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Abstract: Electronic and magnetic properties of Ga14N16−nGd2Cn monolayers are investigated by
means of the first principle calculation. The generalized gradient approximation (GGA) of the density
functional theory with the on-site Coulomb energy U was considered (GGA + U). It is found that
the total magnetic moment of a Ga14N16Gd2 monolayer is 14 µB with an antiferromagnetic (AFM)
phase. C atom substitutional impurity can effectively change the magnetic state of Ga14N16−nGd2Cn

monolayers to ferromagnetic phases (FM), and the magnetic moment increases by 1µB/1C. The stable
FM phase is due to the p-d coupling orbitals between the C-2p and Gd-5d states. Moreover, Curie
temperature (TC) close to room temperature (TR, 300 K) is observed in the Ga14N16Gd2C2 monolayer,
and the highest value can reach 261.46 K. In addition, the strain effect has a significant positive effect
on the TC of the Ga14N16−nGd2Cn monolayer, which is much higher than the TR, and the highest
value is 525.50 K. This provides an opportunity to further explore the application of two-dimensional
magnetic materials in spintronic devices.

Keywords: density functional theory; GaN:Gd monolayer; ferromagnetic property; strain effect;
p-d coupling

1. Introduction

Diluted magnetic semiconductors (DMSs), as an important part of spintronics, have
attracted much attention in terms of harnessing the spin and charge of electrons [1–3]. Sci-
entists modulate the ferromagnetism and TC by controlling the doping atoms to investigate
the potential applications of DMSs. It opens a new gateway for extending future classes
of materials. A magnetic dopant was used to substitute cations in the host compound
semiconductors and observed distinct properties [4–6]. The room-temperature FM (TR-FM)
phase has been observed in Cr, Mn, Fe, Co-doped TiO2, ZnO and GaN [7–9].

The metal nitrides (MNs), including group IIIA nitrides and nitride MXene, exhibit
unique electronic and magnetic characteristics [10–12]. In recent decades, scientists have
paid much attention to the magnetic properties and TC of GaN materials doped with
transition metal (TM) [13–15], alkali metal, alkaline earth metal, etc. [16–18]. The low
solubility of TM atoms in GaN materials restrains their potential application in TR-FM
spintronic devices. In addition, rare-earth elements such as Sm, Dy and Gd with large
magnetic moments have attracted a lot of attention [19–21]. Nobuaki found that the TC of
GaN:Gd materials achieves a TC of 400 K, far above TR [22]. The TR-FM coupling of the
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GaN:Gd system was also detected by Asahi [23]. Dhar’s group found a colossal magnetic
moment and TR-FM phase at a low concentration of Gd atoms [24,25]. It is well known that
defects are one of the important reasons for FM and AFM coupling in GaN-based systems.
The spintronic properties of GaN-based materials can be modulated not only by n-type
(interstitial O, N and C dopants) but also by p-type defects (Ga vacancies and transition
metal doping) [26–29]. Dalpian found that the FM phase in n-type GaN is mainly derived
from s-f orbital hybridization [30]. It was found that the 4f orbitals of Gd are usually far
from the Fermi energy [31]. Therefore, the s-f coupling effect near the Fermi energy level
will be weak. Xie found TR-FM in the GaN:Gd nanowires doped with C atoms, which are
strongly influenced by hybridized p-d coupling [32]. Therefore, it is necessary to select
a suitable material doped with GaN:Gd and to explore the origin of the ferromagnetic
mechanism in-depth and definitively.

Until now, there has been a lot of research, but the research on GaN:Gd monolayers
doped with C atoms is sparse. In the presented paper, the electronic and magnetic properties
of Gd-pair-doped GaN (Ga14N16Gd2) monolayers with and without C atoms are studied
by employing the first principle calculation. This paper is organized as follows. In Section 2,
we present the details of computational methods. In Section 3.1, the geometric structure,
band structure, partial density of states (PDOS), magnetic properties and TC of Ga14N16Gd2
monolayers doped with and without C atoms are determined. In Section 3.2, the biaxial
strain effect in Ga14N16−nGd2Cn monolayers are investigated. In Section 4, the results are
briefly concluded.

2. Computational Method

All calculations are based on the density function theory (DFT) of the exchange-
correlation potential. The computational work is conducted by using Vienna ab initio
simulation packages (VASP) [33]. The Perdew–Burke–Ernzerhof (PBE) formalism of the
generalized gradient approximation (GGA) is used to deal with electron exchange and cor-
relation energies by using projection-enhanced waves (PAW) to understand the interactions
between electrons and ions [34]. The cutoff energy of the plane wave basis set is kept at
500 eV [16]. When the structure is optimized, the atomic force and the energy convergence
are kept at 0.01 eV/Å and 10−5 eV [13], respectively. A vacuum space above 12 Å is created
to eliminate the effects of interactions between neighboring layers along the z-direction. The
sample of k points in the Brillouin zone is set as 5× 5× 1 [3]. The valence electron configura-
tions of Ga, N, Gd and C atoms are described as: 3d104s24p1, 2s22p3, 4f75d16s2 and 2s22p2,
respectively. A self-consistent formulation of on-site Coulomb interaction for the Gd-4f
orbitals is computed. The Coulomb repulsion energy U and the exchange parameter J are
set to 6.7 eV and 0.7 eV, respectively [30,31].

The structural stability is studied by the binding energy (Eb), which is expressed
as [35]:

Eb =
ETotal − 14EGa − (16 − n)EN − 2EGd − nEC

32
(1)

where Etotal represents the total energy of Ga14N16−nGd2Cn, EGa, EN, EGd and EC corre-
sponding to the energy of isolated Ga, N, Gd and C atoms, respectively.

We performed calculations of critical temperature to fully characterize the magnetic
properties of Ga14N16−nGd2Cn monolayers. The Heisenberg model based on the mean-
field approximation theory is used to estimate the TMFA

C [16]:

3
2

KBTMFA
C =

∆EAFM − FM

n
(2)

where KB and n are the Boltzmann constant and the number of Gd atoms, respectively. This
temperature is often overestimated by the mean field approximation, thus an empirical
relationship is used [36]:

TC

TMFA
C

= 0.61 (3)
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3. Results and Discussion

The top and side views of atomic structures of free-standing GaN monolayers (Ga16N16)
are relaxed to a flat honeycomb structure which is stripped from the (0001) plane of wurtzite
GaN structure. The band structure and PDOS of the pure GaN monolayer in Figure S1a,e
(shown in Supplementary Materials) indicate that the spin-up and spin-down channels
are degenerated, indicating a non-magnetic semiconductor material. It possesses a wide
band gap of 2.32 eV with a Ga-N bond length of about 1.84 Å, which agrees with previous
studies [35,37,38]. Figure 1a,b shows the top and side views of optimized Ga14N16Gd2
monolayers. The bulges in the doping position show that the Gd atom have tendency to
break away from the monolayer. It is also shown in Figure S1 and Table S1 that different
concentrations of Gd have a weak effect on the electronic structure and magnetic properties
of the GaN:Gd monolayer. Thus, Ga14N16Gd2 monolayers are used as the main research
subject. The substitution sites have a great influence on the monolayer, so we explored
the effects of different doping sites on the electronic properties, magnetic properties and
TC (the details are placed in Table S1, Figures S2 and S3). The topic of this article revolves
around the optimal structures, with doping sites (M), (M, 8) and (M, 5, 7), respectively.
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Figure 1. (a) Top and (b) side views of the optimized structures of Ga14N16Gd2 monolayers.

3.1. The Structural, Magnetic Properties and TC

The charge density differences of Ga14N16−nGd2Cn monolayers are depicted in Figure 2,
which is used to effectively investigate the accumulation and depletion of electrons. It is
defined as: ∆ρ =ρtotal − ρA − ρB, where ρtotal, ρA and ρB represent the total charge density
of the Ga14N16−nGd2Cn monolayer, the pure Ga16N16 monolayer and the free standing
Gd and C atoms, respectively. The yellow region represents the accumulation of electrons,
whereas the cyan region represents the depletion of electrons. The yellow region is mainly
located in N and C atoms, whereas the cyan region is mainly shown in Gd atoms. The
above phenomenon is noticeable in the doped atoms and adjacent atomic positions. It
is suggested that electrons in Gd and Ga atoms are depleted and transferred to N and
C atoms.
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Figure 2. The charge density difference of (a) Ga14N16Gd2, (b) Ga14N15Gd2C1, (c) Ga14N14Gd2C2

and (d) Ga14N13Gd2C3 monolayers. The isosurface level is 0.009 e·−3. The yellow and cyan areas
indicate the positive and negative electrons, respectively.

To clearly and quantitatively describe the electron transfer characters, the Bader
analysis is established in Table 1. As in the above analysis, electrons depleted on Ga and Gd
atoms and accumulated on N and C atoms. In Ga14N16Gd2 monolayers, it is found that the
Ga atoms lose about 1.35|e|, the N atoms bonded without Gd atoms gain about 1.37|e|
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and the N atoms bonded with Gd atoms gain 1.47|e|, which is 7.30% more than the former.
Each Gd atom loses about 1.85|e| and the introduction of C atoms has a negligible effect
on this. The M site is special and is located between the two Gd atoms. The electron of
N atoms at this position is 1.58|e|, 15.33% more than that of other N atoms. When the C
atom replaces this position, the obtained electron is 1.35|e|, which becomes the same as
the N atom bonded without Gd atoms, and no longer maintains specificity. The Ga atom
bonded with C loses 1.24|e|, which is reduced 7.46%.

Table 1. Calculated Bader analysis for Ga, N, Gd and C (except for M site) atoms, respectively. The
M site is located between the two Gd atoms. Ga1 and Ga2 represent the Ga atom bonded with and
without C, respectively, whereas N1 and N2 display the N atoms bonded with and without Gd atoms,
respectively. The accumulation and depletion of electrons are indicated by + and −, respectively. The
unit of all data is |e|.

Ga1 Ga2 N1 N2 Gd M C

Ga14N16Gd2 - −1.34 1.47 1.37 −1.85 +1.58 -
Ga14N15Gd2C1 −1.24 −1.34 1.46 1.37 −1.79 +1.36 -
Ga14N14Gd2C2 −1.25 −1.35 1.46 1.37 −1.80 +1.35 1.06
Ga14N13Gd2C3 −1.23 −1.34 1.46 1.35 −1.79 +1.35 1.09

Figure 3a–f depicts the energy band structures of Ga14N16−nGd2Cn monolayers
without considering spin–orbital coupling (SOC). In Ga14N16Gd2 monolayers (shown
in Figure S1b), the conduction band minimum (CBM) is located at the Γ point along the
high symmetry in the first Brillouin zone (BZ), whereas the valence band maximum (VBM)
is located at K points. It can be seen from the energy band diagram, where the CBM
maintains its original state, whereas the VBM rises slightly due to the orange energy level
contributed by the C atom. The band gaps of the spin-up channels are 1.99 eV, 1.83 eV,
1.93 eV and 1.93 eV, respectively, whereas the spin-down channels are 2.05 eV, 0.56 eV,
0.74 eV and 0.46 eV, respectively. The band gap sharply decreased in the spin-down chan-
nel. This phenomenon is a consequence of the introduction of impurity energy levels near
the Fermi energy level, which originates from the C atom. It can be seen that the C atom can
transform the GaN:Gd monolayer into a spin-polarized semi-metal-like unique property
with the spin-up channel maintaining a wide band gap and the spin-down channel having
a small band gap.

The total magnetic moments of Ga14N16Gd2, Ga14N15Gd2C1, Ga14N14Gd2C2,
Ga14N13Gd2C3 are 14.00 µB, 15.00 µB, 16.00 µB and 17.00 µB, respectively. In Table 2,
the spin details are depicted. For the Ga14N16Gd2 monolayer, the magnetic moment is
entirely contributed to by the Gd atoms. With an increasing number of C atoms, the ratios
are reduced to 94.53%, 89.50% and 84.24%, respectively. Each C atom substitutes an N
atom resulting in a hole, which is the reason for the increase in the magnetic moment by 1
µB. It is also shown that the TFMA

C increases significantly under the influence of C atoms,
with values of 58.22 K, 428.63 K and 319.32 K, respectively. A stable FM phase with a high
magnetic moment and the highest TFMA

C is obtained in the Ga14N13Gd2C3 monolayer. It is
amended as 35.51 K, 264.46 K and 194.78 K, respectively. By comparing previous studies
(shown in Table S2), Gd atoms in Ga14N16Gd2 monolayers can introduce large magnetic
moments, and the introduction of C atoms can further increase the magnetic moments.
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Figure 3. The spin-up band structures of (a) Ga14N15Gd2C1, (b) Ga14N14Gd2C2 and
(c) Ga14N13Gd2C3 monolayers. The spin-down channels of (d) Ga14N15Gd2C1, (e) Ga14N14Gd2C2
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Table 2. Magnetic moments (µB), energy difference (∆E = EAFM − EFM, meV), nearest-
neighboring exchange coupling (J/eV) and estimated Curie temperature (TC/K) of
Ga14N16Gd2, Ga14N15Gd2C1, Ga14N14Gd2C2, Ga14N13Gd2C3, Ga14N12Gd2C4 monolayers, respectively.

Mtotal
(µB)

MGd
(µB)

∆E
(meV)

J
(eV)

TFMA
C
(K)

TC
(K)

Ga14N16Gd2 14.00 7.05 −4.08 −0.08 - -
Ga14N15Gd2C1 15.00 7.09 15.05 0.31 58.22 35.51
Ga14N14Gd2C2 16.00 7.16 110.81 2.26 428.63 261.46
Ga14N13Gd2C3 17.00 7.16 82.55 1.68 319.32 194.78

To further investigate the magnetic mechanism, the PDOSs of Ga14N16−nGd2Cn mono-
layers are plotted in Figure 4. It is further identified that the large magnetic moment stems
mainly from the large exchange splitting of the Gd-4f state. The spin-up Gd-4f orbitals
(below the VBM) are fully occupied while the spin-down orbitals (above the CBM) are fully
unoccupied. The CBM is pushed to the Γ-point (shown in Figure 3) in the spin-down chan-
nel and decreases the electron effective mass which agrees with the previous report [39].
The Gd-4f orbitals are separated from the VBM (in the spin-up channel) and the CBM (in
the spin-down channel) by about 4 and 7 eV, respectively. As a result, the coupling between
Gd-4f and p-type orbitals should be weak [31]. In the spin-down channel, in agreement
with the energy band analysis above, the C atom impurity energy level appears near the
Fermi energy level and the CBM is reduced, leading to a small band gap. The Gd-5d
orbitals and C-2p orbitals overlap near the Fermi energy level, forming p-d hybrid orbitals,
and the C-2p near the Fermi energy level is significantly enhanced as the concentration
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of C atoms increases. Thus, we suggest that the stable FM phase originates from p-d
hybridized orbitals.
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3.2. The Modulation by Strain Effect

The biaxial strains (ε = a0− a
a0
× 100) ranging from −6% to 15% are performed on

Ga14N16−nGd2Cn monolayers. The total energy (Etotal) and Eb of FM states are shown in
Figure 5a,b, which is used to review the stability. The negative Eb indicates an exothermic
reaction, and the larger |Eb| means a more stable structure. The structural stability
decreases as the curve decreases, whereas a rising one means that it is more stable. It can
be clearly seen that structural stability decreases with increasing compressive strain. As the
tensile strain increases, the stability of the system first increases, reaching a maximum at
ε = 2, and then exhibits a significant decrease. Figure 5c shows the impact of strain effects
on the band gap of the system. It can be seen that the compression strain has a nominal
impact on the spin-up channel indicated by the solid line. For the spin-up band gap, similar
trends exist for the total energy and Eb. Although the spin-down band gap shows slight
fluctuations at −4 ≤ ε ≤ 12, the value decreases significantly when ε ≤ −5 or ε ≥ 13.
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Figure 5. (a) Etotal of FM phase, (b) Eb and (c) band gap of Ga14N16−nGd2Cn monolayers. The
dark blue (triangle), light blue (pentagram) and brown (circle) lines in the diagram represent
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∆E and J are shown in Figure 6a,b and are used as criteria for the magnetic characters
and predicting the evolution of the TC. Positive and increasing values represent a stronger
stable FM state. At −4 < ε < 15, the strain effect does not change the magnetic ground state
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of Ga14N16Gd2, and the ground states of all structures are the FM states. When ε ≤ −5,
Ga14N13Gd2C3 possesses negative values, implying that the ground state is AFM. Addition-
ally, the maximum values of ∆E for Ga14N15Gd2C1, Ga14N14Gd2C2 and Ga14N13Gd2C3 are
obtained as 125.4 eV (ε = −4), 242.87 eV (ε = 7) and 125.91 eV (ε = −3), respectively. The
TC can be predicted to reach a maximum. Figure 6c,d demonstrates the TFMA

C and TC
whose value increased to above TR with strain effects. The highest TC (TFMA

C ) is found for
Ga14N15Gd2C1, Ga14N14Gd2C2 and Ga14N13Gd2C3 as 295.89 K (485.07 K, ε =−4), 564.57 K
(925.53 K, ε = 7) and 297.09 K (487.04 K, ε = −3), respectively. It is clearly noticeable from
the graph that the curve is most stable when n = 2, with TC fluctuating around 300 K under
strain effects.
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Figure 6. (a) Energy difference (4E), (b) the magnetic coupling parameter (J), (c) TFMA
C and (d) TC.

The dark blue (triangle), light blue (pentagram) and brown (circle) lines in the diagram represent the
Ga14N15Gd2C1, Ga14N14Gd2C2 and Ga14N13Gd2C3 monolayers, respectively. The red dashed lines
in the last two graphs indicate TR. The black circles in the last two figures indicate this position as an
AFM state without TC.

The strains acting in the Ga14N14Gd2C2 monolayer of ε = −6, 7 and 15 are used as an
example to understand the mechanism of orbital hybridization that causes the TC change,
whose PDOS is plotted in Figure 7. As can be seen in Figure 7b, the Gd-5d states and C-2p
states overlap a lot near the Fermi energy, which indicates the coupling between them
and the formatting of p-d orbitals. This is consistent with the results discussed above. A
weakening of this coupling is found in Figure 7a,c, which is due to a reduction in the Gd-5d
electronic state near the Fermi energy level, resulting in a reduction in TC. In addition, the
results obtained from the above analysis are further verified by the SOC method (shown in
Figure S4). In conclusion, the replacement of N atoms with C atoms effectively transforms
the GaN:Gd monolayer into a stable FM phase, which is further processed by biaxial strain
to obtain GaN-based materials close to or even well above TR.
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Figure 7. The PDOS of Ga14N14Gd2C2 monolayers at ε = (a) 6, (b) 7 and (c) 15, respectively.

4. Conclusions

In conclusion, the electronic and magnetic properties of Ga14N16−nGd2Cn monolayers
are studied by means of the DFT method. The total magnetic moment of the Ga14N16Gd2
monolayer is 14 µB with a weak AFM phase. The magnetic moment stems mainly from
the large exchange splitting of the Gd-4f state. It is suggested that the magnetic moment
of the Ga14N16Gd2 monolayer, in which the N atom has been substituted with a C atom,
is increased with a stable FM phase. The main contributing factor is the hybridized p-d
orbital between the Gd-5d and C-2p orbitals. A relatively high TC of 261.46 K is observed
in the Ga14N14Gd2C2 monolayers. In addition, the FM coupling and TC can be further
enhanced by suitable strain effects. The TC of the monolayer can be significantly increased
to 564.57 K, well above TR.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst13030531/s1, Figure S1: Band structures of (a) Ga16N16
(b) Ga14N16Gd2, (c) Ga23N25Gd2 and (d) Ga34N36Gd2 monolayers. The blue and pink solid lines in
the band structure represent spin up and spin down channels, respectively. PDOS of (e) Ga16N16
(f) Ga14N16Gd2, (g) Ga23N25Gd2 and (h) Ga34N36Gd2 monolayers. The dash lines present the fermi-
level which is taken to be 0.; Table S1: The Eb of FM phase, total magnetic moments (Mtotal),
∆E (EAFM − EFM), nearest-neighboring exchange (J), estimated TFMA

C and TC of Ga14N16Gd2,
Ga14N15Gd2C1, Ga14N14Gd2C2, Ga14N13Gd2C3, Ga14N12Gd2C4, respectively. Figure S2: PDOS

with FM states of different substitution site: [1], [4], [M, 2], [5, 7], [2, M, 5] and [1, M, 2]. Figure S3:
PDOS with AFM states of different substitution site: [1], [4], [M, 2], [5, 7], [2, M, 5] and [1, M, 2].
Figure S4: (a) Etotal of FM phase, (b) Eb, (c)4E (d) J, (e) TFMA

C and (f) TC of Ga14N16−nGd2Cn mono-
layers computed by the PBE method with SOC. The dark blue (triangle), light blue (pentagram) and
brown (circle) lines in the diagram represent Ga14N15Gd2C1, Ga14N14Gd2C2 and Ga14N13Gd2C3
monolayers, respectively. The black circles in the last two figures indicate this position as an AFM
state without TC. Table S2: A brief summary of the magnetic properties for doped GaN materials.
References [40–44] are cited in Supplementary Materials.
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