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Abstract: General hot-plate heating is used to form a crystal structure of films; however, how to
achieve a homogeneous and regulated crystal formation will be a crucial challenge in the future.
In this study, based on perovskite-series materials, organic methylamine lead trioxide (MAPbI3)
films doped with inorganic lead iodide (CsPbI3) quantum dots (QDs) are treated using the rapid
thermal annealing (RTA) process in argon gas to break the crystallization barrier. These RTA-treated
perovskite quantum dot (PQD) films at various temperatures of 100–160 ◦C are detected using X-ray
diffraction, X-ray spectroscopy, and absorbance measurements to investigate their structural and
optical properties as well as their binding states. The experimental results demonstrate that the
PQD film annealed at 120 ◦C has optimized characteristics, revealing better crystallinity and the
lowest content of oxygen atoms (31.4%) and C-O-C bonding (20.1%). A too-high RTA temperature,
more than 140 ◦C, causes severe degradation with the existence of PbI2. A proper RTA process, an
alternative to normal heating and annealing, can effectively inhibit the occurrence of degradation
and even usefully improve the performance of PQD films.

Keywords: perovskite; annealing; quantum dots; ligand-assisted reprecipitation

1. Introduction

In the past few years, due to their excellent properties, including long diffusion
length, long carrier life, adjustable band gap, and high absorption coefficient [1–5], organic–
inorganic halide perovskite-based materials have received much attention, and are being
further applied to numerous optoelectronic devices [6–8]. One of the most famous op-
toelectronics is perovskite solar cells (PSCs), first proposed by Akihiro Kojima et al. in
2009, owing to their sharply increasing power conversion efficiency (PCE) from 3.8 to
25.5% in 2022 [9–11]. The advantage of easy fabrication with low cost also makes PSCs
more competitive than conventional silicon solar cells [12]. The general preparation of
the film consists of spin-coating the configured precursor solution onto the substrate and
then achieving a crystalline structure through annealing the substrate at a specific and
desired temperature for a period of time. Annealing as a maintenance process in given
conditions is not only used to evaporate the organic polar solvent, but also drive the
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crystalline transformation of halide perovskite-based materials, which can control the opti-
cal, morphological, and structural properties of films. Many annealing methods, such as
physical annealing, thermal annealing, photo-annealing, and solvent annealing, have been
proposed and developed to shorten the annealing treatment performance and improve
crystal quality. However, the presence of a defect state in halide perovskite-based materials
usually leads to a shorter lifetime of photoluminescence [13,14] due to the free-charge
trapping induced by inner crystallite boundaries. Feng Xian Xie et al. reported that a
denser methylammonium lead halide (CH3NH3PbI3, MAPbI3) film via one-step coating
was determined after thermal annealing for three hours, suppressing defect formation,
and then showing an increased current density [15,16]. Nevertheless, annealing for an
excessive time causes the decomposition of MAPbI3 and the extra crystallization of lead
(II) iodide (PbI2) as well as crystal fragmentation [17]. In addition, the degradation caused
by moisture and oxygen gas becomes a crucial issue as the MA anion is hygroscopic [18].
The oxygen-induced photo-degradation of MAPbI3 results in decreased stability [19–21].
Philippe et al. reported that in the absence of aqueous oxygen, degradation commonly
occurred at an ambient temperature of 100 ◦C [22].

Obviously, the decrease in oxygen atoms in MAPbI3 films contributes to the inhibition
of oxygen defect formation and lowers the degradation with the MA anion. In many
studies and our previous research [23,24], the temperature-dependent crystallization of
films usually comes from the hot plate of physical annealing, where its heat transfer is
in a single direction from the substrate to the film. This asymmetrical heating and its
surrounding lower-temperature environment, as well as atmospheric gas, can result in
a problematic crystalline barrier and further crystallization inhomogeneity, as shown
in our previous paper [23,25,26], leading to the uncontrollable growth of the structure.
In addition, thermal annealing and rapid thermal annealing (RTA) as alternative heat
transfer occur in all directions [27]. During thermal annealing, atoms migrate in the crystal
lattice and the number of dislocations decreases via the diffusion induced by differential
concentration, leading to a change in ductility and hardness. Typically, annealing is
carried out to relieve stress, increase softness, ductility, and toughness, and/or produce
a specific microstructure. Any annealing cycle consists of three stages: heating to the
desired temperature, holding or soaking at that temperature, and cooling (usually to room
temperature). The processing time and annealing temperature, as well as the processing
temperature are important parameters that define the thermal annealing cycle. Among the
thermal annealing methods, RTA is also an effective approach to simultaneously accelerate
the breaking of the crystallization barrier and suppress oxygen defect formation. Compared
to annealed- [28] and RTA-treated [29] metal oxide materials, few studies have proposed
the RTA-induced crystallization of organic–inorganic halide perovskite-based materials.
Meanwhile, after the precursor solution is spun onto the film, this perovskite film starts
out in a metastable state with complex internal crystalline phases that can be tuned into
intermediate phases using polar solvent via RTA. This result is not only mainly induced by
the annealing type, but also influenced by many parameters, such as heat flux, temperature,
pressure, time, process gas, raised temperature rate, and cooling type, which are worth
investigating in the mechanism of crystallization.

In our past investigation of hot-solvent injection methods [23,25,26], ligand-assisted
reprecipitation was mainly used to prepare quantum dots (QDs), due to its advantages
such as its simple procedure, lower processing temperature, and flexibility in atmospheric
gas. However, most studies still use general hot-plate heating to form a crystal struc-
ture. How to achieve a homogeneous and regulated crystal formation will be a crucial
challenge in the future. In this paper, to enhance structural stability and optical prop-
erties, the concept of achieving cation exchange in an MAPbI3 solution [30–32] is used
by doping perovskite-based inorganic quantum dots (QDs) with CsPbI3 synthesized via
ligand-assisted reprecipitation preparation [26,33,34]. These innovative perovskite quan-
tum dots (CsPbI3-doped MAPbI3, PQD) films are processed via rapid annealing at different
temperatures in the range of 100–160 ◦C. This RTA process can induce the removal of
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solvent to build a supersaturating condition, accelerating perovskite-based nucleation
and enhancing the density of the nucleus. To further keep the annealing process from
causing more chemical reactions, inert argon gases are used as process gases. The effects
of temperature on the optical, structural properties, and oxygen content of PQD films
are investigated. The variation in oxygen content with the increasing annealing tempera-
tures is presented. Finally, the inhibition of the oxygen content of PQD films via RTA is
demonstrated and discussed.

2. Materials and Methods
2.1. Materials

Table 1 shows all the materials used, which were not further treated. According to
our previous investigations [23,25,26], the preparation was carried out in a glove box with
moisture and oxygen gas values below 1 ppm.

Table 1. Information about the materials used.

Materials Value Units Note

methylammonium iodide (CH3NH3I) 198.75 mg
cesium iodide (CsI) 20.78 mg 99.9%

lead(II) iodide (PbI2) 576.25 mg 99.9985%
toluene (C7H8) 20 mL anhydrous 99.8%

hexane analytical reagent, 97%
oleyl amine (C18H35NH2, OAm) 2.4 mL 90%

dimethyl sulfoxide ((CH3)2SO, DMSO) 0.5 mL 99%
gamma-Butyrolactone (C4H6O2, GBL) 0.5 mL 99.9%

dimethylformamide (DMF) 10 mL

2.2. Synthesis of CsPbI3 QDs and CH3NH3PbI3 Solution

As shown in Figure 1, OAm, 0.4 mmol CsI, 0.4 mmol PbI2, and DMF solvent were
mixed and stirred continuously for 10 s to prepare a precursor solution of quantum dots.
Then, 1 mL of the precursor solution of quantum dots was added to stirring toluene for
10 s to obtain a crude solution, which was centrifuged at 11,000 rpm for 15 min at an
ambient 10 ◦C. The precipitate was collected and then dispersed in hexane, and the above
centrifugation process was repeated twice.
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Both DMSO and GBL solvents were mixed and then added to the powder mixture of
CH3NH3I and PbI2 to form the organic halide perovskite-based solution of CH3NH3PbI3.
This solution was stirred for one day at 300 rpm in a nitrogen-filled glove box.

2.3. Preparation of Thin Films

The glass substrates were cleaned in an ultra-sonicated system with the deionized
water, acetone, and isopropyl alcohol, each for 5 min. The substrate was dried with nitrogen
(N2) gas before surface treatment with oxygen plasma for 2 min.

The PQD films were prepared by spin-coating the mixed solutions of 1 mL CsPbI3 QDs
and 1 mL CH3NH3PbI3 in a nitrogen-filled glove box. First, 50 µL of the mixed solution
was dropped onto the glass substrate, and then was spin-coated in two-steps, with a setting
of 1000 rpm for 10 s and then 5000 rpm for 20 s, to ensure the uniform coverage of solution
and the film thickness, respectively. Toluene as an anti-solvent method was dropped during
spinning in the second step, after 15 s. Thereafter, the film formation was heated using a
hot plate in a N2 environment at 80 ◦C for 15 min.

2.4. Rapid Thermal Annealing (RTA) Process

The RTA treatment was performed at different temperatures, from 100 to 160 ◦C. The
process time and atmospheric gas of the RTA were 10 min and argon gas (Ar, 99.95%),
respectively. The temperature-raised mode and annealing time were set at 10 min. The
cooling mode was set to room temperature.

2.5. Characteristic Measurements

The optical properties of the films was detected using the ultraviolet/visible (UV/vis)
spectroscopy (HITACHI, U-3900, Tokyo, Japan) to obtain the absorption spectrum. To gain
the structural properties, the crystallite phases were measured using grazing incidence
X-ray diffraction (XRD), and the data were recorded using a Bruker D8 Discover X-ray
diffractometer (Bruker AXS Gmbh, Karlsruhe, Germany) The crystalline phases were
characterized at a fixed operating voltage of 40 kV and a fixed current of 40 mA. To
perform the chemical states and elemental composition of the films, X-ray photoelectron
spectroscopy (XPS, ULVAC-PHI 5000, Kanagawa Prefecture, Japan) was used with a Ver-
saProbe/Scanning ESCA Microprobe, equipping the microfocused Al Kα X-rays (26.4 W,
100 µm), and the analyzer scanned with an area of 500 × 500 µm2. The take-off angle of
the photoelectron was fixed at 45◦. Peak fitting imitating software (Origin85) was used
to distinguish the XPS peaks. All measurement procedures were carried out in a dark
atmospheric environment.

3. Results

Figure 2a shows the absorbance spectra of MAPbI3 and PQD films in the wavelength
range of 350–850 nm. A typical absorption peak at 750 nm is observed. The absorption
of MAPbI3 from 350 to 750 nm was enhanced after doping with CsPbI3 QDs. The reason
is due to the improved surface structure caused by the cation exchange [35]. Figure 2b
also demonstrates the absorbance spectra of PQD films treated with RTA at different
temperatures from 100 to 160 ◦C. It is found that in the wavelength of 600–850 nm, the
unchanged absorbance of samples shows that the RTA process effectively enhanced the film
quality. Compared to many investigations and our previous studies, this result suggests
that the degradation of PbI2 can be effectively managed using the RTA process. With
the increase in temperatures, the PQD films annealed at 120 ◦C, reaching a maximum
performance in the UV region of 350–500 nm due to the matched lattice arrangement
induced by small strain [36,37]. An obvious decrease in the absorbance of PQD films was
observed at 140–160 ◦C, which results from the degradation on the film surface, with visible
yellow spots which is similar to previous reports [38,39]. A too-high RTA temperature of
more than 140 ◦C causes the decomposition of films and even surface breaking.
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In Figure 3, the MAPbI3 and PQD films were analyzed using XRD at different anneal-
ing temperatures (100–160 ◦C). The main peaks of (110) and (220) are observed at 14◦ and
28◦ of 2θ, respectively [40,41]. A few minor peaks at (001) and (003) are observed at 12.7◦

and 38.7◦, respectively [42,43], which are usually identified as a PbI2 phase caused by the
degradation of MAPbI3 films. Some slight peaks at (113), (112), and (PbI2) in the range of
20◦–25◦ are determined as the intermediate phase during the crystallization process [39].
The decreased intensity of the main (110) peak of the MAPbI3 films induced by CsPbI3 QDs
is owing to the existence of a residual ligand (oleylamine) after doping [44], leading to a
decrease in the crystallinity of the films. This residual ligand can be effectively removed
via the RTA process, revealing the enhancement of the intensity of the (110) peak of the
RTA-treated PQD films at 100 and 120 ◦C. The decreased intensity of the (220) peak at
100 ◦C may possibly be due to the insufficient cation exchange with the lack of thermal
energy. Therefore, the temperature of 120 ◦C inhibits PbI2 formation, corresponding to
the weakened intensity of the (001) peak and resulting in the significant enhancement of
the (220) peak of the MAPbI3 films and the better crystallinity of PQD films. However,
the temperatures of 140 ◦C cause the sharply increased intensity of the (001) peak of PbI2.
The reason is attributed to the decomposition of MAPbI3 and CsPbI3 QD films. It is found
that the degradation of the PQD film annealed by the high temperature in an atmospheric
environment demonstrates PbI2 formation, which is consistent with the above description.
However, the existence of an oxygen atom is another reason to cause the degradation of
PQD films.

The chemical features and element compositions of RTA-treated PQD films at different
temperatures of 100–160 ◦C were investigated using XPS measurement. Figure 4 illustrates
the spectra of the O 1s core level in the range of 528–536 eV to research the oxidation of PQD
films induced by their hygroscopic nature. It is obviously found that a peak of the MAPbI3
film at 532.04 eV shifts to that of the higher binding energy of PQD films at 532.5 eV. This
shift of ~0.5 eV may be due to the residual ligands caused by crystalline defects in turn
bonding to oxygen atoms. It is clearly observed that with the increasing RTA temperatures
from 100 to 140 ◦C, there is a decrease in the shift to a lower binding energy at 531.9 eV
due to octahedral tilting after doping with cations, further stabilizing the structure and
promoting thermal stability [45]. A shift to a higher binding energy at 160 ◦C is owing to
the degradation of the surface of the PQD films, leading to the existence of the PbI2 phase,
which is in agreement with the XRD results.
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The contents of oxygen atom (at%) of all samples are also shown in Table 2. The
content of oxygen atoms after doping the CsPbI3 QDs into MAPbI3 exhibits the value from
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the highest at 64.3% to 42.8%. This highest value in MAPbI3 films is due to the degradation
induced by the light, temperature of the environment, and especially moisture, as well
as oxygen. However, the oxygen content of PQD film annealed at 120 ◦C displays the
lowest value of 31.4% and it gradually increases to 33.1% at 140 ◦C and 40.2% at 160 ◦C.
Thus, the severe degradation of PbI2 is induced by the RTA process at higher temperatures
than 140 ◦C. However, the ratio of carbon to oxygen (C/O) of PQD films demonstrates
carbon-containing bonding or substances, suggesting that the peak area of O 1s at different
temperatures demonstrates that there may be bonds of oxygen and carbon in the surface of
PQD films.

Table 2. The contents of oxygen atoms (at%) of all samples.

Samples MAPbI3
Films

PQD
Films

RTA-Treated PQD Films at Different Temperatures

100 ◦C 120 ◦C 140 ◦C 160 ◦C

Oxygen
Content

(at%)
64.3 42.8 36.8 31.4 33.1 40.2

Therefore, in order to understand the binding state of the oxygen and carbon atoms
in films, in Figure 5, the spectra of the C 1s core level of PQD films at different annealing
temperatures were detected (see Figure 5c,f). It is observed that these peaks are located at
~284 eV, despite there being an asymmetric shape observed near higher binding energies.
Thus, the peaks of C 1s are further deconvoluted into two major peaks, which are assigned
to 284.4 and 285.4 eV. These two peaks are typically presented as the bonding of C-C and
C-O-C, respectively [46,47], which is caused by the resulting oxidation of PQD films in the
atmospheric environment. The peak areas of the C-C and C-O-C bonding are calculated
in Table 3. It is observed that the doping with CsPbI3 QDs contributes to the decreased
content of C-O-C bonding, owing to the decreasing value from 49 to 31.8%. Meanwhile,
this value gradually decreases with the increasing RTA temperatures and shows the lowest
value of 20.1% as the RTA-treated PQD film is annealed at 120 ◦C. As for temperatures
higher than 120 ◦C, the values at 140 and 160 ◦C increase to 21.1% and then the highest,
46%. Therefore, this high temperature of 160 ◦C causes oxygen diffusion with a direction
from the film to the annealing atmosphere, which can be visibly observed as yellow crystals.
These results indicate that the appropriate annealing temperature of 120 ◦C can effectively
reduce the binding of oxygen to carbon in PQD films, further improving crystallinity.

Table 3. The peak area for the C-C and C-O-C bonding of all samples.

Bonding
(Peak Position)

Samples
MAPbI3

Films
PQD
Films

RTA-Treated PQD Films at Different Temperatures

100 ◦C 120 ◦C 140 ◦C 160 ◦C
C-C

(284.4 eV) 50.9% 68.1% 74.7% 79.8% 78.8% 53.9%

C-O-C
(285.4 eV) 49.0% 31.8% 25.2% 20.1% 21.1% 46.0%
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To investigate the effects of the RTA temperatures on the lead (Pb) and halide sub-
stances, Figure 6a illustrates the full-wide scan of the Pb 4f core level of all samples. The
characteristic binding energy values located at lower and higher levels are, respectively,
assigned to Pb 4f7/2 peak and Pb 4f5/2 peak; in addition, the peak positions of all samples
are shown in Table 4 [46]. The two peak positions of the MAPbI3 film are, respectively,
138.02 and 142.91 eV [46]. Both peak positions of the PQD film, respectively, show lower
binding energies of 137.8 and 142.68 eV. With the increasing RTA temperatures, at the same
time, both peak positions of the PQD films continuously decrease, and then, respectively,
reach the lowest value of 137.74 and 142.61 eV as the temperature reaches 140 ◦C. Addi-
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tionally, the shift forward to a higher binding energy occurs at 160 ◦C. This shift forward
to a lower binding energy reveals the interaction between iodine and Pb atoms to form
the donor–acceptor complex, caused via cation exchange when the Pb2+ ion accepts a lone
pair of electrons from the s orbital of CsPbI3 QDs [23,48]. These results also indicate that
the coordination interactions effectively suppress the existence of defects as a trap state.
In addition, all samples are further deconvoluted to Pb2+ (137.9 and 142.8 eV) and PbO
(136.3 and 141.1 eV) [49]. Correspondingly, compared to the peak area of Pb2+ for MAPbI3
films, the values for PQD films decrease from 95.9 to 94.16%, as well as the increased peak
area of Pb0 from 3.99 to 5.82%. The RTA-treated PQD films at 100–140 ◦C also display a
lower value (2.77, 2.57, and 2.83%) of the peak area of Pb0, although the sample at 160 ◦C
shows the highest value (10.46%) of the peak area of Pb2+. This small existence of metallic
Pb0 (136.3 and 141.4 eV) [50] can be attributed to the decomposition of MAPbI3 films,
mostly due to the chemical reaction and annealing process [51]. Furthermore, the XPS
spectra of the I 3d core level of all samples are demonstrated in Figure 6b. The typical peak
positions of I 3d are located at the lower 3d5/2 (618.9 and 618.7 eV) and the higher 3d3/2
(630.8 and 630.2 eV). Table 4 also reveals the peak areas of the 3d5/2 and 3d3/2 core levels of
all samples. However, there is a slight peak shift of 0.08 eV when compared to the PQD
films with and without the RTA process at 120 ◦C. This result suggests that the oxidation of
Pb2+ is from electron donors, due to the difference in electronegativity, where the lower
and higher ones are, respectively, Pb and I [52].
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Table 4. The peak area of both the Pb 4f (4f7/2 and 4f5/2) and I 3d (3d5/2 and 3d3/2) core levels of
all samples.

Core-Level
(Peak Position)

Samples

MAPbI3
Films

PQD
Films

RTA-Treated PQD Films at Different Temperatures

100 ◦C 120 ◦C 140 ◦C 160 ◦C

Pb 4f7/2
(138.02 eV, 137.80 eV) 55.6%/2.6% 52.8%/4.6% 55.6%/2.1% 55.4%/2.0% 54.8%/2.2% 53.2%/4.0%

Pb 4f5/2
(142.91 eV, 142.68 eV) 40.3%/1.4% 41.4%/1.2% 41.6%/0.7% 42.0%/0.6% 42.3%/0.6% 36.3%/6.5%

I 3d5/2
(618.9 eV, 618.7 eV) 22.7%/36.6% 20.0%/39.5% 18.6%/40.7% 18.3%/41.1% 20.0%/39.2% 22.5%/37.4%

I 3d3/2
(630.8 eV, 630.2 eV) 12.1%/28.4 12.6%/27.7% 13.1%/27.5% 10.9%/29.6% 11.3%/29.3% 13.0%/26.9%

4. Conclusions

This study processed perovskite-based PQD films made from MAPbI3 and CsPbI3 QDs
using RTA in argon gas at 100–160 ◦C. The cation-exchanged surface structure enhances the
absorbance of the samples. The RTA process effectively removes residual ligands from PQD
films, raising the (110) peak intensity at 100 and 120 ◦C. The PQD films at 120 ◦C inhibit the
formation of PbI2 and the intermediate phase, showing a better crystallinity. As the RTA
temperatures rises, oxygen and C-O-C bonding decreases to 31.4% and 20.1%, respectively.
RTA contributes to residual ligands from crystallographic defects attaching to oxygen
atoms, proved by the O 1s core level shifting by ~0.5 eV. At a higher temperature of 140 ◦C,
yellow crystals are visibly observed, the films decompose, and oxygen passes from the film
to the annealing environment. Meanwhile, the shift forward to a lower binding energy in
the Pb 4f core level reveals the interaction between I and Pb atoms to form a donor–acceptor
complex, causing the Pb2+ ion to accept a lone pair of electrons from the s orbital of CsPbI3
QDs via cation exchange, indicating that coordination interactions effectively suppress
defects as a trap state. PbI2 degrades and breaks at a too-high temperature of 160 ◦C. Finally,
compared to heating and annealing, the RTA process can effectively inhibit degradation
and usefully improve PQD film performance.
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