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Abstract: Modern technology has been evolving towards nanotechnology due to the materials that
can be transformed and manipulated on micro and nanoscales. In terms of detection, nanomaterials
offer substantial sensing advantages, particularly in terms of enhanced sensitivity, synergistic effect,
stability and selectivity. The immobilization of nanoparticles could alter the physicochemical proper-
ties of the electrode’s surface depending on the type of materials synthesized and employed. This
research examined the synthesis of multiwalled carbon nanotubes (MWCNTs) and chitosan (CS), as
well as the immobilization of Prussian blue (PB) on the surface of a bare gold electrode (AuE). These
materials have been reported to have strong electrical conductivity and nanomaterial compatibility.
In contrast, aluminum has been described as a replacement for traditional water quality treatment
processes, such as chlorination and ozonation. Aluminum concentrations must be monitored despite
the use of chemical treatment for water quality. Hence, excessive levels of exposure frequently result
in neurotoxic effects including Alzheimer’s and Parkinson’s disorders. In this experiment, the optimal
conditions for f-MWCNTs, CS, PB, and AuE for the detection of Al3+ are phosphate-buffered saline
(PBS) (0.1 M, pH 2) with 5 mM Prussian Blue; scan rate = 0.25 Vs−1; accumulation duration = 25 s;
and volume = 10 mL (ratio of 4:6). The performance of f-MWCNTs, CS, PB, and AuE was measured
between 0.2 and 1 ppm with a correlation coefficient of R2 = 0.9853 (y = 0.0387x + 0.0748). The
limit of detection (LOD) of the modified electrode was determined to be 0.002 ppm, with a recovery
of 98.66–99.56%. The application of nanoparticles resulted in various advantages, including high
conductivity, a simple, less time-consuming preparation technique, and enhanced sensitivity and
stability for detecting the lowest concentration of Al3+ in drinking water.

Keywords: aluminum ions; functionalized multi-walled carbon nanotubes; chitosan; Prussian blue;
drinking water

1. Introduction

The trivalent metal ion aluminum (Al3+) is the third most abundant metallic element
in the Earth’s crust [1,2]. Aluminum is the second most commonly used element in the
transportation, electronics, building structure, water treatment, pharmaceutical, and
packaging industries [3]. Aluminum is a part of the chemical treatment that used in
water treatment processes (chlorination and ozonation) [2]. Bromide has a carcinogenic
effect on animals, raises the pH of water, and decreases the concentration of organic
substances [4]. Aluminum’s applications in daily life including antiperspirants, de-
odorants, cookware, cans, and bleaching. Thus, the amount of aluminum entering the
body cannot be predicted. Aluminum is believed to be primarily consumed through
drinking water [5]. Aluminum has been recognized as a neurotoxic (Alzheimer’s and
Parkinson’s disease) to humans over the past century [6]. Other harmful consequences
of excessive consumption included kidney dysfunction, osteomalacia, and breast can-
cer [1,6,7]. Aluminum levels in drinking water should not exceed 0.2 parts per million
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(ppm) [8]. In water, the physical features of heavy metal pollutants such as aluminum
are clear and invisible [9,10]. To date, the identification of aluminum, methods such as
spectrometry [11,12], spectroscopy [13,14], UV–vis analysis [15], neutron activation anal-
ysis [16] and high-performance liquid chromatography [17] have been utilized despite
their limitations. The disadvantages of these technologies, including specialist handling,
high operational costs, and long analysis [7,18]. The electrochemical method is, to the
best of our knowledge, the most effective technique for detecting aluminum ions due to
its high sensitivity, rapid analysis, and cost effectiveness [18,19].

In order to detect the lowest target concentration, nanoparticles must be present on
the surface of the electrode using the electrochemical approach. Previous studies have
utilized multiwalled carbon nanotubes (MWCNTs) and chitosan (CS) to detect trace met-
als [20,21], analyze energy gaps [22], measure hormones [23,24], engineer tissues [25,26],
produce medicinal food [27], and test pharmaceuticals [28,29]. CS is a polymer that
consists of D-glucosamine and N-acetyl-d-glucosamine and is the second most abundant
natural polymer after cellulose, according to Janegitz et al. [21]. Polysaccharides are
the natural polymer in CS [7]. CS is non-toxic, biocompatible, biodegradable, and has
low immunogenicity due to the presence of functional amino and hydroxyl groups [22].
Chemical cross-linking can enhance the adsorption process and ion selectivity, and in
the presence of CS, the adhesion and compatibility qualities of MWCNTs may be im-
proved [20]. MWCNTs have widespread applications due to their excellent electrical
conductivity and chemical stability [28], high electron transfer rate [20], and chemical
and biological functional groups [25]. Recently, various modifications of MWCNTs
and CS have been used to detect vanillin and tartrazine [30], chloramphenicol, glucose,
acetaminophen, p-aminophenol, and tryptophan [31].

Prussian Blue (PB) is composed of Fe4[Fe(CN)6]3− and is used to detect chemical
contamination. PB was used to detect H2O2 in the presence of oxygen molecules with
excellent selectivity [32]. Yang et al. [33] also reported that PB was applied to the detection
of organic chemicals in human serum and improved the performance of the electrochemical
sensor due to an electrocatalytic reaction. The formation of the current signal by the
analyte was investigated using cyclic voltammetry (CV) and differential pulse voltammetry
(DPV). The electrochemical behaviors of oxidation and reduction production under a
given potential range were investigated using the CV optimization method [34]. The DPV
approach was applied to performance analysis by measuring the formation of surface
complexes and the sensitivity of the modified electrode to target ions [35].

The focus of this study is the synthesis of a modified gold electrode (f-MWCNTs/CS/
PB/AuE) for the detection of Al3+ using nanomaterials such as chitosan and functionalized
multi-walled carbon nanotubes supported by Prussian blue. The modification of chitosan
with functionalized multi-walled carbon nanotubes and immobilized Prussian blue resulted
in the detection of Al3+ below the safety level, generating excellent cyclic voltammetry
(CV) signals under optimal conditions. Prior to its application in detecting Al3+ in drinking
water, the performance of f-MWCNTs/CS/PB/AuE was evaluated using the differential
pulse voltammetry (DPV) method.

2. Materials and Methods
2.1. Reagents and Chemicals

Phosphate-buffered saline (PBS) was prepared using the method described by
Jeon et al. [36], with some modifications. Specifically, 0.1 M of dipotassium hydrogen
phosphate (K2HPO4), potassium dihydrogen phosphate (KH2PO4), and sodium chloride
(NaCl) were dissolved in deionized milli-Q (Millipark ® 40) water. Prussian blue, a
redox indicator, was prepared by mixing potassium ferrocyanide(II) trihydrate and iron
(III)chloride purchased from Sigma-Aldrich (St. Louis, MO, USA) [37]. Chitosan (CS) and
multiwalled carbon nanotubes (MWCNTs) were purchased from Sigma-Aldrich (USA).
Aluminum sulphate (Al3SO4), a target ion, was purchased from Systerm Chemicals,
Malaysia. Other chemicals used in the experiments were of standard reagent grade and
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were diluted with milli-Q (Millipark® 40) water. The experiments were conducted at a
temperature of 21.0 ± 2.0 ◦C.

2.2. Instrumentations

All electrochemical measurements were carried out using a potentiostat/galvanostat
(PGSTAT302N, serial number: AUT85150, Utrecht, The Netherlands) electrochemical work-
station (Metrohm-Autolab B.V) with a standard three-electrodes system consisting of a
3 mm diameter of bare gold electrode (AuE), platinum wire (Pt), and silver/silver chloride
(Ag/AgCl) as the working, counter, and reference electrodes (Metrohm Autolab, Utrecht,
The Netherlands), respectively. Voltammogram analysis was obtained from the cyclic
voltammetry (CV) and differential pulse voltammetry (DPV) in NOVA Autolab 1.11 soft-
ware (version 1.11.0). All the experiments were performed with 10 mL of analytical buffer
(0.1 M) in an electrochemical cell at room temperature conditions of 21.0 ± 2.0 ◦C. The
characterization of nanomaterials was observed under scanning electron microscopy (SEM)
(Hitachi S-3400N, Schaumburg, IL, USA) and transmission electron microscopy (TEM) (FEI
Tecnai G2 Spirit BioTWIN, Hillsboro, OR, USA). The pH was measured using a pH meter
(Model: pH 2700 Eutech Instrument, Landsmeer, The Netherlands). Digital electronic
microbalance (model: TLE204E Mettler Toledo, Columbus, OH, USA) was used to measure
the weight of the chemicals and reagents throughout the whole experiments.

2.3. Functionalization of Multiwalled Carbon Nanotubes (f-MWCNTs)

Functionalization of multiwalled carbon nanotubes (f-MWCNTs) was performed with
modifications according to Shalauddin et al. [28]. Briefly, multiwalled carbon nanotubes
were functionalized by dissolving 1 g of MWCNTs powder in a 3 to 1 solution of strong
sulfuric acid (H2SO4) and nitric acid (HNO3). The mixture was stirred under a fume hood
for 3 h. To maintain a neutral pH, the homogenized mixture was rinsed with a substantial
quantity of distilled water. The mixture’s pH was determined using a pH meter. The mixed
solution was then removed, and the dark precipitate of f-MWCNTs was dried at 60 ◦C for
24 h. The f-MWCNTs were obtained as a dry powder.

2.4. Preparation of Chitosan (CS) with f-MWCNTs

The preparation of chitosan and multiwalled carbon nanotubes was adapted from
Diaconu et al. [38] with some modifications. First, 2 mg of f-MWCNTs were dissolved
in 1% CS, which was prepared by dissolving 1 mL chitosan in 1% acetic acid in distilled
water. The resulting mixture was stirred for 3 h and then homogenized for 10 min using an
ultrasonicator. The mixture was kept at a laboratory temperature of 21.0 ± 2.0 ◦C and was
ready to be used in experiments.

2.5. Pre-Treatment and Preparation of Modified AuE

The bare AuE pre-treatment was conducted using the method previously described
by Siddiquee et al. [39]. Next, the AuE was cleaned and rinsed thoroughly with distilled
water, and nitrogen gas was used to dry the electrode. Subsequently, 5 µL of modification
materials (f-MWCNTs/CS) were dropped onto the AuE surface (3 mm in diameter) and
left to incubate for 2 h. After 2 h, the AuE surface was dried, and the f-MWCNTs/CS
were immobilized onto the AuE surface. Then, 10 µL of Prussian blue was applied to the
surface of the modified AuE for 2 min. Following this, a three-electrode system was used
to measure current signals over a potential range of 0.0 V to 1.7 V.

2.6. Sensing Mechanism

Figure 1 shows a schematic for the synthesis of CS with f-MWCNTs and its mechanism
towards Al3+ via electrolysis. Aluminum sulphate, Al2(SO4)3, in the solution suggested
lysis process breakdown. Aluminum ions (Al3+), the product of a method which generates
an electroactive species, can be analyzed using the current signals of electrochemical
methods. There are three possible factor interactions between MWCNTs/CS and the target
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ion: delocalization of the π-π bond (distribution of electron density) [40], intermolecular
hydrogen bond, and intermolecular force [36].
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Figure 1. Schematic diagram for the preparation of CS with f-MWCNTs and its mechanism for detec-
tion of Al3+ using three three-system electrodes (platinum as the counter electrode, gold electrode as
the working electrode, and silver/silver chloride as the reference electrode).

3. Results and Discussion
3.1. Physical Morphological Characterization of Nanomaterials

The f-MWCNTs and CS were synthesized and examined with scanning electron mi-
croscopy (SEM) (Figure 2A) and transmission electron microscopy (TEM) (Figure 2B). SEM
utilizes electron beams to magnify the surface texture of the sample. When electrons are
powerfully injected into the sample, the electrons within the sample become unstable and
emit. These emitted electrons are translated into electrical signals, which are then displayed
as images of the sample’s texture. In this experiment, SEM observation (20 µm in diameter)
revealed that the network structure of f-MWCNTs/CS had a smooth surface texture gener-
ated by the coordination of two functional groups, namely the carboxylic group (COOH)
of f-MWCNTs and the alkene group (=CH2) of CS. According to Shalauddin et al. [28],
the interaction between functional groups with different charges self-assembles. TEM
images of f-MWCNTs/CS at a magnification of 50 nm is displayed in Figure 2B. The
homogenized f-MWCNTs and CS formed well-regarded pipe bundles within this range,
as reported by Zhao et al. [29]. The same author noted that the electron transfer rate
increased as a result of a larger surface-active area within the same physical observation
structure. To better understand the advantages of nanomaterials, further research was
performed on the elemental compositions and abundance of f-MWCNTs/CS using energy-
dispersive X-ray (EDX) (Figure 2C). According to Table 1, the main element detected was
carbon, indicating that nanomaterial synthesis was successful. In addition, our research
demonstrated that f-MWCNTs/CS are made of the following components in decreasing
order: oxygen > potassium > aluminum > calcium > indium > manganese. To examine
the interaction of synthesized f-MWCNTs/CS with target ions (aluminum ions, Al3+), an
electrochemical method was used. In this experiment, three variations of the electrode
surface were prepared, including a bare gold electrode (AuE), an AuE with Prussian blue
(PB) as a redox indicator (PB/AuE), and a modified AuE (f-MWCNTs/CS/PB/AuE). In
order to determine the varying responses of nanomaterials in the presence of Al3+ under
different potentials, PB was deployed. The control of this experiment was electrolytic
solution (PBS) without Al3+. This proposedly prepared to distinguish the present signal of



Crystals 2023, 13, 497 5 of 21

Al3+ with other foreign components. The current signals were compared and are shown
in Figure 2D. The f-MWCNTs could increase the current signals due to large number
of delocalized π electrons by SP2 hybridization of carbon atoms located at the walls of
f-MWCNTs. These electrons increase the conductivity by forming of covalent bond with
the π electrons from the polymers [40]. Yet, without CS, f-MWCNTs easily fall off the
AuE surface [41]. CS is proposed to be created to maintain f-MWCNTs on the surface, as
CS has been reported to be biocompatible and increase electrode conductivity [40]. The
highest cyclic voltammetry (CV) current signals were observed in the presence of Al3+

for f-MWCNTs/CS/PB/AuE compared to AuE and PB/AuE. The signal was five times
stronger for f-MWCNTs/CS/PB/AuE compared to AuE alone. Similar to the findings of
Diaconu et al. [38], the current intensity of MWCNT-CS was twice that of a bare gold elec-
trode, indicating a larger electroactive area. We also expect that f-MWCNTs/CS/PB/AuE
resulted in a larger surface area for Al3+ accumulation. Moreover, the presence of PB played
a significant role in shifting the current signals of f-MWCNTs/CS/PB/AuE to a specific
potential during redox reactions. Further investigation of the electrochemical behavior of
f-MWCNTs/CS/PB/AuE was conducted in the presence of Al3+.

Table 1. Elemental compositions of f-MWCNTs/CS.

Element Series
(wt. %)

unn.
(wt. %)

C norm.
(at. %) C atom (1 Sigma)

Carbon K-series 48.24 46.35 58.98 5.53
Oxygen K-series 37.92 36.44 34.81 4.55

Aluminum K-series 4.58 4.40 2.49 0.24
Potassium K-series 5.97 5.73 2.24 0.24
Calcium K-series 1.94 1.86 0.71 0.11

Manganese K-series 0.53 0.51 0.14 0.08
Indium L-series 4.91 4.71 0.63 0.21

Total: 104.08 100.00 100.00

3.2. Optimization of Parameters

The procedure’s parameters were optimized based on our previous work with some
modifications [37]. The potential range was set to 0.0–1.7 V, with a scan rate of 0.1 Vs−1 and
an accumulation time of 15 s in 10 mL of buffer solution (0.1 M, pH 2) containing 0.2 ppm
of aluminum. On the modified electrode (f-MWCNTs/CS/PB/AuE), 5 mM of Prussian
blue was added.

3.2.1. Effect of Buffer

The CV method was used to test the effectiveness of five different buffers, including
acetate buffer, phosphate-buffered saline (PBS), citrate buffer, ammonium buffer, and Tris-HCl
buffer, in the presence of aluminum. A f-MWCNTs/CS/PB/AuE was submerged in 10 mL
of each respective buffer solution (0.1 M, pH 2). As shown in Figure 3, the current signals
obtained from the oxidation and reduction reactions indicated the presence of Al3+ in each
buffer. Among the buffers tested, PBS displayed the highest current signal during the oxidation
reaction, followed by citrate buffer, Tris-HCl buffer, acetate buffer, and ammonium buffer. In
contrast, PBS maintained the highest current signal during the reduction reaction compared
to other buffers. These findings highlighted the potential for nanomaterials and buffers to be
used in tandem for ion detection. Moreover, oxidation catalytic current demonstrated that
the electron transfer reaction at the electrode changed with the pH of the buffer solution [36].
In this experiment, the acidity of the buffer had no effect on the structure and function of
f-MWCNTs and CS, but it enhanced their electrical conductivity and adhesion strength [20].
Hence, PBS’s current signals were the highest among the buffers. However, our previous
research revealed that the tris-HCl buffer containing AuE alone produced the maximum
signal for detecting Al3+ [37]. This is due to the aluminum atom on the surface of the electrode
releasing three electrons (Al→Al3+ + 3e−) and accumulating on the surface-active area of
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f-MWCNTs/CS on modified AuE under PBS conditions. It is an interesting finding that PBS
provided MWCNTs/CS with good electrical conductivity and a high mass electron transfer.
Hence, PBS was applied for the next experiment.
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in the presence of 0.2 ppm Al3+ tested using f-MWCNTs/CS/PB/AuE. The experimental conditions
included a scan rate of 0.1 Vs−1 and 15 s of accumulation time (n = 3).

3.2.2. Effect of pH

The effect of buffer pH on the formation of oxidation and reduction signals of f-
MWCNTs/CS/PB/AuE was investigated in the presence of Al3+ across a range of pH
values from 2 to 9, with intervals of 1. The pH levels and types of the buffer solution were
found to have an impact on the signals observed (Figure 4). According to the trend of
the peak signals, pH 2 (a) generated the highest peak, which gradually decreased as pH
increased. This event was the result of aluminum ions forming hydroxyl complexes [42–44].
Al(OH)3, aluminum hydroxide, was determined as the compound’s species based on the
current signals [19]. This compound’s insolubility in water interrupted the current signals
by depositing on the modified electrode’s surface [45]. Previously, the selection of pH
buffers focused mostly on acidic conditions [19,42,45]. This is because the absorption rate
is affected by electrostatic, repulsive, and dispersive forces. According to Kyriakopou-
los et al. [46], as ionic strength rose, the adsorption increased from pH 6.5 to pH 3. As a
result of decreased repulsive interactions between solvent and target ions, a low pH value
is associated with a high adsorption rate. In the experiment, pH 2 was shown to have
the lowest repulsive forces and the highest current signals compared to other pH values.
Based on the findings of Arancibia and Muñoz [47], the acidic pH level was also favored
for detecting carbon-free (monomeric) inorganic compounds, such as aluminum species.
Consequently, pH 2 was chosen as the optimal pH condition based on the present signal,
and acidic conditions were supported by the majority of prior researchers.

3.2.3. Effect of Scan Rate

The effect of scan rate on the current signals of f-MWCNTs/CS/PB/AuE in (0.1 M,
pH 2) PBS solution in the presence of Al3+ was investigated by varying the scan rate
from 0.05 to 0.30 Vs−1. The results showed a direct proportionality between the scan rate
and the current signals, with the current signals increasing from 0.05 to 0.25 Vs−1 until
unstable signals were produced. When the scan rate exceeded 0.25 Vs−1, the stability of
the current decreased at the oxidation signal of 0.30 Vs−1, leading to an asymmetrical
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CV curve, as depicted in Figure 5A. The generation of unstable current signals due to
the “noise” of the current is a well-known phenomenon called overvoltage or potential
overcurrent, which occurs at high current transfer rates. Figure 5B shows the plot of the
oxidation peak (Ipa) and reduction peak (Ipc) from 0.05 to 0.25 Vs−1. The linearity of
Ipa and Ipc were determined by f-MWCNTs/CS/PB/AuE, with y = 1.0892x + 3.2044,
R2 = 0.9828 for Ipa, and y = 0.9455x + 0.0902, R2 = 0.9767 for Ipc. Based on the stability of
the current signal and the highest peak signal generated during the experiment, a scan
rate of 0.25 Vs−1 was selected.
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Figure 4. Cyclic voltammograms of f-MWCNTs/CS/PB/AuE recorded at different pH values ranging
from pH 2 to pH 9 (in intervals of 1) (a to h) in the presence of 0.2 ppm Al3+. The experimental
conditions included the use of 0.1 M PBS as the supporting electrolyte solution with a scan rate of
0.1 Vs−1 and an accumulation time of 15 s (n = 3).

3.2.4. Effect of Accumulation Time

The effect of duration on the detection of Al3+ by f-MWCNTs/CS/PB/AuE in elec-
trolytic solution (0.1 M, pH 2 of PBS) was evaluated over a range of 5 to 40 s (in 5 s intervals).
The system was generating current before the signal readings were taken, indicating that
it had already stabilized. The results showed that the formation of the current signal
increased from 5 to 25 s and then decreased at 40 s (Figure 6). This behavior is likely
due to the memory effect of the modified AuE surface, which is highly tolerant of Al3+

concentrations. A high concentration of Al3+ may have prevented other ions from attaching
to the surface [19]. Thus, the optimal accumulation time for detecting Al3+ was determined
to be 25 s.
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Figure 5. (A) Cyclic voltammograms obtained at different scan rates on f-MWCNTs/CS/PB/AuE in the
presence of 0.2 ppm Al3+. The scan rates ranged from 0.05 to 0.30 Vs−1. The experimental conditions
included 0.1 M PBS as the supporting electrolyte and 15 s of accumulation time (n = 3). (B) Peak values
of the oxidation and reduction signals measured and plotted against the corresponding scan rates.
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Figure 6. Bar graph of the effect of different accumulation times on the current signal of f-
MWCNTs/CS/PB/AuE in the presence of 0.2 ppm Al3+. The experimental conditions included 0.1 M
PBS as the supporting electrolyte and a scan rate of 0.25 Vs−1 (n = 3).
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3.2.5. Effect of Volume

To investigate the effect of the target ion concentration in buffer solution, a mixture of
10 mL buffer (0.1 M, pH 2) and sample solution was prepared using volume ratios (v/v)
of 8 mL:2 mL, 6 mL:4 mL, 4 mL:6 mL, and 2 mL:8 mL, respectively, as calculated with
modifications according to Chaiyo et al. [48]. Figure 7 illustrates the impact of volume ratio
on the performance of f-MWCNTs/CS/PB/AuE in detecting Al3+. The results showed that
the current signal of volume ratio b (4:6) was higher than that of the other volume ratios,
suggesting that the volume ratio influenced the formation of the current signal. Thus, the
volume ratio of 4:6 mL was selected for the analysis of the sample. Hence, 4 mL of analyte
volume and 6 mL of buffer volume were determined to be the optimal ratio for detecting
Al3+ with the highest analytical performance.
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Figure 7. Cyclic voltammogram of different analytical volumes on f-MWCNTs/CS/PB/AuE in the
presence of Al3+; (a) 2 mL of analyte and 8 mL of buffer, (b) 4 mL of analyte and 6 mL of buffer, (c) 6 mL
of analyte and 4 mL of buffer, and (d) 8 mL of analyte and 2 mL of buffer. The experimental conditions
were 0.1 M PBS as a supporting electrolyte under a 0.25 Vs−1 scan rate for 25 s of accumulation time
(n = 3).

3.3. Analytical Performance
3.3.1. Surface Active Area

We re-evaluated the current signals of bare AuE, PB/AuE, and f-MWCNTs/CS/PB
using the optimal parameters obtained from the optimization experiment. In agreement
with Figure 8, f-MWCNTs/CS/PB/AuE exhibited the highest oxidation current signal of
7.69 mA, while the reduction current signal was −5.10 mA. These results suggest that the
modified electrode has the potential to detect the presence of Al3+ by creating a specific
active area and enhancing electron kinetic transfer under optimal conditions. To determine
the active area of the electrodes, we used the formula for surface active area performed by
Lee et al. [49] based on the Randles–Sevcik equation [50]:

ip = 2.69 × 105nAC0D1/2v1/2 (1)

To measure the surface-active area (A), Equation (1) derived to form Equation (2) and
it expressed as

A = ip / 2.69 × 105nC0D1/2v1/2 (2)

The ip is peak current, n is the number of electron transfer, C0 is the bulk concentration
of redox, D is diffusion coefficient and v is the scan rate. In this experiment, a 5 mM Prussian
blue undergoes one-electron transfer (n = 1) on the electrode surface with A representing
the surface-active area, C0 the bulk concentration of redox (0.005 M), D = 6.67 × 10−6

the diffusion coefficient, and v the scan rate (0.25 Vs−1). The surface-active areas of the
electrodes after optimization experiments are listed in Table 2. Based on the table, the
widest specific surface areas for both oxidation and reduction signals were observed with
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f-MWCNTs/CS/PB/AuE, measuring 6.86 cm2 and 4.55 cm2, respectively. These findings
demonstrate the advantages of using nanomaterials to provide a specific target area for the
ion being detected.
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Figure 8. Cyclic voltammograms of various modified electrodes in the presence of Al3+ under the
following experimental conditions: 10 mL of (0.1 M, pH 2) PBS served as the supporting electrolyte
with a scan rate of 0.25 Vs−1 and an accumulation time of 25 s (n = 3).

Table 2. The current signal and surface-active area of the electrodes.

Electrode Configuration Ipa (mA) Surface Active
Area (cm2) Ipc (mA) Surface Active

Area (cm2)

AuE 2.36 2.10 −1.03 0.91
PB/AuE 6.19 5.52 −1.89 1.69

f-MWCNTs/CS/PB/AuE 7.69 6.86 −4.55 4.55

3.3.2. Repeatability and Reproducibility

To evaluate the repeatability, five-cycle readings of f-MWCNTs/CS/PB/AuE were
taken under the same conditions, and the peak with the greatest height among the five
signals was plotted and compared. As shown in Figure 9A, the peaks decreased as the
number of cycles increased, indicating that the modified electrode generated unsteady
current signals and could not be used repeatedly. Next, a reproducibility test was conducted
using five different preparations of f-MWCNTs/CS/PB/AuE. Figure 9B shows the current
readings for the reproducibility test of five identically produced current signals. These
results demonstrated that the modified electrode can be used with various samples without
compromising the sensor’s stability. Based on n = 5, we computed the relative standard de-
viation (RSD) of repeatability and reproducibility (five readings for each current formation
on their slopes). As shown in Table 3, the RSDs for repeatability and reproducibility were
0.58% and 5.2%, respectively, indicating that f-MWCNTs/CS/PB/AuE has a high degree of
stability for detecting Al3+ in various samples.



Crystals 2023, 13, 497 12 of 21

Crystals 2023, 13, x FOR PEER REVIEW 12 of 22 
 

 

3.3.2. Repeatability and Reproducibility 
To evaluate the repeatability, five-cycle readings of f-MWCNTs/CS/PB/AuE were 

taken under the same conditions, and the peak with the greatest height among the five 
signals was plotted and compared. As shown in Figure 9A, the peaks decreased as the 
number of cycles increased, indicating that the modified electrode generated unsteady 
current signals and could not be used repeatedly. Next, a reproducibility test was con-
ducted using five different preparations of f-MWCNTs/CS/PB/AuE. Figure 9B shows the 
current readings for the reproducibility test of five identically produced current signals. 
These results demonstrated that the modified electrode can be used with various samples 
without compromising the sensor’s stability. Based on n = 5, we computed the relative 
standard deviation (RSD) of repeatability and reproducibility (five readings for each cur-
rent formation on their slopes). As shown in Table 3, the RSDs for repeatability and repro-
ducibility were 0.58% and 5.2%, respectively, indicating that f-MWCNTs/CS/PB/AuE has 
a high degree of stability for detecting Al3+ in various samples. 

 

 
Figure 9. Bar charts of (A) repeatability and (B) reproducibility tests on f-MWCNTs/CS/PB/AuE in 
the presence of Al3+ (n = 5).  
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Table 3. RSD of repeatability and reproducibility.

Characteristic Mean ± STD RSD (%)

Repeatability 4.56 ± 0.02 0.58
Reproducibility 4.75 ± 0.24 5.20

3.3.3. Interfering Study

In this experiment, MnSO4, CaCO3, CuSO4, FeSO4, ZnSO4, K2SO4, and Na2CO3 were
used to generate Mn2+, Ca2+, Cu2+, Fe2+, Mg2+, Zn2+, K+, and Na+ ions, respectively.
The effect of each interfering ion on the target ion was individually examined by adding
0.2 ppm of the interfering ion to an electroanalytical solution containing the same amount
of Al3+ [49]. The current signals of the eight interfering ions in the presence of Al3+ are
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presented in Figure 10. As the peak current signals of Al3+ were the highest among the
metal ions tested, the results indicate that no significant interference (p-value of 0.0) was
observed. Moreover, potential interfering ions such as Zn2+, Fe2+, and Cu2+ that could
affect the selectivity of current signals were not identified [35,44,47,51]. Therefore, the
f-MWCNTs/CS/PB/AuE modified electrode exhibited high selectivity for detecting Al3+

in electroanalytical solutions containing other metal ions. The relationship between the
target ion and other ions was analyzed using one-way ANOVA, and the results are shown
in Table 4. The current signal was found to be dependent on the presence of aluminum, as
indicated by the high DPV signal in its presence and the low DPV signal in its absence. This
suggests that f-MWCNTs/CS/PB/AuE have a specificity for detecting aluminum. ANOVA
tests were performed to determine any differences between the overall groups, while the
Tukey Post Hoc test was used to study the differences between the overall groups and a
specific group [52]. The results showed that there was no significant interference among
the groups, with a p-value of 0.0 obtained.
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Figure 10. Bar chart of different interferer ions in the presence of Al3+ on modified electrode (f-
MWCNTs/CS/PB/AuE) (n = 3).

Table 4. One-way ANOVA analysis of aluminium ion in the presence of interfering ions.

ANOVA

Current
Sum of Squares df Mean Square F

Between Groups 13.226 8 1.653 90.823
Within Groups 1.213 18 0.067

Total 14.438 26

Post Hoc Tests

Target Ion Interfering Ion Mean Difference Significant
value

Aluminum

Calcium 0.957 0.00
Copper 0.994 0.00

Iron 1.039 0.00
Magnesium 1.182 0.00
Manganese 2.059 0.00
Potassium 1.129 0.00

Sodium 0.899 0.00
Zinc 1.214 0.00
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3.3.4. Storage Stability

Before the experiment was conducted, the modified electrode (f-MWCNTs/CS/PB/AuE)
was stored in a dark and dry place, following the method by Ramezani et al. [19]. Differential
pulse voltammetry (DPV) was used to measure the current signal, which was indicative of
the specific potential generated by the interaction of f-MWCNTs/CS/PB/AuE with varying
current intensities towards Al3+. The results showed that the current intensities decreased as
the modified electrode was stored for a longer period of time (Figure 11). The variation in
current signal from the first day to the seventh day was 4.20%, whereas the variation beyond
seven days was 14.01% and 53.48%, respectively. After more than two weeks, the performance
of the modified electrode could degrade.
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3.3.5. Concentration Analysis

The various concentrations of Al3+ ranging from 0.0 ppm to 3 ppm were tested
using the DPV method (Figure 12A). The results showed that the current signals of
f-MWCNTs/CS/PB/AuE increased with increasing concentrations of Al3+. This phe-
nomenon suggested that the modified electrode provided a large surface area for Al3+ to
occupy. The linearity of f-MWCNTs/CS/PB/AuE with varying concentrations of Al3+ is
shown in Figure 12B, where the linearity from 0 to 1 ppm was y = 0.0387x + 0.0748 with
a high correlation coefficient of R2 = 0.9853. A recent study by Geng et al. [40] reported
the detection of chloramphenicol using a modified chitosan-multiwall carbon nanotubes
(CS-MWCNTs) and molecularly imprinted polymers (MIPs) on glassy carbon electrode
(GCE) with good linearity (R2 = 0.9893). Table 5 summarizes the various applications of
modified chitosan-multiwalled carbon nanotubes for detecting different materials and
sources. In this experiment, the LOD, LOQ and sensitivity of f-MWCNTs/CS/PB/AuE
were determined as 0.002 ppm, 0.007 ppm, and 0.0865 ppm−1 cm−2, respectively [53]. The
LOD of this modified electrode was compared to the previous detections listed in Table 6,
indicating that it provided the latest information for detecting Al3+ in drinking water.
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Table 5. The application of chitosan-multiwalled carbon nanotubes with some modifications, linearity
(R2), linear of range (LOR), and limit of detection (LOD) for detecting specific targets.

References Target Modification Correlation
Coefficient, R2 LOR LOD

This work Aluminum

Functionalized multiwalled carbon
nanotubes/chitosan/Prussian

blue/gold electrode
(f-MWCNTs/CS/PB/AuE)

0.9853 0.0–1 ppm 5.84 × 10−9 mol/L
(0.002 ppm)

[20] Diethylstilbestrol

Gold nanoparticles/multi-walled
carbon nanotubes-chitosan/glassy

carbon electrode
(AuNPs/MWCNTs-CS/GCS)

0.9996 1.0 × 10−10–1.0 ×
10−6 mg/mL

24.3 fg/mL

[23] Acetylcholine

Chitosan-multi-walled carbon
nanotubes-iron (II, III) oxide

nanoparticles/AChE-ChO/glassy
carbon electrode

(CS-MWCNTs-Fe3O4NPs/
AChE-ChOx/GCE)

0.993 and 0.989
0.02–0.111 µmol/L

and
0.111–1.87 µmol/L

0.61 nmol/L and
0.002 µmol/L
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Table 5. Cont.

References Target Modification Correlation
Coefficient, R2 LOR LOD

[24] Zearalenone

Chitosan functionalized acetylene
black and multi-walled carbon

nanotubes/glassy carbon electrode
(CS@AB-MWCNTs/GCE)

0.9939 10.0 fg–1.0 ng m/L 3.64 fg m/L

[29] Diethylstilbestrol

Multilayer core–shell type
superparamagnetic and

water-compatible/ multi-walled
carbon

nanotubes@chitosan/surfactant
hexadecyl trimethyl ammonium
bromide/magnetic glassy carbon

electrode
(WMMIPs/MWCNTs@CS/

CTABr/MGCE)

0.9989 1.2 × 10−8–1.5 ×
10−4 mol/L 4.5 × 10−9 mol/L

[30]
Vanillin and

tartrazine

Copper(II) sulfide@ carboxylated
carbon nanotubes/glassy carbon

electrode
(CuS@COOH-MWCNTs/GCE)

0.9929 and 0.9935 0.03–125 µM 0.006 µM and
0.005 µM

[31] Tryptophan
Chitosan/Ce-MOF/glassy carbon

electrode
(Cs/Ce-MOF/GCE)

0.995 0.25–331 µM 0.14 µM

[36] Glucose

Flavin adenine dinucleotide
(FAD)-glucose dehydrogenase/

chitosan-multiwalled carbon
nanotubes/ screen-printed carbon

electrodes
(GDH/CS-MWCNT-5/ SPCEs)

0.99646 0–5.5 mM 0.01563 mM

[38] Phenolic acids
Laccase-multiwall carbon nanotubes

(MWCNT)–chitosan (CS)/gold sheets
(Lacc–CS–MWCNT/Au)

0.9968 7.35 × 10−7–1.05 ×
10−5 mol/L 1.51 × 10−7 mol/L

[40] Chloramphenicol

Chitosan-multiwalled carbon
nanotubes/molecularly imprinted
polymers/glassy carbon electrode

(CS-MWCNTs/MIPs/GCE)

0.9893 0.1–1000 ng/mL 3.3 × 10−2 ng/mL

[41] Indole

Multiwall carbon
nanotubes-chitosan/screen-printed

carbon electrode
(MWCNTs-CS/SPCE)

0.9905 5–100 µg/L 0.5 µg/L

[54]
Staphylococcus

aureus gene
sequence

Single-stranded DNA/gold
nanoparticles/chitosan-multiwalled

carbon nanotubes/gold electrode
(ssDNA/Au-NPs/CS–

MWCNTs/AuE)

0.9945 1.0 × 10−15 to
1.0 × 10−8 M 3.3 × 10−16 M

[55] Epinephrine and
uric acid

Gold nanoparticles/thioglycolic acid
film/ chitosan-multiwalled carbon
nanotubes/glassy carbon electrode

(AuNPs/TGA/CS–MWCNTs/GCE)

0.9924 and 0.9912 0.7–7 µM and
7–133 µM 85 nM and 45 nM

[56]
Acetaminophen

and
p-aminophenol

1,3,5-tris-(4-formylphenyl)
benzene-benzidine- covalent organic

framework/caCTF-1–
700/carboxylated carbon

nanotubes/glassy carbon electrode
(TFPB-BD-COF/caCTF-1–

700/COOH-MWCNT
/GCE)

0.9940 and 0.9980 0.6–150 µM 0.053 µM and
0.075 µM

[57] Hydrogen peroxide

Copper nanoparticles/methylene
blue/ multiwall carbon

nanotubes–fullerene–chitosan–ionic
liquid/glassy carbon electrode
(CuNPs/MB/MWCNT-C60-Cs-

IL/GCE)

0.9906 0.2 µM–2.0 mM 55.0 nM

[58] Lysozyme

Reduced graphene oxide-
multi-walled carbon

nanotubes/chitosan/ synthesized
carbon quantum dot/glassy carbon

electrode
(rGO-MWCNT/CS/ CQD/GCE)

0.9985 and 0.9987 20–10 nmol/L and
10–100 nmol/L 3.7 and 1.9 fmol/L
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Table 6. The comparison of the modifications used for determining Al3+ based on previous reports.

References Real Samples Modification LOD
(mol L−1)

This work Drinking water
Multiwalled carbon nanotubes/chitosan/Prussian

Blue/gold electrode
(f-MWCNTs/CS/PB/AuE)

5.84 × 10−9

(0.001 ppm)

[7] Green tea, river and tap water Schiff base/screen printed electrode
(JS1/SPE) 2.26 × 10−9

[18] Drinking water
Gold nanoparticles@tannic acid/glassy carbon

electrode
(AuNPs@TA-GCE)

10.0 × 10−9

[19] Mineral water, Al-Mg syrup,
black tea extract and ore samples

Nano-Cs-polyoxomolybdate/ionic liquid/carbon
paste electrode

(Nano-PMo12/IL/CPE)
7.94 × 10−10

[35] Waste and river water Alizarin S-Al complex 7.41 × 10−5

[42] Alloy, drugs, and food products AlMCM-41/modified carbon paste electrode
(AlMCM-41/MCPE) 4.6 × 10−7

[43] Tea leaves and Al–Mg samples

Sol–gel-Au nanoparticle/2,2′-dihydroxy-1-
naphthylidine-1′-naphthyl methyl amine/carbon

paste electrode
(SGAN/DNMA/CPE)

2.0 × 10−10

[44] Rock samples

7-Ethylthio-4-oxa-3-phenyl-2-thioxa-1,2-
dihydropyrimido-

[4,5-d]pyrimidine/o-nitrophenyloctyl ether/poly
(vinyl chloride)

(ETPTP/o-NPOE/PVC)

1.8 × 10−5

[45] Foods and water Cupferron/hanging mercury drop electrode
(Cupferron/HMDE) 2.96 × 10−8

[47] Sea water
Aluminium (pyrogallol red) xtetrabutylammonium

tetrafluoroborate
(Al(PR)3x9TBATFB)

3.7 × 10−5

[59] Water and metallurgical samples
Cupferron/rotating-disc Cupferron/bismuth film

electrode
(Cupferron/BiFE)

2.96 × 10−8

[60] Zinc plating and red mud
Poly(vinyl chloride)/morin/sodium tetraphenyl
borate:tri-n-butylphosphate/saturated calomel

electrodes
3.2 × 10−7

[61] River and tap water Norepinephrine/hanging mercury drop electrode
(NE/HMDE) 1.8 × 10−6

[62] Tea samples
Al(III)-8-hydroxyquinoline/ hanging mercury drop

electrode
(Al-8HQ/HMDE)

8.54 × 10−8

[63] Al–Mg syrup and drinking water
Bis(5-phenyl azo salicylaldehyde) naphthalene

diamine/polyvinylchloride
(5PHAZOSALNPHN/PVC)

2.3–2.5 × 10−6

3.3.6. Accuracy Test

Drinking water samples were collected from local grocery shops in Kota Kinabalu,
Sabah, Malaysia. The samples were then individually diluted with 0.2 ppm, 0.6 ppm, and
3 ppm of Al3+. The current signals of the diluted samples were compared with those of the
control samples (analytical solution). The percent recovery (%R) was calculated based on
the peak current signals using the following formula:

Percent recovery (%R) = (signal of concentration added/signal of concentration found) × 100 %

Based on Table 7, the percent recovery (%R) ranged between 98.66% and 99.66%,
while the relative standard deviation (RSD) ranged between 3.55% and 4.6%. This study
indicates that the local drinking water is free from Al3+ and safe for consumption. Also,
the ability of this modified sensor to detect the physical properties of aluminum (it exists
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in clear and is invisible in the environment) is highly valued because it enables us to
monitor approximately 30 % and 0.61 % of the world’s groundwater and surface water
drinking water sources, respectively [64,65]. In the experiment, aluminum ions as low as
5.84 × 10−9 M were detected. According to recent findings by Chen et al. [30] in Table 5,
the lowest detection levels for MWCNTs and CS are 0.006 M for vanillin and 0.005 M for
tartrazine. On the basis of these findings, three distinct targets were found under the same
nanomaterials (MWCNTs-CS) with modifications. Therefore, the further understanding of
the fundamental of the MWCNTs-CS on specific detection is highly required.

Table 7. The recovery value of Al3+ found in drinking water.

Concentration
(ppm)

Current Signal of
Concentration Added (ppm)

Current Signal of Concentration Found
(ppm) Mean ± Standard Deviation Recovery (%) RSD (%)

0.2 8.27 × 10−2 8.16 × 10−2 ± 2.90 × 10−3 98.66 3.55
0.6 9.97 × 10−2 9.91 × 10−2 ± 3.46 × 10−3 99.39 3.49
3 11.46 × 10−2 11.41 × 10−2 ± 5.32 × 10−3 99.56 4.66

4. Conclusions

In this research, the modified electrode has been deployed for specific detection of
aluminum ions (Al3+) using application of multiwalled carbon nanotubes and chitosan. The
wide surface-active area, good conductivity, great stability, and high selectivity were exhib-
ited by these nanomaterials. The optimal conditions have an effect on the performance of
multiwalled carbon nanotubes and chitosan. Moreover, Prussian blue serves as an excellent
indicator of specific current potential. Moreover, this method detected Al3+ concentrations
as low as 5.84 × 10−9 mol/L (R2 = 9893) with an accuracy range of 98.66–99.66%, making
it suitable for detecting aluminum in drinking water.
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