

∑
i=1

wixi − b) (1)

where y is the output, wi is the weight of the neuron, xi is the input data, b is the threshold,
and f is the activation function.

The common activation functions are relu, sigmoid, tanh and other functions [23,24].
First, the weights are multiplied by the input data matrix and subtracted from the bias. Then,
the result is substituted into the activation function to output the final result. According to
the different activation functions, it can be used to solve the classification and regression
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problems. Since the data in this paper are continuous and belong to the regression problem,
the network uses the sigmoid and relu functions as the activation functions.

The sigmoid function can be calculated by Equation (2).

f (x) =
1

1 + e−x (2)

The relu function can be calculated by Equation (3).

f (x) = max(0, x) (3)

When multiple neurons are added to the model, an artificial neural network is
formed. The model connection principle diagram is shown in Figure 2. The input vector
is X = (X1, X2, . . . , X5) T, where X1, X2, X3, X4 and X5 are the length, width, height and
loading frequency and shear strain of the main slip plane of microscale single-crystal
copper. The hidden layer output vector is Y = (Y1, Y2, . . . , Ym) T. O1 is the output vector
representing the fatigue life. V = (V1, V2, . . . , Vm) T is the weight matrix between the
input layer and the hidden layer. W = (W1, W2, . . . , Wk) T is the weight matrix between
the hidden layer and the output layer. X0 is the threshold set from the input layer to the
hidden layer. Y0 is the threshold set from the hidden layer to the output layer.
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The complete neural network model includes an input layer, an output layer and
hidden layers. The first layer is the input layer. The training data are first imported into
the input layer to directly determine the number of neurons in the input layer. The middle
layers are hidden layers, and multiple hidden layers can be contained. Generally speaking,
the hidden layer determines the complexity of the model and the training accuracy. The
more neurons, the more complex the network, the higher the training accuracy. The final
layer is the output layer of the model. For classification problems, the number of neurons is
the same as the number of categories, and for regression problems, the number of neurons
is the same as the number of label parameters. The connection between layers of neural
network is generally full connection. That is, all neurons in the upper layer and all neurons
in the lower layer are connected.

The BP neural network realizes the training of the model through the forward propa-
gation of the data and the back propagation of the error. In the artificial neural network
model, the loss function is used as the criterion for the completion of model training. Mean
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square error (MSE) is often used as a loss function when solving regression problems. The
mean square error can be calculated by Equation (4).

E =
1
n

n

∑
i=1

( f (xi)− yi)
2 (4)

Among them, n is the total number of sample data, yi is the true value of the samples,
f (xi) is the predicted value of the samples.

The gradient descent method (SGD) is commonly used in back propagation; according
to the value of the error function, the network weights and thresholds are constantly ad-
justed, and the loss function is iteratively optimized [25,26]. In this process, the parameters
such as weights and bias are constantly updated, the value of the loss function is constantly
changing, and the overall trend is decreasing. When a certain value is reached, the training
is completed.

The weights and thresholds adjustment formulas are shown in Equations (5) and (6).

w(k + 1) = w(k)− α
∂E(k)
∂w(k)

(5)

b(k + 1) = b(k)− α
∂E(k)
∂b(k)

(6)

Among them, w(k),b(k) are the weights and thresholds for the kth iteration in the
network, ∂E(k)

∂w(k) , ∂E(k)
∂b(k) are the error gradient of the output error to the weights and thresholds

for the kth iteration, and α is the learning rate, which controls the iteration speed.

2.2. Experimental Data

The experimental data used in this paper came from Reference [10]. There were
14 groups of data, including 5 input features and 1 output feature, 11 sets as training
sets and 3 sets as testing sets. The input features were the length, width, height, loading
frequency, and shear strain on the main slip surface of the microscale single-crystal copper
sample. The output feature was the fatigue life of the microscale single-crystal copper.
Essentially, machine learning allows computers to learn the potential relationships in data
and make predictions about future data based on those relationships. Therefore, data are
very important for the accuracy of the algorithm. The quality of the data set matters more
than the quantity. If the relationships between large data sets are fuzzy, chaotic data will
mislead the algorithm, and it is difficult for the model to converge and learn the patterns
from the training. When the relationship between small data sets is clear, it is easier for
the algorithm to learn the patterns and it has higher prediction accuracy. Since the fatigue
life values of single-crystal copper differ greatly under different experimental conditions,
logarithmic processing was performed on the training data to narrow the gap between
them. This method can not only accelerate the convergence speed of the model, but also
improve the accuracy of the model.

2.3. Data Normalization

Normalization is a method of data processing in which all input parameters are
expressed in the same unit, scaling the data to a common scale or range, keeping the
dimensions the same. On the one hand, by assigning equal weights to all feature parameters
in this way, the comparison and aggregation process among feature parameters can be
simplified, and the convergence speed of model training can be improved, so that one
feature parameter will not override other feature parameters. On the other hand, data
normalization is helpful to prevent the machine learning algorithm using the distance
measurement between characteristic parameters to produce distorted results, and can
improve the efficiency of data analysis. Therefore, normalization becomes an efficient
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data processing method. The most common data normalization methods are Z-Score and
Min–Max [27,28].

Due to the large magnitude difference between the feature data and the label data
used in this chapter, the gradient descent method was used to solve for the optimal value,
which requires more iteration steps to converge. In order to improve the speed of model
convergence and improve the accuracy of training without changing the data distribution,
Min–Max normalization processing was performed on the data. The calculation method is
shown in Equation (7):

x∗ =
x− xmin

xmax − xmin
(7)

where xmin is the minimum value in the data and xmax is the maximum value in the data.
The normalized data values are between 0 and 1.

2.4. Training Process

After obtaining the experimental data, the data were divided into training set and test
set, and then the training set was input into the neural network to train the model. Finally,
the accuracy of the trained network was tested using the test set. The training flow chart is
shown in Figure 3.
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3. Results and Discussion

Tensorflow2.0 is a mature machine learning framework. This paper built an BP
artificial neural network framework based on Keras in tensorflow2.0. The artificial neural
network set up a five-layer network. The first layer is the straightening layer, which was
used to process data and convert multi-dimensional input parameters into one-dimensional
parameters. The remaining four layers are the dense layer, which is the main parameter
layer of the model. The second layer was set up with 100 neurons, the third layer was
set up with 50 neurons, and the fourth layer was set up with 18 neurons. All of them
used the relu activation function and the L2 regularization method. Since the network
output feature was fatigue life, there was one neuron in the last layer, namely the output
layer. The sigmoid activation function was used and the L2 regularization method was
used. The optimizer selected SGD and the learning rate of 0.03, and the loss function used
mean square error. The input features of the model were the three-dimensional size of the
microscale single-crystal copper, the loading frequency and the shear stress on the main
slip surface. The output feature was the fatigue life. Before the data were imported into the
model, the data were normalized first, then the sequence was disordered and randomly
divided into test sets and training sets to improve the generalization ability of the model.
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Mean square error, absolute value error and correlation coefficient R2 were selected as
accuracy measurement indexes.

The absolute value error can be calculated by Equation (8).

MAE =
1
n

n

∑
i=1
| f (xi)− yi| (8)

The correlation coefficient R2 can be calculated by Equation (9).

R2 = 1−

n
∑
1
(yi − f (xi))

2

n
∑
1
(yi − y)2

(9)

where y is the average of the predicted value.
According to the Equations (4), (8) and (9), the smaller the mean square error and

absolute value error, the closer the predicted value and the true value, the higher the
prediction accuracy of the model. The value range of R2 is between 0 and 1. When it is
closer to 1, it shows that the model has higher accuracy; when it is closer to 0, the greater
the gap between the predicted value and the real value and the lower the accuracy.

The change in mean square error and absolute value error in the training process are
shown in Figure 4. From the mean square error function curve, it can be seen that when
the number of iterations was from 0 to 400 steps, the mean square error function value
of the training set decreased from 0.148 to 0.02, the mean square error function value of
the test set decreased from 0.143 to 0.03, the absolute value error function value of the
training set decreased from 0.300 to 0.08, and the mean square error function value of the
test set decreased from 0.255 to 0.125; in addition, the decrease speed was very fast. At this
time, the parameter iteration was coarsely adjusted with the gradient decrease. During the
training process from 400 steps to 3000 steps, the mean square error and absolute value
error of the test set and the training set increased slightly, but the increase was not obvious.
At this time, the parameter iteration was fine-tuned with the gradient descent. In the
training process of 3000 steps to 5000 steps, the mean square error and absolute value error
of the test set and the training set tended to be stable, and there was no obvious fluctuation.
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The adjustment of each weight and bias term in the model was completed, and the
training process was completed. The ideal mean square error value and absolute value



Crystals 2023, 13, 539 8 of 10

error value were obtained and indicated that the real value and the predicted value are
similar. The model has high prediction accuracy and good generalization ability.

The prediction regression diagram shows a comparison of the predicted output results
during the training process with the experimental objectives of the artificial neural network.
Ideally, the output is the same as the objective of the artificial neural network. The slope of
the regression diagram should be 1, the intercept should be 0, and the correlation coefficient
of the ideal fitting is 1. The regression plots for the model predicting fatigue life are shown
in Figure 5. Figure 5a shows the regression diagram of the training set. The slope of the
line is 1.00122, the intercept is 0.07105, and the correlation coefficient R2 reaches 0.94212.
Figure 5b shows the regression diagram of the test set. The slope of the line is 0.94831, the
intercept is 0.02139, and the correlation coefficient R2 reaches 0.93271. Figure 5c shows the
regression diagram of all sets. The slope of the line is 0.97967, the intercept is 0.08886, and
the correlation coefficient R2 reaches 0.9352. The fitting line and correlation of training set
and test set are very close to 1. This indicates that the predicted fatigue life is similar to the
experimental fatigue life.
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The experimental value and the predicted value of the fatigue life of the microscale
single-crystal copper are shown in Figure 6. The experimental value and the predicted
value are highly coincident, which reflects the degree of model training and has good
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generalization ability, indicating that the artificial neural network model has high accuracy
for fatigue life prediction.
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4. Conclusions

The results of this paper show that the prediction model using artificial neural network
algorithm, three-dimensional size, loading frequency, shear strain on the main slip surface
as the characteristic parameters, and fatigue life as the label parameter has high accuracy.
The mean square error of the testing sets is 0.03, the absolute value error is 0.125, and the R2

is 0.93271. The real fatigue life and the predicted fatigue life have a high coincidence. This
technology has a good application prospect in the research field and industrial production.
On the one hand, when the values of the input characteristic parameters are known, the
fatigue life of microscale single-crystal copper can be effectively predicted by this prediction
model, which can not only shorten the experimental measurement time and reduce the
measurement cost, but also can be compared with the in situ experimental measurement
results of fatigue of single-crystal copper. On the other hand, the orthogonal feature space
can be formed by taking equidistant points of the feature parameters in the range, and
then the new feature space can be imported into the prediction model to find the optimal
fatigue life in the output results. This algorithm can effectively realize the performance
optimization of microscale single-crystal copper.
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