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Abstract: Owing to their low dielectric loss and high permittivity values, dielectric ceramics have
garnered a lot of interest from the scientific and industrial sectors. These properties allow for their
downsizing and use in a variety of electronic circuits. This present work focuses on the impact of the
substitution of W6+ with Mo6+ on the structural and dielectric features of the crystalline phases in a
similar TTB structure within the Ba0.54Na0.46Nb1.29W(0.37−x)MoxO5 system, with 0 ≤ x ≤ 0.33 mol%.
These crystalline phases were elaborated using the conventional solid-state reaction method and
analyzed with XRD, Raman, and dielectric techniques. The Rietveld refinement method showed that
all these phases are characterized by tetragonal structure and the P4bm space group. The Raman
spectra corresponded well to a TTB-like structure, and all the bands were assigned. The dielectric
measurements of the prepared ceramic samples facilitated the determination of their phase transition
temperature (Tc) and the dielectric responses. This investigation focused on determining dielectric
permittivity (ε′) and its correlation with increases in MoO3 content in the ceramic structure.

Keywords: TTB ceramics; structure; X-ray diffraction; Rietveld method; Raman spectroscopy;
dielectric permittivity

1. Introduction

Materials of the tetragonal tungsten bronze (TTB) structure type are well-known for
their ferroelectric properties [1–5]. Many researchers have investigated these materials for
several industrial applications, such as optoelectronics, energy conversions, and chemical
sectors [6–10]. This high attention depends on the materials’ structural properties. The TTB
structure has numerous crystallographic interstices, which enable a broad range of cation
replacements. The general chemical formula for the TTB structure is (A1)2(A2)4C4Nb10O30,
where A1, A2, and C stand for various oxygen sites. The A1 site is surrounded by twelve
oxygen ions, while the A2 site is enclosed by eight oxygen ions. The C site is coordinated
by six oxygen ions. The cations that can be accommodated by the TTB structure depend
on the size of the sites and the charge balance of the structure. Common examples of
cations that can be accommodated by the TTB structure include Na+, K+, Rb+, Cs+, Ag+,
Tl+, Cu2+, and Pb2+ [11–13]. Currently, the advancement of solid solutions has resulted
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in a multitude of varied distributions of metal cations across different crystallographic lo-
cations. This has the potential to enhance physical characteristics, such as dielectric and
ferroelectric abilities [14,15]. Several approaches have been developed for enhancing ei-
ther the structures or properties of ceramics. The usual method to control the electrical
characteristics of TTB oxides is nonisovalent replacement based on transition-metal sub-
stitution in niobium octahedral sites. This focuses on the property tuning required to
produce new phases, including microwave dielectrics [16,17], ionic conductors [18], and
ferroelectrics [19–21]. This will eventually lead to the identification of a highly desired,
room-temperature multiferroic material. As a result of the variable oxidation state [22],
many TTB ferroelectric and ferroelectric-related materials [23–26] exhibit relaxer ferroelectric
and dielectric phenomena [27–30]. TTB structures are classically derived from well-known
perovskite-type structures and characterized by high electrical performance [31,32]. Com-
pounds similar to tetragonal tungsten bronze oxides, along with perovskites, comprise one
of the most significant groups of ferroelectrics. Many works have reported the existence of
phases containing different transition metals related to the tetragonal tungsten bronze struc-
ture [33]. There have been initiatives to use Ta, Mo, or Nb in place of W [33]. For instance,
Ikeda et al. [34] investigated the results of replacing Nb ions with W ions in the niobates
of the TTB structure. Similarly, a detailed investigation of “Ferroelectric and Related Sub-
stances on Ba3Na3MoNb9O30” has also been reported [35]. According to Marinder [36],
an X-ray diffraction analysis of the NaNbO3-Nb2O5-WO3 system illustrated that a few
phases are associated with the TTB structure. High-resolution electron microscopy anal-
ysis of the aforementioned system revealed many structural types that are linked to the
TTB structure [37]. Further, the NaNbO3-WO3 system’s mixed oxides are a subject of
attention among the numerous current TTB structures. When a low-temperature method
is used, the composition with a 1:1 ratio of the end members of this system appears ef-
fective for producing NaNbWO6, exhibiting a phase that resembles the TTB structure.
However, this shows that a complex X-ray pattern has been considered as a combination
of different phases [38–41]. Alternatively, the ceramic method was claimed to be able to
prepare a single phase of NaNbWO6 that is similar to TTB [42], but an electron diffraction
examination showed that this composition comprises two closely related tetragonal and
monoclinic phases [43].

The primary focus of the present exploration is to examine the influence of Mo6+

content on the structural and dielectric characteristics of tetragonal tungsten bronze
(TTB) within the NaNbO3-WO3-BaNb2O6 system. For this purpose, the incorporation
effect of molybdenum into tungsten sites on the structural and electrical properties of
Ba0.54Na0.46Nb1.29W(0.37−x)MoxO5 (0 ≤ x ≤ 0.33) ceramics is investigated.

2. Experimental Section
2.1. Ceramic Sample Synthesis

The conventional solid-state technique was applied to synthesize the crystalline phases
of the Ba0.54Na0.46Nb1.29W(0.37−x)MoxO5 system (x = 0.04, 0.08, and 0.33), as described in
the experimental protocol for our previous work [44]. This experimental protocol for
preparation of the crystalline phases within the NaNbO3-BaNb2O6-WO3/MoO3 system
involves two steps. The first one is focused on preparation of the crystalline phases NaNbO3
and BaNb2O6 from the raw materials BaCO3, Na2CO3, and Nb2O5 (purchased from Merck
(Merck, 99.95%)) according to the following reactions:

Na2CO3 + Nb2O5 → 2NaNbO3 + CO2

BaCO3 + Nb2O5 → BaNb2O6 + CO2

These raw materials were mixed and ground in agate mortar around one hour later,
according to their stoichiometry coefficient, and then subjected to thermal treatment at
1100 ◦C for 24 h. The second stage involved mixing and grinding for two hours: the
obtained oxides, NaNbO3 and BaNb2O6, were processed in stoichiometric proportions



Crystals 2023, 13, 483 3 of 25

with the oxides WO3 and/or MoO3 (bought from Merck, 99.95%) for about an hour. The
mixture was then put into an alumina crucible and heated to 1200 ◦C for 12 h, then reapplied
while ethanol was used for about one hour so that it could be calcined. In an alumina
crucible, calcination was carried out for 24 h upon reaching a temperature of 1300 ◦C for
the final heating. The grinding and calcination processes were carried out two more times.
XRD analysis was utilized to investigate the formation of the compound.

2.2. Characterization Techniques

The prepared ceramics were examined at ambient temperatures using a Bruker D8
Advance diffractometer utilizing CuKα (α = 1.540598 Å). The X-ray diffractograms were
recorded from 10◦ to 100◦, with a step size of 0.01◦. GSAS-II software [45] was utilized
to apply the Rietveld refinement to validate and quantify the crystalline phases found
in the composite ceramics, followed by sinterization. The phases that were present in
the composites under study were identified using the Crystallography Open Database
(COD) [46]. The ceramics were subjected to Raman analysis at room temperature, utilizing
a spectrometer with a HORIBA-Jobin laser light that was directed onto each sample through
a microscope lens. To conduct dielectric analysis, the disk-shaped samples were initially
smoothed down, and to ensure optimal electrical contact, silver paste was applied on both
sides of each specimen. The capacitance (Cp) and loss factor (tanδ) were analyzed over a
frequency range of 20 Hz to 1 MHz. An impedance analyzer was used to apply a 0.5 V
source to the electrode pellets. Measurements were conducted between 25 ◦C and 550 ◦C
using a Linkam TS 93 hot stage that offered a temperature stability of ±0.1 K. To create
the capacitor-shaped pieces, platinum electrodes were positioned on two of the ceramic’s
round faces. The real part (ε′) and loss (tanδ) of the dielectric permittivity, as well as the ac
conductivity (σac), were determined using Equations (1)–(3) [32,47]:

ε′ = CPt
ε0 A

(1)

σac = ωε0ε′′ (2)

tan δ =
ε′′

ε′ (3)

In these equations, t, A, ω, ε0, and ε′ ′ (equal to ε′ multiplied by the tangent of δ)
represent the layer of the disk-shaped piece, the cross-sectional area of the electrode, the
angular frequency, the permittivity of free space, and the imaginary component of the
complex dielectric constant, respectively.

3. Results and Discussion
3.1. X-ray Diffractograms

Figure 1a displays the XRD diffractograms of all the examined samples. The XRD
pattern of the sample (x = 0) significantly changed as the concentration of Mo6+ increased,
as shown in Figure 1b. All examined sample ceramics had very significant diffraction
peaks, which suggested that these compounds were well-crystallized. Additionally, all
XRD patterns of the prepared ceramics exhibited a tetragonal-type structure. However,
it seems that except for (x = 0), the patterns contained a secondary phase: scheelite-type
BaMoO4 (barium molybdate). The peak of the index (004) was the characteristic secondary
phase located at 2θ position 26.42, which was identified according to JPDS NO: 029-0193.
This peak appeared from the ceramic composite where x = 0.04, and it was character-
ized by low intensity (see Figure 1b). Figure 1c–e display the X-ray diffractograms of
the samples obtained from the Rietveld refinement process. The constituent features of
the composites where x = 0.04, x = 0.08, and x = 0.33 were guaranteed by the Rietveld
refinement; however, the composite where x = 0.33 was guaranteed to have the properties
of both the Ba0.54Na0.46Nb1.29W0.04Mo0.33O5 and purity (BaMoO4) constituents. Each plot
displays the parameters derived with the Rietveld refinement. For all compositions, the
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goodness of fit (GOF), or χ2, parameters were below three, which points to the improved
XRD patterns’ high dependability (see Table 1). Furthermore, Rietveld refinement con-
firmed the tetragonal structure of a similar TTB phase with the P4bm space group and a
minor BaMoO4 impurity peak (marked with �) (see Figure 1b). As opposed to this, the
ferroelectric phase and the P4bm space group created a similar TTB structure. G. Yanalak
et al have already provided in-depth descriptions of the BaMoO4 phase [48]. A structure
of this type is consistently favored, as it promotes better interaction between the ferro-
electric and BaMoO4 phases, consequently leading to a robust microwave dielectric effect
in composites [49]. Improvement in the volume of the composites was readily observed
as the lattice parameters, a, b, and c, were somewhat raised with rising MoO3 content
in the ferroelectric phase. The substitution of W6+ (0.74 Å) with Mo6+ (0.73 Å) [50] led
to the formation of the BaMoO4 phase (tetragonal with the I41/a space group). In com-
parison of the x = 0.00 composite to other composites, the cell parameters and volume
increased as the peak intensity of the BaMoO4 composite increased from x = 0.00 to x =
0.33. This variation may be associated with the increase in the content of the BaMoO4
phase in the composites. To ensure the secondary phase would be dependent on the
BaMoO4 phase type, the dielectric properties of the current pieces were studied to see
how their dielectric permittivity would change with increased BaMoO4 composite (see the
dielectric measurements section).
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Figure 1. Combined X-ray diffraction patterns (a,b) and Rietveld refinement of Ba0.54Na0.46

Nb1.29W(0.37−x)MoxO5 ceramics (x = 0.04 (c), x = 0.08 (d), and x = 0.33 (e)).
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Table 1. The data from the Rietveld refinement for the crystalline phases of the Ba0.54Na0.46

Nb1.29W(0.37−x)MoxO5 system (x = 0.04, 0.08, and 0.33).

Composition x = 0.04 x = 0.08 x = 0.33

Symmetry Tetragonal Tetragonal Phase 1: Tetragonal;
Phase 2: Tetragonal

Space Group P4bm P4bm Phase 1: P4bm
Phase 2: I 41/a

Z 6 6 Phase 1: 6
Phase 2: 4

Lattice Parameters (Å)
a = b = 12.40430 (10);

c = 3.95059 (6)
a = b = 12.41525 (12);

c = 3.95844 (7)

Phase 1: a = b = 12.41681 (17);
c = 3.97203 (8)

Phase 2: a = b = 5.59091 (22);
c = 12.8173 (7)

Volume (Å3) 607.865 (15) 610.146 (15) Phase 1: 612.396 (21)
Phase 2: 400.65 (4)

Calculated Density (g/cm3) 5.729 5.698 Phase 1: 5.272
Phase 2: 4.928

Chemical Formula Weight
(g/mol) 349.52 348.96 Phase 1: 324.02

Phase 2: 297.27
Rp 7.79 9.51 10.11

Rwp 10.48 12.69 13.26
χ2 1.837 2.249 2.744

GOF 1.36 1.50 1.66

The Rietveld refinement of the XRD patterns corresponding to the prepared ceramics
of Ba0.54Na0.46Nb1.29W(0.37−x)MoxO5 (x = 0.04, 0.08, and 0.33) was fitted with a tetragonal
(P4bm) model developed from the model of the previous crystalline phase [44]. Starting
where x = 0.04, the Ba2+ and Na+ cations occupied two sites in this developed model.
Here, Na1

+ was placed in the Wyckoff position of Ba1
2+ at the 2a (0, 0, z) sites, and Na2

+

was placed in Ba2
2+ at the 4c (x, y, z) sites, respectively. However, the Nb5+, W6+, and

Mo6+ occupied two different sites in the Wyckoff position. That is, the Nb1
5+, W1

6+, and
Mo1

6+ were placed in the 2b (0, 0.5, 0.5) sites, whereas the Nb2
5+, along with the W2

6+,
occupied the 8d (x, y, z) sites. Further, the O2- oxygen dianions occupied the 8d (x, y, z),
4c (x, y, z), and 2b (0, 0.5, z) Wyckoff sites. While comparing the x = 0.04 composition with
the x = 0.08 composition, we found a difference in that where x = 0.08, which manifested
as Nb1

6+ with Mo1
6+ occupying the 2b (0, 0.5, 0.5) sites and Nb2

6+ with Mo2
6+ occupying

the 8d (x, y, z) sites (see Table 2). However, in the composition (x = 0.33) model, Nb1
5+

and Mo1
6+ occupied the 2b (0, 0.5, 0.5) sites, and Nb2

5+ and Mo2
6+ with W2

6+ occupied
the 8d (x, y, z) sites (see Table 2). Furthermore, the atomic positions of the secondary
phase, BaMoO4 (a = b = 5.5909 Å and c = 12.8173 Å), were determined. In this structure
(x = 0.33), the Ba2+ and Mo6+ cations occupied, respectively, the 4b (0, y, z) and the 4a
(0, y, z) sites, and the oxygen dianions occupied the 16f (x, y, z) Wyckoff sites. In Table 3, we
list the interatomic distances. The crystallographic parameters of the refined compositions
(x = 0.04, 0.08, and 0.33) revealed that oxygen atoms surrounded sodium and barium
atoms, creating deformed and irregular surroundings. The average distance between
the sodium (1) and barium (1) atoms and the oxygen atoms was approximately 2.71 Å
(x = 0.00)–2.88 Å (x = 0.33) [44]. Figure 2 illustrates the [1 1 1] projection of the crystal
structure where x = 0.33. The Na+ and Ba2+ cations were found to occupy sites with
coordination numbers of 15 and 12, respectively. The octahedral sites were occupied by
two cations of Nb5+, W6+, and/or Mo6+. In addition, the crystal structure exhibited a P4bm
space group, allowing for small, off-center displacements of Nb, W, and Mo within the
(Nb/W/Mo)O6 octahedra. The Ba (1)/Na (1) atoms were encompassed by 12 O- atoms,
with the faces of the Nb1/W1/Mo1@O6 octahedra being shared. The polyhedron distances
ranged from 1.93 Å (x = 0.00) to 1.98 Å (x = 0.33), with an estimated value of less than
d(Ba(1)/Na(1)@O) = 2.71 Å (x = 0.00)–2.88 Å (x = 0.33). It is worth noting that an average of
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15 oxygen atoms enclosed the barium (2) and sodium (2) atoms, with the distance varying
from 3.02 Å (0.00) to 2.74 Å (x = 33). Nonetheless, there was a slight distinction in the atomic
positions of the Ba (2) and Na (2) atoms, as shown in Table 2 [44]. The Nb(1), Mo(1), or
W(1) atoms were surrounded by six oxygen atoms, forming octahedrons that were linked
together at their tips. The average distance between the atoms ranged from 2.04 Å (x = 0.00)
to 2.05 Å (x = 0.00).

Table 2. Atomic positions of the Ba0.54Na0.46Nb1.29W(0.37−x)MoxO5 system (x = 0.04, 0.08, and 0.33).

Composition Atom Wyckoff x y z Occupation Uiso

X = 0.04

Ba1 2a 0 0 0.05 0.716 0.800 (12)
Na1 2a 0 0 0.05 0.284 0.800 (12)
Ba2 4c 0.17310 (15) 0.67310 (15) 0.01270 (15) 0.454 0.0524 (9)
Na2 4c 0.17310 (15) 0.67310 (15) 0.01270 (15) 0.546 0.0524 (9)
Nb1 2b 0 0.5 0.5 0.82 0.0301 (9)
W1 2b 0 0.5 0.5 0.039 0.09
Mo1 2b 0 0.5 0.5 0.125 0.03077
Nb2 8d 0.07581 (8) 0.20922 (8) 0.50822 (8) 0.761 0.2105 (19)
W2 8d 0.07581 (8) 0.20922 (8) 0.50822 (8) 0.239 0.00555
O1 8d 0.1337 (9) 0.0825 (8) 0.446 (10) 1 0.1174 (30)
O2 8d 0.3543 (8) 0.0126 (10) 0.402 (9) 1 0.1174 (30)
O3 8d 0.0473 (10) 0.1997 (8) 0.065 (7) 1 0.1174 (30)
O4 4c 0.294 0.794 0.575 1 0.1174 (30)
O5 2b 0 0.5 −0.02 1 0.65 (6)

X = 0.08

Ba1 2a 0 0 0.05 0.716 0.800 (11)
Na1 2a 0 0 0.05 0.284 0.800 (11)
Ba2 4c 0.17347 (13) 0.67347 (13) 0.01308 (13) 0.454 0.0204 (7)
Na2 4c 0.17347 (13) 0.67347 (13) 0.01308 (13) 0.546 0.0069 (7)
Nb1 2b 0 0.5 0.5 0.75 0.0332 (8)
Mo1 2b 0 0.5 0.5 0.25 0.0329 (8)
Nb2 8d 0.07595 (9) 0.20935 (9) 0.50835 (9) 0.761 0.01819 (34)
W2 8d 0.07595 (9) 0.20935 (9) 0.50835 (9) 0.239 0.79798 (34)
O1 8d 0.1567 (9) 0.0724 (10) 0.535 (12) 1 0.1116 (16)
O2 8d 0.3447 (6) 0.0140 (6) 0.519 (12) 1 0.0092 (16)
O3 8d 0.0560 (7) 0.2038 (6) 0.032 (7) 1 0.0287 (16)
O4 4c 0.2844 (7) 0.7844 (7) 0.581 (5) 1 0.0190 (16)
O5 2b 0 0.5 −0.02 1 0.0532 (16)

X = 0.33

Ba1 2a 0 0 0.05 0.716 0.800 (13)
Na1 2a 0 0 0.05 0.284 0.800 (13)
Ba2 4c 0.17500 (19) 0.67500 (19) 0.01460 (19) 0.454 0.0239 (10)
Na2 4c 0.17500 (19) 0.67500 (19) 0.01460 (19) 0.546 0.0239 (10)
Nb1 2b 0 0.5 0.5 0.82 0.0328 (12)
Mo1 2b 0 0.5 0.5 0.164 0.0328 (12)
Nb2 8d 0.07176 (13) 0.21142 (14) 0.4854 (16) 0.761 0.0324 (4)
Mo2 8d 0.07176 (13) 0.21142 (14) 0.4854 (16) 0.20775 0.0324 (4)
W2 8d 0.07176 (13) 0.21142 (14) 0.4854 (16) 0.03125 0.0324 (4)
O1 8d 0.1609 (8) 0.0615 (8) 0.568 (4) 1 0.0294 (21)
O2 8d 0.3426 (8) 0.0055 (8) 0.411 (5) 1 0.0294 (21)
O3 8d 0.1022 (8) 0.1772 (8) −0.069 (5) 1 0.0294 (21)
O4 4c 0.2860 (8) 0.7860 (8) 0.582 (5) 1 0.0078 (21)
O5 2b 0 0.5 −0.045 (12) 1 0.0078 (21)

BaMoO4

Ba 4b 0 0.25 0.625 1 −0.0085 (11)
Mo 4a 0 0.25 0.125 1 0.0402 (27)
O 16f 0.175 (8) 0.203 (12) 0.0231 (26) 1 0.08796
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Table 3. Different interatomic distances (Å) of the crystalline phases of Ba0.54Na0.46Nb1.29

W(0.37−x)MoxO5 (x = 0.04, 0.08, and 0.33).

Composition 0.04 0.08 0.33

Principal Interatomic
Distances (Å)
Ba1/Na1–O

Ba1/Na1–O1 3.080 × 4 2.8773 × 4 2.8705 × 4
Ba1/Na1–O1 2.501 × 4 2.9578 × 4 2.9678 × 4
Ba1/Na1–O3 2.546 × 4 2.650 × 4 2.5836 × 4
(Ba1/Na1–O) 2.709 2.8283 2.88073

Principal Interatomic
Distances (Å)
Ba2/Na2–O

Ba2/Na2–O1 3.465 × 2 - -
Ba2/Na2–O1 3.153 × 2 - -
Ba2/Na2–O2 3.145 × 2 2.826 × 2 2.6375 × 2
Ba2/Na2–O2 2.539 × 2 - -
Ba2/Na2–O4 2.7364 × 2 2.593 × 2 2.5984 × 2
Ba2/Na2–O4 3.0713 × 2 2.9797
(Ba2/Na2–O) 3.0182 2.7095 2.7385

Principal Interatomic
Distances (Å)

Nb1/W1/Mo1–O
Nb1/W1/Mo1–O2 1.855 × 4 1.9374 × 4 1.9873 × 4
Nb1/W1/Mo1–O5 2.05431 1.9001 1.8073
Nb1/W1/Mo1–O5 1.89629 2.0584 2.1648
(Nb1/W1/Mo1–O) 1.93519 1.9353 1.9864

Principal Interatomic
Distances (Å)

Nb2/W2/Mo2–O
Nb2/W2/Mo2–O1 1.745 1.9572 2.1904
Nb2/W2/Mo2–O1 2.190 1.9766 -
Nb2/W2/Mo2–O2 2.340 - 1.9133
Nb2/W2/Mo2–O3 1.791 1.9030 1.8591
Nb2/W2/Mo2–O3 2.230 2.0887 2.2743
Nb2/W2/Mo2–O4 1.9451 - 2.0308
Nb2/W2/Mo2–O 2.0402 1.9813 2.0535
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3.2. Characterization with Raman Spectroscopy

The crystallographic study of the crystalline phases of Ba0.54Na0.46Nb1.29W(0.37−x)MoxO5
(x = 0.04, 0.08, and 0.33) showed that the structures of these ceramics are formed from
different bonds, such as Ba/Na-O, Nb/W/Mo-O, and Ba/Na-Nb/W/Mo. The vibration
modes of these principal bonds were able to be identified with Raman spectroscopy. As
shown in Figure 3, the Raman spectra were recorded between 1200 and 100 cm−1 of these
prepared ceramics, characterized by different bands. The identification of these bonds with
their bands has been made (see the Table 4) in reference to our previous work focused on
crystalline phases (x = 0.0) [44].
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Table 4. The Raman bands in the range of 1200–100 cm−1 were identified for the Ba0.54Na0.46

Nb1.29W(0.37−x)MoxO5 ceramics.

Band Position
(cm−1) Assignment

485→115 Octahedra (Mo/W/NbO6) or cation translation vibrations (Ba2+, Na+)
650→485 Mo/W/Nb–O stretching vibrations caused by deformation
840→650 Mo/W/Nb-O bonds

Stretching vibrations of Mo/W/Nb-O bonds were the primary Raman bands within
the 840–650 cm−1 region, while the deformation modes of Mo/W/Nb-O bonds were found
in the bands between 650 cm−1 and 485 cm−1. The bands in the range of 485–115 cm−1 may
have been linked with W/Mo/Nb-O bonds in the octahedra (W/Mo/NbO6) or vibrations
of cation translation (Ba2+, Na+). Additionally, according to Shudong Xu et al. [50], the band
at 250 cm−1 is attributed to O-Nb-O bending vibrations. The bands located between 280 and
650 cm−1 are related to NbO6-octahedron bending and stretching vibrations. This is similar
to the modes observed in LiNbO3 at 248 cm−1 and 628 cm−1 and in Pb2(1−x)K1+xGdxNb5O15
at 260–280 cm−1 and 630–650 cm−1 [51]. In addition, there is a possibility that the highest-
frequency mode, in the range of 850–938 cm−1, could be associated with the stretching
vibration of (Nb/W/Mo)O6 octahedra, similarly to perovskites [52]. The Raman spec-
trum of Ba0.54Na0.46Nb1.29W0.37O5 displayed a broad and strong peak at approximately
650 cm−1, as well as another intense peak around 280 cm−1. These peaks are attributed to
Nb-O vibrations in the NbO6 octahedra (Figure 3) [44]. Furthermore, from the composition
where x = 0.04 with the substitution of W6+ (0.74) with Mo6+ (0.73), the intensity of the
Raman peaks at the 280 cm−1 and 650 cm−1 positions increased with increasing MoO3
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content. These two Raman peaks are associated with the Nb/W/MoO6 octahedra, and
the increasing of their peak intensities can be explained via an increased number of MoO6
octahedra. Furthermore, increasing the MoO6 content in the framework had no effect on
the Raman peak positions because the W6+ and Mo6+ ions were the same size and occupied
the same sites (Wyckoff 2 and 8). On the other side, few Raman peaks of low intensities
were observed from the composition where x = 0.04, and their intensities began to increase
as MoO3 content increased; these Raman peaks may be characteristic of the formation of
the scheelite-type BaMoO4 composite. Thus, the Raman analysis validated the Rietveld
refinement of the X-ray data obtained using the proposed refinement models and verified
the presence of a secondary phase (BaMoO4).

3.3. Dielectric Analysis
3.3.1. Evolution of Dielectric Permittivity (ε∗) with Temperature

Figure 4a–d depict the thermal evolution of the dielectric permittivity (ε′) during heating
of different solid-solution compositions (x = 0.00, 0.04, 0.08, and 0.33) at different frequencies.

The ferroelectric character of the Ba0.54Na0.46Nb1.29W(0.37−x)MoxO5 solid solution at
room temperature was confirmed for all compositions. Thus, we were able to highlight
the characteristic anomaly of a phase transition, ferroelectric–paraelectric, at the transition
temperature, Tc. The position of the peak was independent of the frequency; hence, the
behavior of the ferroelectric studied was of a classical character. As a result, we observed a
decrease in the ceramic’s dielectric permittivity of an increase in the rate of substitution (x)
(see Figure 1e). It should also be noted that at high frequencies, the anomaly completely
vanished and the ceramic lost its properties; this behavior was brought on by a reduction
in contribution of polarization mechanisms. As is well known, conductivity contributes
to loss of storage energy, as seen with the drop in the maximum of ε′ at the level of the
transition. Ionic conduction or space charges are related to this evolution. Consequently,
degradation of dielectric characteristics can be used to explain this phenomenon (related
to the increase in conductivity, which presents a disadvantage for ferroelectrics) [53]. The
ferroelectric characteristics of the ceramics under study, such as those where x = 0.00,
x = 0.04, x = 0.08, and x = 0.33, are grouped in Table 5. It should be observed that the effect
of the substitution showed up as a reduction in the real permittivity’s maximum εr

′
max

value, which would typically fall as “x” rose (see Table 5). Depending on the substitution,
this drop can be explained by a loss of stored energy in the ceramic samples [53] or can be
demonstrated with the formation of phase-type BaMoO4, characterized by low dielectric
permittivity, as F.A.C. Nobrega et al. [49] confirmed.

Table 5. The ferroelectric properties of the Ba0.54Na0.46Nb1.29W(0.37-x)MoxO5 solid solution where
0 ≤ x ≤ 0.33.

Composition Tc εr
′
max 1 KHz εr

′
max 10
KHz

εr
′
max 100
KHz

εr
′
max 1000
KHz

0.00 250.84 1770.90 668.33 408.37 328.97
0.04 276.57 844.84 342.88 242.48 222.40
0.08 288.36 399.49 235.21 191.40 174.97
0.33 285.48 369.48 189.51 161.58 155.37

3.3.2. Evolution of Dielectric Losses (tanδ) with Temperature

The dielectric losses, tan(δ) = εr ′′
εr ′ , in the ferroelectric phase were reasonably low for all

of the compositions examined, as shown in Figure 5a–d. We saw that the losses significantly
rose during the paraelectric phase. At low frequencies and high temperatures, this rise was
larger. This demonstrates that conductivity plays a vital role at high temperatures [54].
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Figure 4. (a–e) Thermal evolution of εr′ at different frequencies and at different compositions for x = 
0.00, 0.04, 0.08, and 0.33. 

The ferroelectric character of the Ba0.54Na0.46Nb1.29W(0.37−x)MoxO5 solid solution at 
room temperature was confirmed for all compositions. Thus, we were able to highlight 
the characteristic anomaly of a phase transition, ferroelectric–paraelectric, at the 
transition temperature, Tc. The position of the peak was independent of the frequency; 
hence, the behavior of the ferroelectric studied was of a classical character. As a result, we 
observed a decrease in the ceramic’s dielectric permittivity of an increase in the rate of 
substitution (x) (see Figure 1–e). It should also be noted that at high frequencies, the 
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brought on by a reduction in contribution of polarization mechanisms. As is well known, 
conductivity contributes to loss of storage energy, as seen with the drop in the maximum 
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Figure 5. (a–d) Evolution in dielectric loss with respect to temperature is plotted for the prepared 
ceramics. 

3.3.3. Phase Transition Order 
This study focused on analyzing changes in inverse dielectric permittivity with 
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variation of the opposite dielectric permittivity versus temperature during heating at a 
frequency of 1 kHz. The shape of the curve for all of the compositions followed the 
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the calculated temperatures, T0, and those deduced from the curves of variation of the 
real part and the value of the Curie–Weiss constant allowed us to determine the 
transition order and type. 

Figure 5. (a–d) Evolution in dielectric loss with respect to temperature is plotted for the prepared
ceramics.

3.3.3. Phase Transition Order

This study focused on analyzing changes in inverse dielectric permittivity with temper-
ature to understand the characteristics of phase transitions. Figure 6a–d depict the variation
of the opposite dielectric permittivity versus temperature during heating at a frequency of
1 kHz. The shape of the curve for all of the compositions followed the Curie–Weiss law
well in the paraelectric phase defined by Equation (4) [55]:

ε′ =
C

T − T0
(4)

The experimental data fitted were used to calculate the Curie constants and the Curie–
Weiss temperatures for various compounds (see Figure 6a–d). The comparison of the calcu-
lated temperatures, T0, and those deduced from the curves of variation of the real part and
the value of the Curie–Weiss constant allowed us to determine the transition order and type.

The Curie–Weiss law was clearly observed in the ceramic samples, and the paraelectric
phase exhibited a linear dependence that described the law. Table 6 lists the results in groups.
The transition was of the first order, since Tc and T0 were not coincident. The Curie constant,
C, was of the order of 103 K in the case of an order–disorder-type transition; however,
displacive transitions take values 100 times higher, as demonstrated in the literature [56].
Because the Curie constant values for the different ceramics ranged from 104 to 105 K, the
transition was displacive in nature.
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Table 6. Curie–Weiss parameters for the investigated solid solution.

Composition Tc T0 C

x = 0.00 250.84 253.18 40.16 × 103

x = 0.04 276.57 237.68 40.00 × 103

x = 0.08 288.36 225.70 27.70 × 103

x = 0.33 285.48 257.57 15.92 × 103

Additionally, from Table 6, it is noted that the temperature, Tc, passed through a high
where x = 0.08 (Tc = 288.36) and then decreased where x = 0.33 (Tc = 285.48), highlighting
the impact of the replacement on the ferroelectric characteristics. J. Ravez [56] stated that
although the size of alkaline earth cations and the size of alkaline cations do not appear
to be directly related to the Curie temperature (Tc), an increase in distortion occurs. The
single lone pair of electrons in 5s2, which caused an increase in the distortion of the octa-
hedra, and the strongly polarized nonspherical cations in Ba2+ were both responsible for
the composition’s high Tc value (x = 0.08) [57]. As a result, the structural distortion and
the contribution of the W6+ cations to spontaneous polarization were increased; thus, the
substitution of Mo6+ in W6+ increased the Tc range for the ceramics of the compositions
where x ≤ 0.08 [58]. Further, the Mo–O bond’s deterioration also supported this increasing
trend. However, a slight decrease in the Curie temperature was observed in the compo-
sitions where x > 0.08; this behavior is explained by the fact that the pace at which the
Mo6+ cations occupied the octahedral sites surpassed that of the W6+ cations. Additionally,
ferroelectricity is more likely to arise when a metal cation is smaller. Other experimental
research on TTB-structured ferroelectric materials, with Ba2(1−x)Pb2.05xNa1−0.1xNb5O15 and
Pb2(1−x)GdxK1+xNb5O15, has been conducted [59–62]. In it, this process was explained by
changes in the polarization axis, which can also occur in the solution investigated in this
work, as well as reorientation of dipoles [55].

3.3.4. Study of the Conductivity in the Solid Solution

Furthermore, there was a significant increase in the loss coefficients for high temper-
atures, phase paraelectrics, and low frequencies, indicating the presence of conductivity
in the ceramics [63]. These anomalies in the dielectric loss curves near the transition tem-
perature were also noted during the study of the thermal variation of the real part of the
dielectric permittivity. Consequently, we can see that the loss decreased as the frequency
increased, as shown in Figure 7a–d.

Ionic conduction, which is caused by movement of charge carriers, can account for
this increase in conductivity at high temperatures and low frequencies [64]. The charge
carriers’ inability to adhere to excitation of the electric field at high frequencies accounts for
conductivity’s diminishing tendency at these frequencies [65].
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4. Conclusions

The crystalline phases of the Ba0.54Na0.46Nb1.29W(0.37−x)MoxO5 system were synthe-
sized through a solid-state route. The Rietveld method was used to simulate the XRD
data of various Ba0.54Na0.46Nb1.29W(0.37−x)MoxO5 samples, confirming that these samples
crystallize in a tetragonal structure with the P4bm space group, in addition to the presence
of a small amount of the BaMoO4 phase type (tetragonal with the I41/a space group).
Raman investigation results confirmed that substitution of W6+ (0.74 Å) with Mo6+ (0.73 Å)
prompts the formation of the secondary phase, BaMoO4. The dielectric measurements of
these ceramics across a wide range of temperatures (from 25 ◦C to 550 ◦C) and frequencies
(from 20 Hz to 1 MHz) led to the observation of a transition from the ferroelectric phase
to the first-order paraelectric phase. This investigation demonstrated a decrease in ε′max
due to the substitution of W6+ with Mo6+ at a certain frequency. This dielectric study also
allowed us to analyze under study the evolution of the system according to the substitu-
tion. The Curie–Weiss law’s parameters brought to light the examined system’s behavior,
which shifted from a displacive-type transition to an order–disorder-type transition. The
charge carriers’ inability to adhere to the excitation of the electric field at high frequencies
accounted for the conductivity’s diminishing tendency at these frequencies.
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