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Abstract: Microbial infections present a challenging arena to the modern world. Traditional antibiotics
are now familiar to microbes. To counter this microbial familiarity, a novel approach is a nanoparticle-
based drug delivery system that exhibits promising results and overcomes these problems. This
study was conducted to explore the efficacy of silver nanoparticles (AgNPs) by utilizing stem bark
extract of Sterculia diversifolia followed by physicochemical characterization including ultraviolet-
visible spectrophotometry (UV-Vis), X-ray diffractometer (XRD), scanning electron microscopy (SEM),
transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy. The UV-Vis
characteristic spectral peak was recorded at 430 nm. XRD confirmed the crystalline structure of
AgNPs, while FTIR confirmed phytochemicals in their capping, stabilization, and synthesis of AgNPs.
SEM devised the particle size range of 100 nm at 30,000× magnification. TEM showed nanoparticles
morphology, which is spherical in nature, while obtained nanoparticles were 100 nm in size. The
antibacterial activity of synthesized NPs showed significant action against S. aureus and P. aeruginosa.
Similarly, crude extract and n-hexane fraction showed maximum zone of inhibition. Promising results
suggest that stem bark extract AgNPs of Sterculia diversifolia can be studied further for microbial
mechanisms as well as formulation-based studies.

Keywords: green synthesis; silver nanoparticles; crude extract; antibacterial; treatment

1. Introduction

Green synthesis is a more reliable and economical way to synthesize metal nanoparti-
cles. It is becoming increasingly important due to its simplicity, cost-effectiveness, stability,
less time consumption, non-toxic by-products, and eco-friendliness [1]. Because of issues
related to large amounts of energy consumed, the release of toxic and harmful chemicals,
and the use of complex equipment and synthesis conditions, physical and chemical synthe-
sis methods are gradually being replaced by green synthesis methods [2]. Green materials
(e.g., reducing agents) contain proteins and polyphenols that can reduce metal ions (Ag+)
to a lower valence state, resulting in higher quality than chemically synthesized metal
nanoparticles [3,4]. Polyphenols and proteins could be used as reductants to react with Ag+

ions and as scaffolds to direct silver nanoparticle formation in the solution [5]. A literature
survey revealed that metal nanoparticles are the most widely studied type of nanoparticles
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because they are easy to synthesize. Predominantly, these NPs have a wide range of ap-
plications in medical sciences, i.e., antibacterial, targeted drug delivery, and many others.
Gold, platinum, palladium, and silver are some of the commonly studied metal-based
nanoparticles [6]. Silver nanoparticles (AgNPs) are one of the interesting metal-based NPs
with numerous applications in health and medicine. Silver possesses strong antibacterial
properties and is toxic to cells. Silver damages the bacterial cell wall, inhibits bacterial
growth, and disrupts cellular metabolism as a consequence of the interaction between
Ag ions with DNA and proteins inside bacterial cells [7]. This Ag ion interaction inhibits
protein synthesis, reduces membrane permeability, and ultimately results in death. AgNPs,
as compared to silver, are chemically more reactive. Therefore, Ag nanoparticles manifest
potent antibacterial capabilities [8]. Several methods are available for the synthesis of
AgNPs; an easier and more economical approach is chemical reduction [9]. Silver salt and a
reducing agent (sodium borohydride or sodium citrate) are required in this method. How-
ever, other chemicals used in the process may adsorb reducing agents and organic solvents
on the surface of the material, which is detrimental. Therefore, an environment-friendly
method is desirable [10].

The use of medicinal plants is not restricted to the developing world. Commercially
prepared herbal products are in use by developed nations as well. Worldwide, phy-
tomedicines received a boost when the World Health Organization encouraged the use of
traditional plant-based medicines to achieve better health care [11]. The practice of using
plant-derived medicines has become extremely popular in the USA and Europe, with the
phytomedicine industry in the USA earning $1.5 billion annually and the European market
nearly three times as much [12]. The therapeutic use of about 1500 plants is widespread in
European territory, including Albania, Croatia, Bulgaria, France, Germany, Hungary, Spain,
Poland, and the UK. Medicinal plants are extensively utilized in Maltese island in everyday
life as part of folk medicinal remedies [13]. Plant-based remedies are extensively used in
the folk medicine systems of Brazil, Africa, and Asia [14].

The Sterculiaceae family was comprised of 60 genera and 1500 species belonging
to the tropical as well as sub-tropical region [15]. This family is a source of bioactive
constituents of various chemical classes, e.g., polyphenols, flavonoids, glycosides, alka-
loids, steroids, terpenoids, triterpenes, saponins, sterols, apigenins, tannins, essential oils,
proteins, carbohydrates, and proteins [16,17]. Medicinally, Sterculia diversifolia bears antibac-
terial, anti-glycation, anthelmintic, cytotoxic, immunomodulatory, insecticidal, larvicidal,
leishmanicidal, and antioxidant activity [18–21]. Various secondary metabolites have been
reported from Sterculia diversifolia, e.g., Gossypetin, taxifolin, methyl 4-hydroxycinnamate,
and β-sitosterol-D-glucoside [18]. As mentioned above, Sterculia diversifolia is reported
for antibacterial activity, so Sterculia diversifolia-based silver nanoparticles may also possess
significant antibacterial potential. The literature review showed no previous reports on the
investigation of the antibacterial activity of the crude extract silver nanoparticles to date.
The current study will investigate the synthesis of silver nanoparticles and the antibacterial
potential of crude extract AgNPs of Sterculia diversifolia to evaluate the plant for its folk use.

2. Materials and Methods
2.1. Materials

Blood agar, Eosin-Methylene Blue, MacConkey Agar, Mannitol Salt Agar, and Nutrient
agar (Sigma Aldrich, St. Louis, MO, USA). n-hexane and methanol were obtained from
Musaji Adam and Sons, Pakistan. Tetracycline, levofloxacin, ciprofloxacin, imipenem,
amikacin, and gentamicin (Dr. Reddy’s, API Suppliers, Srikakulam, India), grinder
(Moulinex, Paris, France) and weighing balance (Shimadzu Corporation, Kyoto, Japan),
vortex mixture (Static mixer corporation, Chicago, IL, USA), rotary evaporator (Hahnshin
Scientific Co., Bucheon, South Korea).
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2.2. Plant Collection and Taxonomic Identification

The plant was collected from the botanical garden of Pakistan Forest Institute, Pe-
shawar, Pakistan. A specimen was deposited at the botany department herbarium, Uni-
versity of Peshawar, with a reference number Bot.20098, PUP. The freshly collected plant
material was treated with water and dried beneath shade at room temperature for 21 days,
which resulted in dried plant material. The dehydrated plant material was pulverized into
powder form by means of a mechanical grinder for further processing [19,20].

2.3. Preparation of Extract

After grinding to powder, the plant material was macerated for two weeks with solvent
(hydro methanolic: 90%), followed by filtration. The crude extract was concentrated using
a rotary evaporator at 40 ◦C [22]. The crude extract obtained was 950 g. The crude extract
was further fractionated (i.e., n-hexane, aqueous).

2.4. Samples collection

The urine samples were collected from UTI-positive patients from Hayatabad Medical
Complex Peshawar and shifted to the Microbiology Research Laboratory of Abasyn Uni-
versity Peshawar. Patients were instructed regarding sample collection. The mid-stream
urine was collected in the morning time using a sterilized plastic container. Samples were
collected from those patients having signs and symptoms of a UTI and not on antibiotic
therapy.

2.5. Isolation and Identification

The microorganisms were isolated from the clinical samples through pure culture
techniques, including selective, differential, and complex media, i.e., Mac Conkey agar,
Nutrient Agar (N.A), Mannitol Salt Agar (MSA), blood agar, and Eosin Methylene Blue
(EMB). The samples were shifted to the Microbiology Laboratory of Abasyn University
Peshawar in a sterile condition for preservation and further processing, such as culturing,
identification, and characterization of organisms. The urine specimen was inoculated with
the help of a swab in the four quadrant method on MacConkey agar plates, nutrient agar
plates, blood agar, and mannitol salt agar. The streaked plates were then incubated at 37 ◦C
for 24 h. The bacterial growth was later Gram stained. Bacterial isolates were characterized
according to standard microbiological procedures. Isolates were identified through colony
morphology and biochemical tests, i.e., catalase test, citrate utilization test, coagulase test,
indole test, oxidase test, triple sugar iron agar, and urease test.

2.6. Gram Staining

Gram staining and cellular morphology of isolated bacteria were performed using
a compound microscope. Smear was prepared on a clean slide by taking 24 h fresh
cultures using inoculating needle, followed by drying, and then heat fixed. The smear
was successively swamped with crystal violet dye, washed under tap water, application of
Gram iodine for one minute, and again washed under tap water. Ethyl alcohol was used as
decolorizing agent, followed by tap water washing. Then, the smear was counter-stained
with safranin for one minute and washed under tap water. The prepared slides were
observed under a compound microscope at 40× and 100× using immersion oil.

2.7. Antibacterial Activity of Crude Extracts against S. aureus and P. aeruginosa

The agar well diffusion method was used as an antibacterial assessment of Sterculia
diversifolia extracts against MDR isolates (Pseudomonas aeruginosa and Staphylococcus aureus).
The bacterial lawn was prepared using a glass spreader on Mueller Hinton agar media
plates. After the preparation of the bacterial lawn, 5 wells were bored, having 6 mm
diameter, using a sterilized cork borer. Antibiotic discs were used as a positive control.
Among five wells, two were used for the negative control, i.e., distilled water and DMSO,
while the remaining wells were used for aqueous, n-hexane, and methanol extracts of
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Sterculia diversifolia. A lid was used to cover the plates while edges were adhered with
parafilm and then incubated at 37 ◦C for 24 h. A zone of inhibition was employed to assess
the efficacy of Sterculia diversifolia extracts against isolated test organisms [23].

2.8. Synthesis of Silver Nanoparticles

A total of 20 mL of filtered Sterculia diversifolia stem bark Aqueous extract and 20 mL
of 1 mM AgNO3 solution were mixed in a flask to form a complete solution (pH 8.5–9.5).
The mixture was centrifuged at 3000 rpm for 15 min. The precipitate was washed with
distilled water to remove impurities and then kept in a dark shade for drying at 25 ◦C
to avoid photoactivation of reduced silver ions. The dried precipitate obtained was then
ground into a powder form until used [24].

2.9. Characterization of AgNPs

Characterization of AgNPs was carried out with UV-Visible spectroscopy (UV 1902
PC, UV-Vis Spectrophotometer, Shimadzu, Columbia, USA), SEM (JSM5910, JEOL, Tokyo,
Japan), XRD (JDX 3532, Tokyo, Japan), and FTIR (IRAffinity- 1S, Shimadzu, Manchester,
United Kingdom). UV-Vis spectroscopy absorption peaks in visible and ultraviolet regions
of the spectrum were used to determine the characteristic λmax. The determination of
the concentration of an analyte in a solution follows the Beer-Lambert law, which could
be carried out by specific wavelength, calculating the absorbance. In SEM analysis, a
thin film of the sample was prepared by using a carbon-coated copper grid. Extra water
was absorbed by blotting paper, and the film was allowed to dry under a mercury lamp
for 5 min over the SEM grid. TEM was operated with an acceleration voltage of 100 kV,
and the films on the TEM grids were allowed to stand for 3 min. The extra solution was
removed, and the grid was allowed to dry before measurement. FTIR spectrum was used
to recognize different functional groups, while X-ray diffraction determined the crystalline
or amorphous nature of AgNPs.

2.10. Preparation of AgNP-Coated Antibiotic Discs

A stock solution of AgNPs (20 µg/µL) was prepared by dissolving 20 mg of AgNPs
residue per mL of distilled water. A total of 5 µL (100 µg AgNPs) from the stock solution
was poured on antibiotic discs within Petri plates and then allowed to dry at 50 ◦C for
20 min. The method of AgNPs coating was repeated for each type of antibiotic disc [25].

2.11. Disc Diffusion Assay

Both AgNPs coated and uncoated antibiotics were assessed against MDR bacterial
isolates using a standard Kirby Bauer disc diffusion assay [26]. The bacterial lawn was
prepared on Muller Hinton agar plates, followed by the application of AgNPs coated and
uncoated antibiotic discs and then incubation at 37 ◦C for 24 h. After incubation, the
potency of AgNPs coated and uncoated antibiotics were determined from the zone of
inhibition.

2.12. Ethical Statement

Ethical approval of the study was obtained from the ethical committee of HMC,
Peshawar, Khyber Pakhtunkhwa, Pakistan, under reference No. 47/EC-21/HMC dated 16
September 2021.

2.13. Statistical Analysis

GraphPad Prism V.6.0 was used for statistical analysis. Mean and S.E.M. was imple-
mented, and statistically, p < 0.05 values were taken into consideration as significant. The
analysis of variance was used to determine statistical significance, followed by a control
group with an experimental group.
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3. Results
3.1. Synthesis of Silver Nanoparticles

The initial color of the Sterculia diversifolia aqueous stem bark extract was changed from
light green to yellowish-brown on mixing with 2 mM AgNO3 solution. However, no further
change in color was noted after 24 h of incubation. This indicates a high concentration of
flavonoids, phenols, and other phytochemicals may be involved in the bio-reduction of Ag
to AgNPs.

3.2. Characterization of Nanoparticles
3.2.1. UV-Vis Spectroscopic Confirmation

Upon UV-Visible spectroscopy, AgNPs characteristic peak was obtained at 430 nm,
whereas silver nitrate and aqueous fraction did not show any characteristic peaks, as shown
in Figure 1.
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Figure 1. UV-visible spectra of synthesized AgNPs showed a highly intensive peak of silver. A strong
peak at 430 nm is evident.

3.2.2. Scanning Electron Microscopy and Transmission Electron Microscopy

SEM micrograph confirmed mono-dispersed and irregular morphology of AgNPs,
with 100 nm particle size at a magnification of 30,000×. SEM declared Sterculia diversifolia
aqueous extract as a strong reducing agent and resulted in irregularly shaped AgNPs, as
shown in Figure 2a.

TEM image of silver nanoparticles derived from Sterculia diversifolia aqueous extract
was shown in Figure 2b. These nanoparticles’ morphology was spherical in nature. The
obtained nanoparticles were 100 nm in size.
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Figure 2. SEM micrograph (a) and TEM micrograph (b) of synthesized AgNPs.

3.2.3. X-ray Diffraction Method

XRD spectrum revealed that the sample was a finely grounded and homogenized
substance. Similarly, XRD analysis declared the crystal-like nature of AgNPs (Figure 3). A
total of 4 distinct diffraction peaks obtained at 2θ values of 38.24, 44.32, 64.48, and 77.44
could be indexed to the (823), (293), (223), and (337) reflection planes of cubic structure.
Additional peaks other than Bragg peaks were observed at 23.64 and 32.32 θ, which were
indicative of organic contaminants.
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3.2.4. FTIR Analysis

For further characterization, FTIR analysis of an aqueous extract of S. diversifolia
and synthesized AgNPs was carried out, and different peaks of the FTIR spectrum were
compared, representing amines, carboxylic acids, and alkanes. These imperative functional
groups are vital for the synthesis, capping, and stabilization of AgNPs. Peaks in the FTIR
spectrum of aqueous extract of S. diversifolia (control) at 3411.5, 2932.6, 1749, 1637.6, 1386.5,
1146.5, 1077, 829.5, and 642.4 cm−1 showed interrelation of different functional groups
such as alcohol, alkanes, ester, amide, alkanes, carboxylic acid, aliphatic amines, or phenol
and amines, respectively. After reacting with silver nitrate, the new peaks were detected
at 3420.8, 2927.7, 1742.9, 1626, 1383.3, 1141.1, 1076.3, 824.5, and 651.3 cm−1, indicating
carboxylic, hydroxyl, and amide groups within the aqueous extract of S. diversifolia, which
played a role in the synthesis of AgNPs, as shown in Figure 4.
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Figure 4. FTIR analysis of an aqueous extract of S. diversifolia and synthesized AgNPs.

3.3. Isolation and Identification of Bacterial Species

The number of isolated species of Pseudomonas aeruginosa and Staphylococcus aureus
from UTI patients was ten and twenty, respectively, as shown in Table 1. Table 2 summa-
rizes the biochemical and morphological characteristics of the bacterial species identified.
S. aureus culture was characterized by golden yellow, circular, soft, convex, and shiny
appearance. Further testing identified it as Gram-positive, catalase-positive, Lac AG, dex-
negative, cit-positive, and negative, urea-positive, and TSI slant-negative. P. aeruginosa
culture was characterized by greenish blue, low convex, and shiny rod-like appearance.
Further testing identified it as Gram-negative, catalase-positive, Lac-negative, dex-negative,
cit-positive, and negative, urea-positive, and TSI slant-positive.

Table 1. Percentage-wise distribution of bacterial species Pseudomonas aeruginosa, and Staphylococcus
aureus isolated from UTI patients.

Sr. No. Identified Species No. of Isolated Species (n) Percentage

1 P. aeruginosa 10 33.3%
2 S. aureus 20 66.7%

Table 2. Bacterial species are identified based on biochemical and morphological characteristics.

Sr. No. Culture
Characteristics

Gram
rxn Cat Lac Dex Cit Ind Urea TSI

Slant/Butt
Species

Identified

1 Golden yellow, circular,
soft, convex, shiny + + AG − + − + − S. aureus

2 Greenish blue low
convex shiny, rod − + − − + − + + P. aeruginosa

+ = Positive reaction; − = Negative reaction; d = Variable reaction; Cat = Catalase; lac = lactase; Dex = Dextrose;
Cit = Citrate utilization; Ind = Indole production; Urea = Urease production, TSI = Triple sugar iron; A = Acidic;
NA= Not applicable; A/NC = Acid/no color change.

3.4. Antibacterial Activity of AgNPs

The action of coated AgNPs and an uncoated antibiotic against P. aeruginosa and
S. aureus test isolates are given in Table 3 and Figure 5. Against S. aureus, the highest potency
was exhibited by tetracycline (62.5%), followed by levofloxacin (38.8%), meropenem (37.5%),
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gentamicin (36.3%), ciprofloxacin (22.2%), amikacin (19%), and imipenem (12%). In the
case of P. aeruginosa, tetracycline demonstrated 100% potency, followed by meropenem
(33.3%), gentamicin (30.7%), ciprofloxacin (18.5%), imipenem (18.2%), levofloxacin (15%),
and amikacin (15%).

Table 3. The activity of Coated and uncoated Antibiotic against test S. aureus and P. aeruginosa Isolates.

Antibiotics Activity Measured in mm S. aureus P. aeruginosa

Uncoated 8 mm 1 mm
Tetracycline AgNPs coated 13 mm 11 mm

Inc. % Potency 62.5% 100%

Uncoated 18 mm 20 mm
Levofloxacin AgNPs coated 25 mm 23 mm

Inc. % Potency 38.8% 15%

Uncoated 8 mm 6 mm
Meropenem AgNPs coated 11 mm 8 mm

Inc. % Potency 37.5% 33.3%

Uncoated 11 mm 13 mm
Gentamicin AgNPs coated 15 mm 17 mm

Inc. % Potency 36.3% 30.7%

Uncoated 18 mm 19 mm
Ciprofloxacin AgNPs coated 22 mm 22 mm

Inc. % Potency 22.2% 15.8%

Uncoated 21 mm 20 mm
Amikacin AgNPs coated 25 mm 23 mm

Inc. % Potency 19.0% 15.0%

Uncoated 25 mm 22 mm
Imipenem AgNPs coated 38 mm 26 mm

Inc. % Potency 12.0% 18.2%
AgNPs = Silver nanoparticles; mm = Millimeter.
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Figure 5. The activity of coated and uncoated antibiotic against test S. aureus and P. aeruginosa isolates;
(a) Activity of AgNPs against S. aureus (b) Activity of AgNPs against P. aeruginosa (c) Activity of
AgNPs coated Antibiotics against S. aureus (d) Activity of non-coated Antibiotics against S. aureus
(e) Activity of AgNPs coated Antibiotics against P. aeruginosa (f) Activity of AgNPs non-coated
Antibiotics against P. aeruginosa.

3.5. Anti-Bacterial Activity of S. diversifolia Stem Bark Crude Extract against
Staphylococcus aureus

Methanol crude extract showed 22 mm, 20 mm, and 23 mm inhibition zone against
S. aureus isolate 1, 2, and 3, while n-hexane crude extract showed 17 mm, 16 mm, and
19 mm inhibition zone against S. aureus isolates 1 to isolate 3, respectively. The aqueous
crude extract of S. diversifolia revealed 10 mm, 11 mm, and 13 mm inhibition zones against
S. aureus isolate 1 to isolate 3, respectively, while ciprofloxacin was used as a positive
control, which showed 22 mm, 24 mm, and 25 mm inhibition zone against isolate 1 to 3,
respectively. The negative control (DMSO) showed no antibacterial activity against any
isolate of S. aureus, as shown in Figure 6.
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Figure 6. Antibacterial activity of S. diversifolia extracts against S. aureus at 100 µL concentration.
ANOVA was applied before Dennett’s post hoc analysis. *** p < 0.001 compared to negative control
group.

3.6. Anti-Bacterial Activity of S. diversifolia Stem Crude Extract against P. aeruginosa

Methanol crude extract showed 22 mm, 23 mm, and 21 mm inhibition zones against
P. aeruginosa isolate 1, 2, and 3, while n-hexane crude extract showed 20 mm, 21 mm,
and 19 mm inhibition zone against P. aeruginosa isolates 1 to 3, respectively. The aqueous
crude extract of S. diversifolia revealed 12 mm, 14 mm, and 15 mm inhibition zones against
P. aeruginosa isolate 1 to isolate 3, respectively. Ciprofloxacin was used as a positive
control, which showed 23 mm, 24 mm, and 22 mm inhibition zones against isolate 1 to 3,
respectively. The negative control (DMSO) showed no antibacterial activity against any
isolate of P. aeruginosa, as shown in Figure 7.
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4. Discussion

MDR bacterial infections are very common all over the world, threatening public
health and treatment strategies [27]. The development of new antibacterial agents, along
with the safe use of antibiotics and other antimicrobial agents, played an important role in
controlling antibiotic resistance. Discouraging empirical antibiotic therapy and optimized
treatment duration could help reduce antibiotic resistance phenomena [28]. Methicillin-
Resistant Staphylococcus aureus (MRSA) is one such strain of S. aureus that has developed
resistance to β-lactam antibiotics, including methicillin and oxacillin. The market available
vancomycin is still a magic bullet against MRSA [29]. However, resistance is more prevalent
in different localities against this magic bullet [30,31].
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In the same manner, Pseudomonas aeruginosa is a Gram-negative bacterium infecting hu-
mans, especially immune-compromised patients. P. aeruginosa has demonstrated resistance
against different antibiotics belonging to the β-lactam group, even aminoglycosides and
quinolones [32]. The emergence of antibiotic-resistant strains, and more fatal, is extensively
drug resistance (XDR) [33,34]. Apart from conventional antibiotics, another way to counter
this global resistance is the use of an advanced drug delivery system. One of which is a
nanotechnology-based approach that relies on small, sophisticated particles of <100 nm
size to achieve a better drug response [35]. Amongst various modalities of nanoparticles
targeted towards microbes, silver-containing formulations are common. However, the nano
approach toward safe, efficacious, potent, and targeted formulation is still in the pooling
stage. From this reservoir, one of the hit formulations will be picked up [36].

Amongst numerous approaches for nanoparticle synthesis, a nature-based approach
known as the biological method is considered to be safe and efficacious as compared to
chemical and physical techniques. Biological synthesis incorporates naturally occurring
reducing agents, i.e., bacteria, fungi, plant extracts, yeast, enzymes, proteins, peptides,
polysaccharides, etc. Bio-inspired green synthesis of silver nanoparticles using plant extract
is considered a reliable method [36–40].

During this study, the antibacterial activity of synthesized NPs showed significant ac-
tion against S. aureus and P. aeruginosa, which is almost comparable to the literature. AgNPs
possess outstanding bactericidal properties against a wide variety of pathogenic bacterial
species [41]. The application of AgNPs in catalysis, drug administration, antimicrobial
activities, electronics, and different biological systems make them eco-friendly [42]. The
biosynthesis of AgNPs utilizes actinomycetes, bacteria, fungi, and different parts of medici-
nal plants, such as flowers, leaves, and fruits [43]. The size, shape, and stability of AgNPs
largely depend on the method of synthesis and the temperature of the manufacturing
process [44].

Our synthesized AgNPs were monodispersed with irregular 100 nm particle size
morphology. This is an ideal size for nanoparticles used for human/medical use, as
reported in the literature [45,46]. Plant extract-based NPs are free from pollutants, with a
defined size and morphology as compared to chemically synthesized nanoparticles [46,47].
That is the reason we selected the green synthetic approach, and it was fruitful, evident
from our results. Characterization via FTIR analysis identified newly formed functional
groups of carboxylic acid, hydroxy, amide, etc. These functional groups were considered
important for our AgNPs and congruent with the available literature [48].

The cubic crystallographic nature of our AgNPs is another ideologic feature [49].
Cubic nanoparticles offer a large contact area between the nanoparticle and the reference
surface [50]. This may increase the pharmacological action of these nanoparticles, pro-
ducing more potent action. As in our experiments, the antibacterial action of synthesized
AgNPs has been increased. The surface-volume ratio, as well as the curvature dimension of
nanoparticles, will determine their cellular behavior [51]. The formation of cubic nanopar-
ticles enables them for better biodistribution and cellular uptake or internalization. Such
features make these types of nanoparticles achieve unmet clinical needs. Due to this high
aspect ratio, cubic nanoparticles achieve a larger extent and faster rate of absorption than
other lower aspect ratio-carrying nanoparticles (spherical) [52].

Against S. aureus, the potency of tetracycline was increased by 62.5%. It is worth to be
noticed that the potency of protein synthesis inhibitors is increased by our AgNPs. There-
fore, the possible mechanism looks to be synergistic action but is subject to confirmation in
the lab. In the case of P. aeruginosa, the same synergistic effect by tetracycline demonstrated
100% potency amongst all tested antibiotics. Therefore, it seems that our hypothesis is
probably strong. It is also notable that the potency of all antibiotics was potentiated by our
synthesized AgNPs.
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5. Conclusions

In the current study, green synthesis (eco-friendly and non-toxic) of AgNPs was
achieved using plant extract of Sterculia diversifolia that act as a reducing agent. The
synthesis of AgNPs was characterized by different techniques, such as UV-Visible, FT-IR,
SEM, TEM, and XRD analysis. The green synthesized AgNPs were used to evaluate the
antibacterial activity against S. aureus and P. aeruginosa, showing promising activity in
comparison to positive control. Our study provides preliminary data that AgNPs can
inhibit bacterial growth. However, further studies are required to show the efficacy of
AgNPs.
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