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Abstract: X-ray diffraction analysis is essential in studying stacking faults. Most of the techniques
used for this purpose are based on theoretical studies. These studies suggest that the observed
diffraction patterns are caused by random stacking faults in crystals. In reality, however, the condition
of randomness for stacking faults may be violated. The purpose of the study was to develop a
technique that can be used to calculate the diffraction effects of the axis of the thin plates of twin, new
phases, as well as other variations in defective structures. Materials and methods. This was achieved
through modern X-ray diffraction methods using differential equations (transformations and Fourier
transforms) and the construction of the Ewald sphere, mathematical analysis, mathematical logic,
and mathematical modeling (complex Markov chain). Conclusion. The study made it possible to
develop a technique for the calculation of the diffraction effects of the axis of the thin plates of twin,
new phases and other variations in defective structures. The technique makes it possible to solve
several complex, urgent problems related to the calculation of X-ray diffraction for crystals with
face-centered lattices containing different types of stacking faults. At the same time, special attention
was paid to the correlations between the relative positions of faults. The calculations showed that the
proposed method can help to determine the nature and structure of stacking faults by identifying the
partial and vertex dislocations limiting them in twin crystals with a face-centered cubic structure of
silicon carbide based on X-ray diffraction analysis.

Keywords: X-ray diffraction; crystals with a face-centered lattice; X-ray structural analysis; wave
amplitude; multi-layer stacking fault; solid amorphous bodies

1. Introduction

Silicon carbide (SiC) has higher thermal resistance and mechanical strength compared
to existing semiconductor materials, such as silicon (Si) and gallium arsenide (GaAs), as
well as high-temperature, high-frequency, and dielectric properties and environmental
resistance [1,2]. In addition, valence control of electrons and holes can be easily accom-
plished by introducing impurities. In addition, SiC has a wide band range (e.g., a 6N-SiC
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single crystal has a band range of about 3.0 eV and a 4H-SiC single crystal of about 3.26 eV).
Due to these results, SiC has attracted attention as a semiconductor material for the next
generation of power devices [3]. The most common method used to study the structural
perfection of single crystals, including the study of stacking faults (SFs), is X-ray diffraction
analysis [4,5]. X-ray diffraction analysis determines the structure and composition of a
sample and the distribution of defects by area. Unlike electrons, X-ray quanta have a much
greater depth of penetration into crystals, which makes it possible to obtain information
on the density of defects in the crystal volume. X-ray methods allow the detection of
individual dislocations, the mosaic structure of blocks, stacking faults [6,7], and mechanical
stresses at the interfaces of two media (for example, dielectric–semiconductor) [8].

X-ray diffraction analysis is used to study metals [9], alloys, minerals, inorganic and
organic compounds, polymers, amorphous materials, liquids and gases, molecules of
proteins, nucleic acids, etc. [10]. X-ray diffraction analysis is the main method used to
determine crystal structure [11,12]. It gives the most information when we study crystals.
This is caused by the fact that crystals have strict periodicity in their structure and represent
a diffraction lattice created by nature for X-rays. However, X-ray diffraction analysis also
provides valuable information when we study bodies with less ordered structures, such
as liquids, amorphous bodies, liquid crystals, polymers, and others. The corresponding
problem can be solved based on the numerous atomic structures that have already been
deciphered: the X-ray diffraction patterns of polycrystalline substances [13]—for example,
alloyed steel, alloys, ores, or lunar soil—make it possible to determine the crystalline
compositions of these substances; i.e., to undertake phase analysis.

To solve such problems, it is undoubtedly necessary to consider the elements of the kine-
matic theory of X-ray diffraction of crystals, including inelastic and elastic scattering [14,15],
electron scattering [16], atom scattering, unit cell scattering, regular attenuation of reflexes,
and the intensity of reflections from polycrystalline samples. At the same time, it should be
noted that the information about the structure is related to the analysis of the intensities
of reflexes, since their locations are determined only according to the sizes of the unit cell,
whereas the intensities depend on the locations of atoms and the diffraction angle [17].

X-ray diffraction analysis is the most important method used to study stacking faults.
Diffraction research methods provide the most complete data on the density (probability)
of stacking faults. The basics of such methods are presented in detail in the work by
Warren [18]. In later work by researchers, methods for modeling diffractograms of crystals
with stacking faults were developed. In this work, the experimental profile of the lines is
considered and presented as an instrumental broadening convolution. This is a broadening
because of the micro-distortions of the packaging and lattice defects and the dispersity in
the crystallites. Consideration of the reference (the diffractogram of the annealed powders)
makes it possible to determine the profile of such complete physical broadening. The
work by Warren [18] shows how the influences of the dispersity in crystallites, the lattice
micro-distortions, and the concentration (probability) of stacking faults on the broadening
of the lines are distributed. This was carried out based on the differing dependency of the
width on the angle 2θ and the hkl indices. Disordered stacking faults in HCP crystals lead to
selective (depending on the hkl indices) additional broadening of the lines. Warren’s work
demonstrates that the peculiarities of X-ray diffraction in relation to stacking faults, which
allow the determination of their concentration, can be considered within the framework of
complex theories, even for the simplest FCC and BCC structures [19].

The methods developed by Warren have been applied in a relatively small number
of studies. For example, the authors of [20] developed and used a geometric method for
the analysis of the pattern of X-ray diffraction for crystals with an arbitrary atomic lattice
containing stacking faults and thin plates of microtwins. The technique presented by the
authors takes into account the effect of changing the interplane distance along the line of
the intersection for planes with a stacking fault or microtwin. This approach significantly
simplifies the analysis of diffraction effects and their summation during the transition to
polycrystalline objects. The sizes of microtwins and genuine blocks of martensitic crystals
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of Fe–Ni alloys containing from 10 to 33% Ni were studied. The paper demonstrates that
the considered theory can be used for analyzing experimental diffraction patterns, as well
as for the further development of methods for diffraction studies of the structures of metals
and alloys. The authors of [21] observed the phase transition of BCC→ FCC (ferrite→
austenite) for the high-nitrogen NC system Fe–Cr–Mn–N. Using the provisions laid out
in [18], the authors tracked the accumulation of deformation defects in the stacking.

In [22], the profiles of diffraction lines for a single-crystal Zr and a Zr-2.5Nb tube were
measured and analyzed. The measurements were carried out before and after irradiation
in a nuclear reactor. The irradiation caused damage in the form of prismatic dislocation
loops. In all cases, the Fourier analysis of the deconvolutive peak using the Warren and
Averbach method showed that the value of the distortion component (microdeformation)
did not agree with the dislocation density measured by transmission electron microscopy.
The discrepancy may have been related to a decrease in the deformation energy from the
dipoles on opposite sides of the prismatic dislocation loops and the alignment of the loops,
which would have reduced the average deformation in the same way as polygonization or
the formation of subgrain boundaries.

Two austenitic stainless steels (SSs) have been designed in such a way as to demon-
strate the maximum possible difference in the stacking fault energy (SFE) while meeting
technical requirements.

Neutron diffraction and the electron backscattering diffraction analysis using scanning
electron microscopy were used for the quantitative measurement of the stacking fault
width and deformation twinning in [23]. The measurements were carried out during the
deformation at room temperature. The conducted research obtained new data on the sizes
of stacking faults and the twinning process for austenitic stainless steels.

The current techniques for solving the problem of X-ray diffraction with crystals
with a face-centered lattice do not make it possible to solve the problem for such crystals
containing different types of stacking faults. However, some problems can be solved using
modern technology. Such problems include the difficulty in determining the nature and
structure of stacking faults in single crystals. It is also difficult to determine the peculiarities
of the intensity contrast from the plane of stacking faults and the partial and stair-rod
dislocations that limit these stacking faults. Modern methods make it possible to calculate
the diffraction effects of the axis of the thin plates of twin, new phases, as well as other
variations in defective structures. It these modern methods could be improved, a number
of complex, urgent tasks related to the calculation of X-ray diffraction for crystals with a
face-centered lattice containing stacking faults of various types could be solved.

In this regard, it is extremely important to create a new technique that would make it
possible to calculate the diffraction effects of the axis of the thin plates of twin, new phases,
as well as other variations in defective structures. This would make it possible to determine
the nature and structure of stacking faults in silicon carbide single crystals, the peculiarities
of the intensity contrast from the SD plane, and the partial and vertex dislocations limiting
the SD.

The previously proposed methods [13,24] do not make it possible to do this.
Most of the methods used for this purpose are based on [12,13,24], which assume

that observed diffraction patterns are caused by random stacking faults in a crystal. In
reality, however, the condition of randomness for stacking faults may be violated. Thus, the
formation of various martensitic [25] and polytypic [26] structures and Laves phases [27] is
directly associated with the ordered stacking faults.

The purpose of this study was to develop a technique that would make it possible to
calculate the diffraction effects of the axis of the thin plates of twin, new phases, as well as
other variations in defective structures.
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2. Materials and Methods

In the first stage, a diffraction pattern was calculated to obtain data on the concentra-
tions of stacking faults and the nature of their locations. This pattern took into account the
mutual arrangement of defects.

To enter the correlation parameters for the arrangement of the stacking faults, the
intensity of diffracted rays was determined through the coordinates of the defects. Next,
the diffraction pattern was calculated in the case of a correlation between the nearest
stacking faults. A basic diffraction equation was obtained to determine the correlations in
the arrangement of any given number of stacking faults. The method was implemented for
crystals with an initial face-centered cubic (FCC) structure.

The proposed method was based on the introduction of correlations to the arrangement
of close-packed layers while operating with 32 order matrices.

In the second stage, a practical calculation was performed according to the devel-
oped method based on physically real models of the defective structure. The number of
correlation parameters was reduced in the calculation.

The description of the defective structure according to the above procedure required
the correlation of three single-layer stacking faults. For the said transition, a mechanism
of ordered double exchange in crystals was proposed, the elementary act of which was
equivalent to the formation of a three-layer stacking fault. In this case, the correlation
was introduced in the arrangement of the three-layer stacking faults with their preferred
arrangement in three layers. With this choice of the elementary stacking fault, the correla-
tion distance decreased from 3 to 1. The intensity of diffracted beams was expressed as a
function of the coordinates of the non-single-layer stacking faults; specifically, of certain
groups selected as elementary shear stacking faults. Instead of the general numbering of
single-layer stacking faults, the numbering of elementary groups was introduced, and for
each group, its own numbering of single-layer stacking faults was employed.

The following was obtained using the calculation for a twin FCC crystal (silicon
carbide): when the initial FCC crystal contained sections with both normal and twin
orientations, another acute maximum appeared in the position corresponding to the twin
FCC structure at ξ = 120◦. For the twin silicon carbide (SiC) FCC crystal, which underwent
a partial transition to the 6H structure, two sharp peaks were found at the positions of the
normal and twin FCC structures and expanded maxima at the position of the 6H phase.

These mechanisms should obviously be such that the Bragg law can always be applied
through their adjustment to a particular case of diffraction in crystals. Further, the general
laws were used for gases and liquids, solid amorphous bodies, and crystals with an
imperfect structure.

This objective was addressed based on modern methods of X-ray diffraction analysis
through the use of differential equations (transformations and Fourier transforms), con-
struction of the Ewald sphere, mathematical analysis, mathematical logic, and mathematical
modeling (complex Markov chain).

3. Results and Discussion

Due to the regular, correct arrangement of atoms, the diffraction phenomenon in crys-
tals is especially clearly expressed [28] and controlled by simple laws, creating numerous
possibilities for its practical use.

Let us consider the communities of randomly arranged atoms in the X-ray beam.
These atoms emit waves through scattering, and these waves, interfering with each other,
generate the diffracted radiation [29], the intensity of which usually changes along with the
change in the observation direction. These changes are related to the atomic structure of a
substance, and the goal was to establish the laws of this dependency. These laws should
obviously be such that the Bragg law can always be applied through their adjustment to
particular cases of diffraction in crystals [30]. Further, the general laws were used for gases
and liquids, solid amorphous bodies, and crystals with an imperfect structure.
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A body consisting of N atoms, the positions of which are fixed by vectors x1, x2, . . .
xn laid from some arbitrary beginning, was used. f 1, f 2, . . . fn are the scattering factors
corresponding to different N atoms. The amplitude of the wave scattered by the n atom is
fn times the amplitude of the wave scattered by the isolated electron, which we took to be
1. It was assumed that the object was small enough and that the absorption in it could be
neglected; i.e., radiation of the same amplitude falls on each atom.

S0 and S are unit vectors parallel to the incident beam and the direction of observation,
respectively. The amplitude of the wave resulting from the addition of N elementary
waves is:

A =
N

∑
I

fn · exp
(
−2π · i · S− S0

λ
xn

)
(1)

The initial phase is the elementary wave phase, which would be scattered by an
electron placed at the origin of the object space.

3.1. Ewald Structure

The general theory of diffraction can be strongly simplified by introducing the idea
of the opposite space. In the particular case of a crystal, this is the space of the reverse
lattice [31]. The reverse space point is associated with each detected diffraction act as
follows. It is the end of the vector s resulting from the beginning such that: s = S−S0

λ .
Vector s is directed along the bisector of the angle formed by vectors S and S0, and its

absolute value is as follows:
|s| = s =

2 sin θ

λ
(2)

where 2θ is the angle between vectors S and S0.
If each single diffraction act corresponds to a point of reverse space, then those

diffraction acts at this point in this space—i.e., vector s—correspond to it, and the bisector
of the angle between S and S0 has the direction s, and this diffraction angle is associated
with the wavelength in Equation (2).

Equation (1) can be rewritten as follows:

A(s) =
N

∑
I

fn · exp(−2π · i · s · xn) (3)

The result of a single diffraction act is thus a function of the single vector s. The
diffraction phenomenon can be clearly defined for all kinds of experimental conditions
involving the functions A(s) using the function of a point in reverse space. Equation (3)
allows this to be calculated for any substance for which the atomic structure is known.

If a beam parallel to the direction vector S0 with a wavelength of λ falls on this
stationary body, then a diffraction pattern can be obtained using the Ewald construction [32]
(Figure 1). Then, we need to cross out in reverse space the Ewald sphere of radius 1

λ centered
at point O so that OM = S0

λ . Point M is the origin of the inverse space.
The observation direction S corresponds to the point R in the Ewald sphere such that

OR = S
λ . The amplitude of the diffracted radiation is determined from the value of the

function A(s) at point R, where s is the vector MR.
To observe the diffraction in different directions of space is to record the changes A(s)

on the surface of the Ewald sphere. It is this Ewald construction that is applied to crystals
using the reverse lattice of the crystal.
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It is possible to generalize the definition of an object without considering each atom
individually. We can introduce in object space the point function—p(x) function—which is
the electron density at the end of the vector x. This is the number of electrons contained in
a small elementary volume surrounding the end of the vector x, which is divided by this
small volume (reduced to the unit volume). The total amplitude of diffraction A(s) can be
found using Equation (1) by adding the waves scattered by all electrons of the object:

A(s) =
∫

ρ(x) exp(−2π · i · s · x)∂vx (4)

where the integral is taken over the entire space of the object.
Equation (4) is equivalent to Equation (3) if the centers of individual atoms x1, x2, . . .

xn are introduced into it. Since atoms are considered impermeable, each point where ρ(x) is
not zero is in the electronic cloud of one of the N atoms. The value ρ(x) is the sum of the
functions ρn(x − xn) expressing the density at the points of the electron cloud of the nth
atom, the center of which is xn,

ρ(x) =
N

∑
1

ρn(x− xn)

The integral in Equation (4) can be represented with the following sum:

A(s) =
∫ N

∑
1

ρn(x− xn) exp(−2π · i · s · x)∂vx =
N

∑
1

exp(−2π · i · s · xn)

[∫
ρn(x− xn) exp(−2π · i · s · (x− xn)∂vx

]
The integral equals fn, thus resulting in Equation (3).
Instead of this classical definition of electron density, it would be more correct to

consider ρ(x) as the sum of the squares of the modules of the wave functions of all electrons
in the object.

Equation (4) can be easily interpreted in the language of mathematical theory (Fourier
transformations). This theory has now become an indispensable working tool in both
theoretical and practical studies of X-ray diffraction [33].

Equation (4) has the following verbal expression: function A(s) is the Fourier transform
of function ρ(x). The main property of the Fourier transform is that ρ(x) is derived from
A(s) using an equation analogous to Equation (4):

ρ(x) =
∫

A(s) exp(−2π · i · s · x)∂vx (5)
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where only the exponent index changes the sign. The integral in Equation (5) is taken over
the entire inverse space, and in Equation (4) it is taken over the entire space of the object.

If the object is a crystal, then ρ(x) is a triple periodic function (more precisely, periodic
for each of the three dimensions of space). The transform of the periodic function is zero at
all points in the inverse space, except for the inverse lattice nodes, where it takes the value
of the structural amplitude associated with that node. The whole kinematic theory of X-ray
diffraction in crystals is derived from here.

It is critical to know the diffraction amplitudes to properly interpret the experiment.
There are no methods that can be used to determine the relative phases of waves diffracted
in different directions in space; it is only possible to measure their intensity. Therefore, the
only element of Equations (3) and (4) that is of experimental interest is the module of this
complex number, the square of which will be the intensity value.

3.2. Scattering Capacity of the Object under Study (Electron Scattering Intensity)

In all theoretical calculations and their practical applications, it is convenient to use
the concept of the scattering ability of the studied object [34]. It was possible to assume
that the object was small enough, so absorption was not significant here. Let us replace
the object with one free electron while maintaining the previous experimental conditions;
then, the scattering power of the object defined as IN(s) is the ratio between the emission
intensities scattered by the object and the number of free electrons. According to another
definition, this is the effective number of free electrons that, scattering independently of
each other, produce the same effect under test conditions as the object. The scattering ability
refers to an atom if an object consists of N atoms and, more generally, to an elementary
motif (grouping) if the object consists of N identical motifs (groupings, such as molecules
or crystal cells). This single (per unit) scattering capacity is denoted as I(s):

I(s) =
IN(x)

N

If F(s) is the structural factor of the motif (the scattering factor of an atom or the
structural factor of a molecule or cell), then the following function can be introduced:

J(s) =
I(s)
F2 =

IN(s)
NF2

The function J(s) can be called the interference function, since it would be equal to
1 for any vector s if the particles scattered incoherent waves; any other meaning for it is
determined by the interference of the scattered waves.

After the theoretical calculations, the expression I(s) was obtained as a function of
s for various diffraction cases. It is possible to determine the scattering intensity by first
determining the value of the corresponding vector s and then multiplying the unit of
scattering power by the number of motifs (the effective number; i.e., the real number
multiplied by the absorption coefficient) and by the electron scattering intensity under test
conditions; the latter is characterized by Thomson formulas [35].

If the structure of an object is known or assumed, then it is always possible to calculate
A(s) using Equation (4), from which:

IN(s) = |A(s)|2 (6)

It is not possible to directly move from this equation to Equation (5), since the latter
includes not only amplitudes but also wave phases that cannot be observed. This is
the main source of difficulties in determining crystal structures, but these difficulties
increase significantly when we study disordered structures. If it were possible to find a
function expressing both amplitude and phase at any point in the reverse space, then X-rays
would represent a real microscope with a very high resolution, which would allow the
reproduction of genuine images of objects’ structures; however, the diffraction pattern is
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not sufficient to lead to this result. In the most general case, and without any help from the
outside, the diffraction patterns make it possible to determine the structure of an object.

3.3. Diffraction Pattern and the Nature of the Location of Stacking Faults

In order to obtain reliable information from experiments on the concentration of
stacking faults and the nature of their location, it is necessary to theoretically calculate the
diffraction pattern, taking into account the faults’ mutual reduction and alignment. To solve
this problem, a method based on the introduction of correlations for the positions of close-
packed layers must be used, and it is necessary to operate with matrices of the order 2s−1

(s is the correlation range required to describe the defective structure). However, in many
cases, the correlation range can be lowered by moving from correlations at the locations
of the close-packed layers to correlations at the locations of the stacking faults themselves.
For example, sections of the 18R phase with Zhdanov symbols in the 3C phase can be
represented either as interlayers with the application of close-packed layers according to
the ABCABABCABCBCABCAC law inside the main ABC sequences or as portions of the
original structure with single-layer (subtraction-type) stacking faults in each sixth layer.
The description of the transition 3C→18R first requires consideration of the correlations in
the arrangement of at least six layers (s = 6), while a description using the second method
only requires consideration of the correlations in the arrangement of the nearest stacking
faults, assuming that the faults are predominantly formed five layers apart.

3.4. Basic Diffraction Equation

To enter the correlation parameters for the arrangement of stacking faults, it was
necessary to express the intensity of the diffracted beams passing through the coordinates of
the defects. A diffraction pattern has previously been calculated for the case of correlations
between the nearest stacking faults. The basic diffraction equation for correlations in
the arrangement of any given number of stacking faults was obtained. The method was
developed for crystals with the original face-centered cubic (FCC) structure [36].

The expression for the intensity of the rays diffracted from a large single crystal
through stacking fault coordinates was first obtained by Landau L.D. [37] and has the form:

I =
C sin2 φ0

sin2 1/2(ξ + φ0)
∑

k,k′=−∞
exp

[
−2iφ0(k− k′)

]
exp[i(ξ − φ0) · (mk −mk′)] (7)

where C is the interference function for the two-dimensional crystal, mk is the number of
the layer in which the k stacking fault is located, ξ = 2πh3/3, h3 is the variable along the
reverse lattice axis coinciding with the direction of node diffusion, ϕ0 = 2π(H − K)/3, and
H and K are the reflex indices on hexagonal axes.

A new summation variable p = k − k’ can be used. At constant p, the difference
between the coordinates determined as mk–mk+pmay take different values. By averaging
over k and considering that the crystal, although large, has a finite size L and, therefore, N
stacking faults, we obtain:

I = C′N

[
∞

∑
p=0

exp[−2iφ0 p] ·
∞

∑
t=p

Pt
p exp[i(ξ − φ0) + k.c.− 1]

]
(8)

where f = N/L is the fraction of defective layers; Pp
t is the probability that, between the

first and (p + 1) single-layer stacking faults in an arbitrary sequence (p + 1) of single-layer
stacking faults, there is a distance of t layers; C’ = Csin2 ϕo/sin21/2 (ξ + ϕo); cs is the
complex conjugate; and 〈 . . . 〉 is the averaging sign.

3.5. Application of Correlations in Arrangements of Single-Layer Stacking Faults

Calculation of Pp
t requires considering the correlations between the locations of single-

layer stacking faults. The presence of a correlation between single-layer defects means that
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the probability of single-layer defects occurring in a given layer depends on the relative
position of the defect considered from among the previous single-layer defects. Therefore,
we can introduce the probability Pisis−1 . . . i2 i1 that a single-layer stacking fault will appear
in a given plane, provided that the first adjacent defect is at a distance of i1 layers, the
second is at a distance is from the first, and so on, until, finally, the s neighbor is at a
distance is from the x − 1 neighbor. The considered events turn out to be connected in a
complex Markov chain. It can be reduced to a simple chain if the probability Pisis−1 . . . i2 i1
is presented as the probability of transition from the configuration of single-layer stacking
faults described by indices (isis−1 . . . i2) to the configuration (is−1iε−2 . . . i2i1):

Pisis−1 . . . i2 i1 = P(isis−1
. . . i2 )(is−1 ...i1i2) = Pij (9)

where i = (is−1is−2 . . . i1), j = (js−1 js−2 . . . j1), and (s−1) indicates member configurations.
Obviously, Pij 6= 0 only for is−2 = is−1, is−3 = is−2, . . . i1 = i2.
The desired probability Pp

t is expressed through the introduced transient probabilities
as follows:

Pt
p = ∑

i,k...,j
fiPikPkl . . . . PmnPnj

under the condition that (k1 + l1 + . . . + n1 + j1 = t), where fi is the relative fraction of the i
configuration, and k1, l1, . . . n1, j1 is the distance between the last two single-layer stacking
faults in the corresponding (s−1) membered configurations.

We set the following:

yp = exp[−2iφ0 p]
∞

∑
t=p

Pt
p exp[i(ξ + φ0)t] (10)

Considering that the summation in Equation (10) for t is equivalent to removing the
condition given in Equation (9), we obtain:

yp = exp[−2iφ0 p] ∑
i,k...,j

fiPikPkl . . . . PmnPnj exp[i(ξ + φ0)t(k1 + l1 + . . . + n1 + j1)] = ∑
j
(FQp)jj = SpFQp (11)

Here, the matrices F and Q are introduced, for which the following condition applies:
(F)ij = fj; (Q)ij = Pij exp [i(ξ − ϕ0)j1]. The matrix F consists of similar rows. In the case of
correlation with one single-layer stacking fault, the matrix Q has the same form, since the
probability that the two nearest and adjacent single-layer stacking faults are located at a
distance j will not depend on the distance i from the first neighbor to the next single-layer
stacking fault Pij = Pj. In general, a correction in s single-layer stacking faults may limit
the number of preferred (or ordered) configurations of three or more single-layer stacking
faults and, therefore, limit the number of rows in the Q matrix other than those for all other
configurations.

Using the known trace property of matrices SpABn = SpSAS−1(SBS−1)n, it is easy
to get rid of all similar rows in matrices P and Q except for one row. Thus, the trace of the
matrix will not change if one of the equal rows (let it be the nth row) is subtracted from
all other rows. Then, the corresponding columns can be applied to the column with the
number n. As a result, we get:

yp = SpF1Qp
1 (12)

where F1 is the matrix with only one row other than zero and Q1 is the matrix with R + 1
rows other than zero (R is the number of ordered configurations of three or more single-
layer stacking faults). The trace of the matrix does not change even when rearranging rows
and then rearranging the corresponding columns. Therefore, it is possible to place all the
zero rows of matrices F1 and Q1 as the top rows. When multiplying such matrices, only
the first R + 1 elements of the rows are important. Therefore, matrices F1 and Q1 can be
considered square matrices of the order R + 1. In the future, any matrix after the specified
transformations will be denoted by a letter with index (1).
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Let us determine the sum
∞
∑

p=0
yp using the following expression:

∞

∑
p=0

yp =
1

|E−Q1|

R

∑
n=0

n

∑
m=0

µmyn−m (13)

where µm is the coefficient of decomposition of a characteristic polynomial |Eλ − Q1|.
Considering Equations (7) and (13), the desired expression for the intensity of diffracted

rays can be written as follows:

I =
C sin2 φ0

sin2 1/2(ξ + φ0)
L f


R
∑

n=0

n
∑

m=0
µmSpF1Qn−m

1

|E−Q1|
+ k.c.− 1

 (14)

The expression for the elements of the matrix F using the entered transient probabilities
can be obtained from the obvious matrix equality FP = F or F1P1 = F1.

3.6. Analysis of Diffraction Effects during Transitions

The total fraction of defective layers f is determined with the formula f = 1/ t, where t
is the average distance between adjacent single-layer stacking faults:

t = ∑
t

Pt
1t = ∑

ij
fiPij j1 = SpFPT = SpF1(PT)1 (15)

where (T)ij = j1δij, (PT)ij = Pijj1.
Thus, all unknown values in Equation (8) are expressed using the entered transition

probabilities, thereby solving the problem in general. By specifying different models for
the defective structure—i.e., the matrix Q1—it is possible to determine their theoretical
distributions for the intensity of ray reflection in reverse space.

Thus, in the case of correlation for one single-layer stacking fault, the matrix Q, as
mentioned above, consists of the same rows. After describing the transformations, we can
see that the matrix Q contains one element:

A = exp[−2iφ0 p]
∞

∑
t=p

Pj exp[i(ξ + φ0)]

In this case, R = 0, a|E−Q1| = 1 − A. Then:

I =
C sin2 φ0

sin2 1/2(ξ + φ0)
L f
[

1
1− A

+ k.c.− 1
]

, f =
1

∞
∑

j=1
Pj j

(16)

This equation coincides with Equation (12), which has been used to analyze diffraction
effects at the transitions 3C→2H and 3C→18R observed in various iron-manganese steels.
Note that, when considering the 3C→18 transition, we need to operate with 32 order matrices.

However, when solving problems where the correlation extends to a larger number
of single-layer stacking faults, the method proposed herein turns out to be cumbersome.
In such cases, simpler solutions can be obtained if, based on physically real models of the
defective structure, the number of correlation parameters is reduced.

3.7. FCC Crystal Studies

Let us study, as an example, an FCC crystal that has partially undergone a phase
transition to the 6H phase. Due to the close-packed planes, we can see that the 6H structure
can be considered as the initial FCC structure, in which three normal and three defective
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layers alternate. Description of such a defective structure using the method described above
requires consideration of the correlation between the three single-layer stacking faults. For
this transition in crystals, a mechanism of ordered double exchange can be proposed, the
elementary act of which is equivalent to forming a three-layer stacking fault. In this case,
it is justified to introduce the correlation for a distribution of not single- but three-layer
stacking faults, assuming their preferred location through three layers. With this choice of
the elementary stacking fault, the correlation range is reduced from three to one. A detailed
analysis of multi-layer stacking faults in the formation of polytypes has been undertaken
by Landau L. D. [38].

Thus, it is advantageous to express the intensity of diffracted beams as a function of
the coordinates of not the single-layer stacking faults but their defined groupings selected
as elementary shear stacking faults.

Instead of the general numbering of single-layer stacking faults, we can introduce the
numbering of elementary groups and, in each group, our own numbering of single-layer
stacking faults. Then, for the number k of randomly selected single-layer stacking fault,
we have:

k =
n

∑
i=1

g(i) + r(n + 1), k′ =
n′

∑
i=1

g(i) + r′(n′ + 1) (17)

where n and n’ are the numbers of the last “integer” groups lying between the zero and k
single-layer stacking faults, respectively; g(i) is the number of single-layer stacking faults in
the ith group; r(n + 1); and r(n’ + 1) indicates the numbers of single-layer stacking faults in
the (n + 1) and (n’ + 1) groups, respectively.

For the coordinates of the k and k’ single-layer stacking faults, the following is true:

mk = mn+1 + mr − 1, mk′ = mn′+1 + mr′ − 1, (18)

where mn+1 and mn’+1 are the coordinates of the beginning of the (n + 1) and (n′ + 1) groups,
and mr and mr′ are the coordinates of the r single-layer stacking fault in the (n + 1) group
and the r′ single-layer stacking fault in the (n′ + 1) group.

Equations (17) and (18) can be substituted into Equation (8). Thus, the summation of k
and k’ is replaced by the summation of n, n′, r, and r′.

I = C′
∞
∑

n,n′=−∞

g(n+1)
∑

r=1

g(n′+1)
∑

r′=1
exp

{
−2iφ0

[
n
∑

i=1
g(i) + r(n + 1)− r′(n′ + 1)

]}
exp[i(ξ + φ0)(mn+1 −mn′+1 + mr −mr′)]

(19)

Let us replace n = n′ + p in Equation (13) and average by n’:

I = C′L f
∞
∑

p=−∞

g(p+1)
∑

r=1

g(1)
∑

r′=1
exp

{
−2iφ0

[
n
∑

i=1
g(i) + r(p + 1)− r′(1)

]}
exp

[
i(ξ + φ0)(mp+1 −m1 + mr −m r ′)

] (20)

Here, f = N′/L, where N′ is the number of elementary groups in the crystal.

3.8. Diffraction Effects for Models of Defective Structures

After averaging over n′, the value g(i) becomes the representation of the number of
single-layer stacking faults in the ith group of an arbitrary sequence from the p + 1 group.
By giving the concept of the “elementary group” a specific meaning and considering the
necessary correlation, it is possible to calculate diffractive effects for a wide class of models
of defective structures using Equation (20). This fact may be illustrated based on a model
of ordered multi-layer stacking faults.

It is possible to consider the formation of regions in the original FCC crystal with a
structure using Zhdanov’s symbols (abcd). It is not difficult to see that the new phase is
equivalent to the FCC structure, in which, after a normal layer, there are b defective layers,
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then c normal layers, and then, again, d defective layers. The formation of such a phase can
be considered as a corresponding ordering of multi-layer stacking faults with thickness h in
b and d layers. We can use the following probabilities: β1 is the probability of there being
multi-layer stacking faults with h = b, provided that that the closest multi-layer stacking
fault lies at a distance of a layers and has a thickness of h = d. β2 is the probability of there
being multi-layer stacking faults with h = d, provided that the closest multi-layer stacking
fault lies at a distance of c layers and has a thickness of h = b. Then, α1 and α2 are the
probabilities of the independent appearance of a multi-layer stacking fault with h = b and
h = d, respectively (in the absence of the ordering β1 = α1 and β2 = α2).

Let us introduce the probability Pp
t(h1, h2, . . . , hp+1) that, in the sequence p + 1 of

multi-layer stacking faults, the first has a thickness h1, the second h2, etc. (hi = b, d), while,
between the beginning of the first and the p + 1 multi-layer stacking faults, there is a
distance of t layers (mp+1 − m1 = t). Using this and considering that, in this case, g(i) = hi
and mr = r, we can rewrite Equation (20) as follows:

I = C′L f
∞
∑

p=−∞

g(p+1)
∑

r=1

g(1)
∑

r′=1
exp

{
−2iφ0

[
n
∑

i=1
g(i) + r(p + 1)− r′(1)

]}
exp

[
i(ξ + φ0)(mp+1 −m1 + mr −mr′)

] (21)

Pxi
hihj

is the probability of there being multi-layer stacking faults with thickness hj at a
distance of xi layers after the multi-layer stacking faults with thickness hi; this probability
is easily expressed with the introduced probabilities (β1, β2, α1, α2) and fhi

, the relative
fraction of multi-layer stacking faults in the layers. Then:

∞

∑
t=p

Pt
p exp[i(ξ + φ0)t] = ∑ fn1 Px1

h1h2
Px2

h3h3
. . . P

xp
hphp+1

(22)

We have:

Ahihj
=

∞

∑
x=p

Pxi
hihj

exp[i(ξ + φ0)(hi + xi − 1)] · exp[−2iφ0hi] (23)

Shi
=

hi

∑
r=1

P exp[i(ξ − φ0)r] (24)

By substituting Equations (22)–(24) into Equation (21) and using the equality in
Equation (13), we get:

I = C′L f
∞
∑

p=−∞
∑

h1h2 ...,hp+1

fh1 Sh1 Ah1h2 Ah2h3 . . . Ahphp+1 =

= C′L f

 1
∑

n=0

n
∑

m=0
µmSpΦAn−m

|E−A| + k.c.− SpΦ

 (25)

Φ =

(
Sb fbS∗b Sb fdS∗d
Sd fbS∗b Sd fdS∗d

)
, A =

(
Abb Abd
Adb Add

)
(26)

where µm are coefficients of the characteristic polynomial of matrix A; (*) is the complexly
conjugate value; and Ahihj

are functions of the introduced probabilities α1, α2, β1, and β2.
The calculation of these values using Equation (14) does not cause any complications. The
relative fractions of multi-layer stacking faults fb and fd can be determined using an obvious
system of equations:

fb
∞
∑

x=1
Px

bb + fd
∞
∑

x=1
Px

db = fb

fb + fd = 1
(27)
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Further, let us define f as the inverse of the average distance between the beginnings
of the nearest multi-layer stacking faults:

f =
1
t

, t = ∑
i,j

∞

∑
x=1

fhi
Phihj

(hi + x− 1) (28)

Thus, all unknown values in Equation (25) are expressed through the introduced
probabilities and the problem in its general form may be considered solved.

3.9. Diffraction Effects

Let us check with a specific example whether the model of ordered multi-layer stacking
faults causes diffraction effects in the formation of sections of a new phase. For this purpose,
the above 3C − 6H transition can be employed. In this case, b = d = h = 3 and a = c = l = 3.
Without specifying the values h and l from Equations (23) and (24), we obtain the following
expression for the intensity of diffracted rays:

I =
G
H

G = GL(1−α)α sin2 φ0

[1+α(h−1)]
[

1− (1−α)l−1(β−α)
1+(β+α)(h−1)

] sin2 h
2 (ξ−φ0)

sin2 1
2 (ξ−φ0){

1− α(1− α)l−2(β− α)
cos(ξ+φ0)(l−1)−cos(ξ+φ0)·l

1−cos(ξ+φ0)
− (1− α)2l−3(β− α)2

} (29)

H = 1− α + α2 − (1− α) cos(ξ + φ0) + α(1− α) cos[(ξ + φ0)h− 1− 2φ0h]−

−(1− α)l−1(β− α)

{
(2− α) cos[(ξ + φ0)(h + l − 1)− 2φ0h]− cos[(ξ + φ0)(h + l)− 2φ0h]
(1− α) cos[(ξ + φ0)(h + l − 2)− 2φ0h]− α cos[(ξ + φ0)(l − 1)] + α cos(ξ + φ0)

}
where β is the probability of multi-layer stacking faults, provided that the nearest multi-
layer stacking fault lies at a distance of l layers, and α is the probability of the independent
appearance of a multi-layer stacking fault. At h = 1, Equation (29) turns into Equation (16),
and at h = 1 and α = β, it turns into the equation for chaotic single-layer stacking faults
(intrinsic stacking faults) [39]. The analysis in Equation (29) still shows that, at h = 3 and l = 3,
the intensity distribution has the form of a curve with six maxima per period (0◦ ≤ ξ < 360◦).
At ξ = 240◦, the point corresponding to the correct position of the diffraction maximum of
the initial FCC phase, the denominator turns to zero. Using the formula for the value of a
polynomial near the root:

P(x)
x→xi

=
U(x)
V(x)
x→xi

− U(xi)

V′(xi)(x− xi)
(30)

We get =I (α, β) δ (ξ–240◦), where δ(ξ–240◦) is the delta function.
Therefore, in the considered model, the peak of the initial phase is not broadened

or shifted.

3.10. Calculation of the FCC Twinned SiC Crystal

In the example of the calculation for the twin SiC FCC crystal, two sharp peaks at
the positions of the normal and twin FCC structures and widened maxima at the position
of the 6H phase were found for the case of the original crystal that transformed into the
6H structure.

It was noted that one of the expanded maxima of the new 6H structure is superimposed
on this maximum. The remaining extended maxima lie in positions characteristic of phase
6H: ξ = 0, 60, 120, 180, and 300◦. If the original FCC crystal contains regions with both
normal and twin orientations, then another acute maximum at the position corresponding
to the twin FCC structure at ξ = 120◦ will obviously appear.



Crystals 2023, 13, 528 14 of 16

Equations (20)–(29) were used for the calculation. Equation (20) can be used to calculate
the diffraction effects for a wide class of defective structure models. As an example, the
3C − 6H transition discussed above provides the diffraction effects for the model of ordered
multi-layer stacking faults resulting from the formation of new phase regions. The use of
several transformations made it possible to obtain Equations (20)–(29).

Therefore, the developed technique for X-ray diffraction investigation of stacking
faults in silicon carbide using the broadening of successive series of diffraction maxima
enables the reliable determination of the concentration of stacking faults and its variations
during different structural transformations. It is possible to compare this technique with the
existing method used for such investigations. This will require separate research, which is to
be performed at the next stage when conducting complex experiments in the field of X-ray
diffraction in crystals with a face-centered lattice relating to other alloys. An important
aspect of further experiments with stacking faults will be the joint use of transmission
electron microscopy and diffraction methods. This will allow the development of modern
approaches to the calculation of theoretical diffraction patterns for crystals with planar
defects. Based on the results of the performed experiments, a mathematical model will be
obtained that can be used to determine the concentration values for stacking faults and
the thickness of silicon carbide plates, which can be compared with the calculated values
obtained using known theoretical methods.

4. Conclusions

A technique was obtained that allows the calculation of the diffraction effects of the
axis of the thin plates of twin, new phases, as well as other variations in defective structures.

The calculation for a twin FCC crystal showed that there are regions with both normal
and twin orientations and, obviously, another acute maximum appears at the position
corresponding to the twin FCC structure at ξ = 120◦. These calculations were in full
agreement with the experiments, where, for the case of the original twin silicon carbide
(SiC) FCC crystal, which was partially transformed into the 6H structure, two sharp peaks
were found at the positions of the normal and twin FCC structures, along with expanded
maxima at the position of the 6H phase.

Equation (29) was used for the calculations. Therefore, in the considered model, the
peak of the initial phase was not expanded or shifted. It was noted that one of the expanded
maxima for the new 6H structure was superimposed on this maximum. The remaining
extended maxima lay in positions characteristic of phase 6H: ξ = 0, 60, 120, 180, and 300◦.

Stacking faults located in twin silicon carbide FCC crystals are located at an angle to
the X-ray beam, leading to intensity contrast in the form of wide bands in the negative
contrast without intensity beats. Stacking faults demonstrate negative intensity contrasts
that gradually fall into the background as the stacking fault layer moves deeper into the
single crystal. In cases of two or more closely spaced stacking faults, the intensity contrast
for one stacking fault decays due to the superimposition of the intensity contrast from the
other stacking fault.

The proposed method makes it possible to determine the nature and structure of
stacking faults by identifying the partial and vertex dislocations limiting them in a twin
FCC crystal based on X-ray diffraction analysis.

The proposed method makes it possible to calculate the diffraction effects of the thin
plate axis of twin, new phases, as well as other variations in defective structures.
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