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Abstract: The laser repairing of TC4 holes was successfully performed with three and five layers under
2.5 mm and 1.0 mm diameters of laser spot, respectively. Experimental and numerical simulations
were employed to clarify the influence of the repaired layers on microstructure, residual stress
and strength. Optimized parameters were selected based on satisfactory formations. For the laser-
repairing process with three layers, optimized parameters were selected as 1100 W laser power,
0.6 m/min scanning speed and 5 g/min powder feeding rate. For the laser-repairing process with
five layers, optimized parameters were 800 W laser power, 0.9 m/min scanning speed and 3.5 g/min
powder feeding rate. Numerical simulation showed that higher residual stress and larger repairing
deformation would be produced when five repairing layers were adopted due to a more severe
thermal accumulation effect. The microstructure from the TC4 matrix to the repaired area was
orderly lamellar α phase + intercrystalline β phase-basketweave structure-martensite structure-
widmannstatten structure. Tensile test results showed that higher tensile strength (910.5 MPa) would
be obtained when three repaired layers were adopted.

Keywords: laser repairing of TC4; numerical simulation; microstructure; residual stress; tensile strength

1. Introduction

Lightweight design is a great attribute in transportation, aeronautics and astronautics
since it improves the carrying capacity [1,2] and reduces cost. The past decades have seen
the rapid development of titanium alloy for its wonderful stability in high-temperature
environments, great specific strength and corrosion resistance properties [3,4]. Therefore, it
has been widely used in aviation fields, for example as compressor disks and aero-engine
casing, for its superior service performance [5].

Fabricating holes and casting defects encountered in the manufacturing process as
well as wearing damage during service are considered to be urgent common problems
with the growth in demand for titanium alloy components [6,7]. Traditional studies about
repairing technology have mainly focused on argon arc welding [8]. However, this method
needs large heat input and produces a large heat-effect-zone (HAZ), which may cause
dramatic residual stress, large deformation and finally reduce mechanical properties [7].
With the development of laser technology, lasers are supposed to be one of the most
promising methods for metal component repair [9]. The literature reported that laser-
repairing technology had great advantages in repair quality, precision and distortion
control compared to conventional manual arc welding [10]. Researchers [11] successfully
repaired turbine blades using laser-repairing technology and the repaired accuracy was
up to 0.1 mm. Huang et al. [12] found that laser-repairing parameters had a deep effect on
microstructure and finally led to the variation of mechanical properties. Wang et al. [13]
repaired BT20 titanium alloy cups using pulsed laser-repairing technology and they found
that the diffusive behaviors of elements were attributed to different performances between
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the repaired zone and substrate. Researchers from EWI [14] also used the Finite Element
Model to predict the stress and distortion of blades repaired by laser repairing and they
discovered that preheating and layer cooling are effective methods to reduce the cracking
tendency and residual stress.

Previous studies established the relationship between laser power, scanning speed
and powder feed rate and the quality of laser-repaired Ti6Al4V components [15]. Generally,
the grain size was considered to be closely tied to the incident energy, which could be
controlled by changing the parameter combination of laser power and scanning speed [16].
Lower incident energy principally resulted in finer β-grain from 0.2 mm to 4 mm in width
and 1 mm to 20 mm in height, for example, by decreasing laser power and/or increasing
scanning speed [17]. Nevertheless, a faster scanning speed might lead to porosity and
defects during the laser-repairing process. It was also reported that the powder feeding
rate had a positive relativity to the columnar microstructure while the correlation faded in
high laser power situations [18].

Therefore, the aim of this research was to optimize the laser-repairing parameters
for TC4 holes under three and five repaired layers. Then, residual stress under these
two conditions was compared. After that, the microstructure and mechanical properties
for the repaired samples were observed and evaluated.

2. Experimental Procedures
2.1. Materials

In this research, the repaired material was selected as TC4 titanium alloy. Dimension
of base metal was 100 mm (length) × 100 (width) mm × 5.5 mm (thickness). Tensile
strength, yield strength and fractured strain for TC4 were 899.7 MPa, 820.0 MPa and 6.6%,
respectively. Corresponding nominal compositions of TC4 matrix are listed in Table 1.
TC4 powder with the diameter of 45–105 µm was selected as repairing material. The
microstructure for TC4 matrix and powder are shown in Figure 1.

Table 1. Nominal chemical compositions (wt%) for TC4.

Element Al V Fe C O N H Ti

TC4 6.1% 4.05% 0.30% 0.01% 0.02% 0.03% 0.005% Margin
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Figure 1. Microstructure for TC4 matrix and repairing powder: (a) TC4 matrix, (b) TC4 powder. Figure 1. Microstructure for TC4 matrix and repairing powder: (a) TC4 matrix, (b) TC4 powder.

2.2. Experimental Process

IPG–YLR–4000 IPG fiber laser, YC50 cladding head, GTV powder feeder, KUKA six-
axis robot and coaxial nozzle were assembled as laser-repairing system as seen in Figure 2a.
The repairing hole was located in the center of matrix. The depth, diameter at bottom
region were 3 mm, 10 mm while inclined angle at side wall was 45◦ as seen in Figure 2c.
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Before repairing process, TC4 matrix was immersed in mixed solution of 1% HF and 3%
HNO3 for 5 min. Then, the surficial oxide film and oil were flushed by wire brush and
then flushed in water to remove residual contaminants. After that, the fleshed TC4 matrix
was dried in oven for 1 h under 120◦. Finally, dried plate was further cleared by acetone
and then set in chamber for repairing. The TC4 powders were also dried and then set into
powder feeder.
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Figure 2. Experimental process: (a) Laser-repairing system, (b) Laser-repairing process, (c) Repaired
dimension for hole.

During the laser-repairing process, the focused distances of laser were selected as
−15 mm and −5 mm to obtain laser diameters of 2.5 mm and 1.0 mm in order to reduce
repairing defects. To control the experimental deformation, constraints were employed
to fix the edge of TC4 matrix. The repaired sample and scanning order along thickness
direction are presented in Figure 3. Before repairing process, argon flow into chamber
prevented repaired samples from oxidation. When argon flow was completed, a water
oxygen content of 0.1–10 ppm was maintained. Before finally commencing laser-repairing
process, single-pass scanning experiments were conducted to optimize laser-repairing
parameters under the judgment of satisfactory appearance (without porosities or cracks,
etc.). The final optimized parameters are listed in Table 2. The scanning times were 5, 6 and
7 along 1st, 2nd and 3rd layers when repaired layers were 3. The scanning times were 6,
7, 8, 9 and 10 for 1st, 2nd, 3rd, 4th and 5th layers when repaired layers were 5 as seen in
Figure 3b.
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Figure 3. Repairing needed for TC4 and repairing paths: (a) Hole in TC4 matrix, (b) Laser-repairing paths.

Before final repairing process, comparison between different repairing paths was con-
ducted. In this research, three kinds of repairing paths were employed, namely sequential,
annular and sequential + outer annular as seen in Figure 4. Then, sequential + outer annular
repairing path was selected since the most satisfactory formation was obtained as seen in
Figure 4f.
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Table 2. Detailed process parameters employed in this research.

Adopted Parameters 2.5 mm Laser Diameter 1.0 mm Laser Diameter

Laser power 800 W 1100 W
Scanning speed 0.5 m/min 0.6 m/min

Powder feeding speed 9.0 L/min 9.0 L/min
Defocused distance, mm +20 +20

Flowing volume of protecting gas, L/min 15 15
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Figure 4. Repairing formation under different repairing paths: (a,d) Sequential, (b,e) Annular,
(c,f) Sequential + outer annular.

2.3. Analysis Methods

When repairing process was finished, sample with the length of 40 mm was cut from
the center of repairing area. A standard grinding process was carried out on selected
samples and finally obtained mirror-like surface. Then, this mirror-like surface was etched
by Kroll reagent (HF:HCl:HNO3:H2O = 1:3:7:89) for 15 s. When etching process was
finished, the surface of sample was flushed by deionized water and alcohol and finally dried.
The optical micrograph (OM) was photographed by VHX-1000E super-depth microscope
(Keyence, Osaka, Japan).

The tensile strength of repairing area was evaluated under AG-X Plus 50 kN tensile
machine (Keyence). The dimension for tensile-tested samples is seen in Figure 5. Then,
tensile test was carried out at the cross-speed of 5 mm/min under room temperature.
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To compare the residual stress distribution under different repairing layers, com-
mercial finite element method (FEM) software MSC. Marc (MSC, Newport Beach, CA,
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USA) was employed. The material properties for TC4 are presented in Table 3 while
developed numerical models are presented in Figure 6. Finer meshes with dimensions
of 0.4 mm × 0.4 mm and coarser meshes with dimensions of 0.8 mm × 0.8 mm were, re-
spectively, divided in repairing area and outer region in order to shorten the calculation
duration based on acceptable accuracy.

Table 3. Thermal-mechanical properties for TC4 [19].

Temperature
(◦C)

Specific Heat
(J·kg−1·◦C−1)

Thermal
Conductivity

(W·m−1·◦C−1)

Linear
Expansion
Coefficient
(10−6 ◦C−1)

Yong’s
Modulus

(GPa)

Yield Strength
(MPa) Passion Rate

75 549.67 5.14 8.90 116.05 820 0.32
85 551.69 5.27 8.90 115.79 750 0.32

100 555.57 5.52 8.93 115.27 340 0.32
200 572.58 6.71 9.08 112.66 130 0.32
300 589.62 7.99 9.26 109.50 90 0.32
500 616.11 10.09 9.59 103.68 66 0.33
800 652.10 13.03 10.10 94.57 31 0.33
1000 675.07 14.83 10.40 88.60 12 0.34
1200 699.68 16.59 10.70 82.57 2 0.34
1500 872.09 19.52 10.80 74.27 0.1 0.35
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In this research, double ellipsoidal heat source was employed to describe heat distri-
bution for laser energy in space [20], which is presented Equations (1) and (2).

q(x, y, z) =
6
√

3 f1Q
πa1bc

√
π

exp(−3
x2

a1
2 ) exp(−3

y2

b2 ) exp(−3
z2

c2 ) (1)

q(x, y, z) =
6
√

3 f2Q
πa2bc

√
π

exp(−3
x2

a22 ) exp(−3
y2

b2 ) exp(−3
z2

c2 ) (2)

Q was the laser power; a, b, c were the parameters for double ellipsoid; f 1 and f 2 were
distributed functions for ahead and rear ellipsoidal heat distribution and f 1 + f 2 = 2. During
numerical simulation, the temperature of all nodes was set as 20 ◦C. Heat convection
existed at side and top surfaces while a larger heat convection coefficient was set at bottom
surface of matrix since it was directly contacted with substrate. Six-node constraint was set
for the workpiece during repairing process, which was same with practical experiment.

3. Results
3.1. Initial Parameter Optimization

During the laser-repairing process, the laser spot diameter had a great effect on the
repairing quality. In this research, laser spot diameters of 2.5 mm and 1.0 mm were
selected. To optimize the repairing parameters, trial experiments were conducted. During
the optimization of the repairing parameters under a single pass, satisfactory formation
(without cracks, porosities or other defects) and the appreciable height(h)-width(w) ratio
were two important indices of the repairing layer. These values had a great relationship
with the defocused spot distance, laser power, scanning speed and powder feeding speed,
etc. [21]. Therefore, the repairing formation, height and width under different repairing
parameters were observed and are summarized in Tables 4 and 5.

Table 4. Repairing formation in single pass under laser spot diameter of 1.0 mm.

No. Laser Power Scanning
Speed

Powder
Feeding Rate Cladding Formation

1 400 W 0.9 m/min 2 g/min
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the repairing zone would occur when higher laser power and a lower scanning speed and
powder rate were employed, which was induced by excessive heat input.

Table 5. Repairing formation in single pass under laser spot diameter of 2.5 mm.

No. Laser Power Scanning
Speed

Powder
Feeding Rate Cladding Formation

1 700 W 1.2 m/min 5 g/min
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When 1.0 mm and 2.5 mm laser spot diameters were adopted, the relationships
between repairing parameters and formation features were observed and are presented in
Figures 7 and 8. With the increase in laser power, the TC4 matrix and fed powders would
absorb more energy and a larger molten pool was produced. Therefore, more powders
would be dropped into the molten pool and larger height and width values would be
obtained under surficial tension [22]. Meanwhile, smaller height and width values were
acquired with the enhancement of scanning speed, which resulted from the smaller molten
pool dimension under lower laser energy density. Under this condition, less fed powder
was dropped into the molten pool and the utilization rate of powder was reduced.

When a higher powder feeding rate was used, height values under a single pass were
obviously increased while width values showed little variation. This could be analyzed as
follows: when laser linear energy was constant, the dimension of the molten pool changed
little. With the increase in the powder feeding rate, a larger volume of powder would be
dropped into the molten pool and tacked along the height direction. With the enhancement
of the repairing height, the molten pool would be downstream in a certain scale under
the effect of surface tension. Therefore, the width values of the repairing layer would
become larger.

From the above experimental results, it could be concluded that the repairing width
values were mainly determined by laser power and scanning speed. A wider molten pool
was produced under a higher laser power and smaller scanning speed. The repairing height
values were determined by comprehensive factors of laser power, scanning speed and
powder feeding rate. Greater repairing height values in a single pass would be obtained
under a larger laser power, smaller scanning speed and higher powder feeding rate.

In addition, the following aspects should be taken into consideration to obtain suitable
parameters. Excessive high and low scanning speed under certain laser powers should
be avoided. When excessive high scanning speed was adopted, it would cause the reduc-
tion of wettability in connective layers and hence induce worse melting between layers.
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When excessive low scanning speed was adopted, it would cause the deformation of the
repairing nozzle and affect the powder feeding accuracy, which finally resulted in a bad
repairing formation.
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Taking the above factors into consideration, optimized parameters for laser spot
diameters of 1.0 mm and 2.5 mm were summarized and are listed in Table 6. Then, the
laser-repairing process was conducted according to these parameters.

Table 6. Selected optimized repairing parameters in single pass under laser spot diameters of 1.0 and
2.5 mm.

NO. Laser
Power

Scanning
Speed

Powder
Feeding Rate

Diameter of
Laser Spot

Defocused
Distance

Powder Feed Gas
(L/min) Shield Gas

1 1100 W 0.6 m/min 5 g/min 2.5 mm 0.6 mm 9 L/min 15 L/min
2 800 W 0.9 m/min 3.5 g/min 1.0 mm 0.4 mm 9 L/min 15 L/min

3.2. Residual Stress

To evaluate the influence of repairing layers on residual stress, numerical simulation
was conducted to calculate the von Mises stress. First, the verification of the developed
model was carried out by the comparison of experimental and numerical deformation, and
the corresponding results are presented in Figure 8. From Figure 8, it can be seen that little
difference exists between the numerical and experimental results, suggesting the acceptable
accuracy of the developed model.

Figure 9 presents the residual stress distribution when a 1.0 mm laser spot diameter
was adopted. Residual stress distribution along the first, second, third, fourth and fifth
layers were extracted as seen in Figure 10a–e. It was found that when the repairing process
was finished the largest von Mises stress was located at the starting point and its value
was 920.0 MPa. During the laser-repairing process, the peak temperature along TC4
matrix was relatively lower. Therefore, a large temperature gradient existed at the starting
point and TC4 matrix. When the next layer was repaired, the temperature gradient was
further increased and a larger residual stress was produced when the repairing process was
finished. Furthermore, the residual stress at the top layer was much larger than that of the
bottom layer along the edge region of the repairing region. At the center region, residual
stress was larger at the bottom layer than at the top layer, which was caused by its more
severe thermal accumulation effect with the enhancement of the repaired layer.
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Figure 11 presents the residual stress distribution when a 2.5 mm laser spot diameter
was adopted. In this sample, residual stress along the first, second and third repairing
layers was extracted. A similar residual stress distribution was discovered in this sample;
namely, the largest von Mises stress of 872.6 MPa was generated at the starting point.
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To further compare the influence of repairing layers on the residual stress distribution,
residual stress along the top, middle and bottom layers was compared and the correspond-
ing results are shown in Figure 12. It can be seen that higher residual stress was obtained
when the repairing layers were five. In this condition, the repairing height and width
values were smaller in the single repairing process and more repairing numbers and layers
should be adopted. In this case, the sample would be subject to longer laser irradiation
durations, which would lead to a more severe thermal accumulation effect. Under this
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condition, a higher temperature gradient was generated and hence larger residual stress
was left when the repairing process was finished.
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The repairing deformation for two samples is illustrated in Figure 13. It can be seen
that the largest deformations of 0.20 mm and 0.26 mm (as seen in Figure 13b,e) were
produced when repairing layers were three and five, respectively. Furthermore, a larger
whole deformation level was generated when repairing layers were five, which was also
induced by its more severe thermal accumulation effect [23].

3.3. Microstructure

The microstructures for repaired samples under three and five layers are presented in
Figure 14, which shows the whole morphology. It can be seen that repaired samples have
satisfactory formations and few defects, such as cracks and porosities, were found in these
two samples as seen in Figure 14a,b. This indicated that the repairing parameters adopted
in this research were reasonable. Figure 14c,d present the widths of the heat-affected zones
(HAZ) for the two samples. A wider HAZ would be produced under larger repairing
layers (0.98 mm under three repaired layers and 1.50 mm under five repaired layers) as
the result of a longer heating effect duration. For further analysis of the microstructure,
three HAZ(α+β), HAZ(β) and the repairing region were separated for observation.
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Figure 13. Deflect deformation for the samples with different repaired layers: (a–c) Deflect deforma-
tion contour, deflect deformation along diagonal, deflect deformation along edge distribution under
1.0 mm focus laser diameter, (d–f) Deflect deformation contour, deflect deformation along diagonal,
deflect deformation along edge distribution under 2.5 mm focus laser diameter.

In the HAZ(α+β) region, little influence of heat was exerted and the peak temperature
in this region was lower than Tβ (the transition temperature from α-Ti to β-Ti). During the
cooling process, the lamellar α phase and intercrystalline β phase were subject to a large
heat variation. The pristine β phase was broken and the α phase with a small length-width
ratio was produced, which favored the generation of a basketweave microstructure as seen in
Figure 14e. The β phase with small volumes appeared nearby the pristine lamellar α phase and
these β phases nucleated along the phase boundary of the α phase. Under these conditions,
this structure finally appeared with an island structure. These β phases were named as the
intercrystalline β phase as seen in Figure 14f. At the middle region between HAZ(α+β) and
HAZβ, the peak temperature was near or even higher than Tβ. Therefore, it was discovered that
cluster structures with a large volume appeared in the vicinity of the pristine lamellar α phase
as seen in Figure 14g. During the cooling process, the pristine β phase between HAZ(α+β) and
HAZβ was subject to larger supercooling and cooling rates. The newly formed α phase was
nucleated along the interior of the basketweave microstructure and this favored the transition
from basketweave to cluster.

At HAZβ, peak temperature was larger than Tβ since it was nearby the repairing area
and therefore the phase transition from α to β occurred here. A larger cooling rate was also
generated and the pristine β phase cooled rapidly at the MS location. Needle α’ martensite
was formed as seen in Figure 14h. This needle-shaped α’ martensite had greater hardness
and less toughness and plasticity compared with those of the TC4 matrix [24].

At the repairing region, peak temperature was higher than Tβ. The diffusion coefficient
of the β phase became larger and this induced the clarification of the β phase and finally
resulted in a coarser β phase. This coarser β phase grew along the opposite direction of
the temperature gradient and penetrated several repaired layers to form a columnar grain
penetrating through the whole repairing layer as seen in Figure 14i.
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Figure 14. Microstructure comparison for the samples under different repaired layers:
(a) three repaired layers, (b) five repaired layers, (c) HAZ width under three repaired layers,
(d) HAZ width under five repaired layers, (e) Basketweave microstructure at HAZ, (f) Pristine lamel-
lar α phase and intercrystalline β phase at HAZ, (g) Cluster structures at HAZ, (h) Needle martensite
at HAZ, (i) Columnar grain at repairing zone, (j) Widmannstatten structure at repairing zone,
(k) Widmannstatten structure at bottom region, (l) Widmannstatten structure at middle region,
(m) Widmannstatten structure at top region.

During the cooling and crystallization processes, the repairing region had a lower
cooling rate compared with HAZβ. When peak temperature was lower than Tβ, the α

phase was nucleated along the interior of the β phase. The formed α phase along this
approach was short and coarse. Due to the high energy density of the laser spot, the HAZ
was focused on a tiny region and element diffusion behavior during the cooling process
was not obvious. Therefore, the newly formed phase was mainly composed of the needle
and basketweave α phase, namely the widmannstatten structure as seen in Figure 14j. The
formation of the widmannstatten structure was related to the cooling rate of materials. It
was reported that when the cooling rate was larger than 410 ◦C/s, the formed phase was
whole α’ martensite. When the cooling rate was between 20 ◦C/s and 410 ◦C/s, the formed
phase was α’ martensite and a tiny secondary α’ phase. When the cooling rate was smaller
than 20 ◦C/s, the formed phase was the widmannstatten structure [25]. In addition, a lower
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laser scanning speed resulted in a denser widmannstatten structure [26] and higher heat
input produced more widmannstatten structure [24].

The OM for the bottom, middle and top regions of the repairing area was observed
and the corresponding results are shown in Figure 14k–m. It was found that a slender
widmannstatten structure was formed at the top region while a short and coarse α phase
was formed at the bottom region. At the bottom region, partial α martensite was trans-
formed into the β phase due to the re-melting effect from subsequent laser heating. The α

phase was eroded by these newly formed and pristine β phases. Therefore, the α phase
was shortened and finally grew into a short and coarse structure.

3.4. Mechanical Properties

To clarify the influence of repairing layers on mechanical properties, tensile tests were
conducted for these two samples and the corresponding results are presented in Figure 15.
It can be seen that the fractured location was, respectively, the TC4 matrix and the HAZ
when the repaired layers were three and five. The tensile curves are shown in Figure 15c
and fractured surfaces for these samples are presented in Figure 15d,e. When the repaired
layers were three, the average tensile strength was 910.5 MPa (908 MPa/2 + 913 MPa/2)
while it was reduced to 847.5 MPa (821 MPa/2 + 874 MPa/2) when the repaired layers
increased to five. From Figure 15d, it can be seen that there were many dimples left on the
fractured surface, which suggested a cleavage fracture [27].
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Figure 15. Fractured behaviors for two samples: (a) Fractured location for the samples obtained
under three repaired layers, (b) Fractured location for the samples under five repaired layers,
(c) Tensile curves for two samples, (d) Quasi-cleavage fractured surface for sample obtained under
three repaired layers, (e) Cleavage fractured surface for sample obtained under five repaired layers.

During the fracturing process, the samples were subjected to load and easily evolved
as they fractured and finally became dimples under the effect of dislocation movement [12].
This also indicated that the tensile strength of the repairing area was higher than the TC4
matrix and tiny defects (unmelted layers) had little influence on the final strength of the
sample. It was found that samples at the fractured surface of the TC4 matrix were composed
of two sections, namely an interior and outer protrusion. The interior of the dimple was
the α phase with lower plasticity while outer protrusion was the intercrystalline β phase
with higher plasticity and lower strength.

When repaired layers were five, it could be seen that the sample was fractured along
the HAZ. At the fractured surface of the sample, many smaller dimples were discovered,
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which suggests it was also a ductile fracture. Under this condition, a larger residual
tensile stress was produced at the HAZ. This region evolved from a fractured origination
when tensile stress was loaded to failure [27]. Comparing the fractured dimples in these
two samples, it was found that a longer fractured cleavage and larger fractured samples
were formed in the TC4 matrix compared with those of the repairing zone. This indicated
that larger energy absorption ability could be produced in the TC4 and this resulted in its
more satisfactory tensile strength as seen in Figure 15a.

4. Conclusions

In this research, the laser repairing of TC4 3 mm-depth holes was successfully con-
ducted by different repairing layers. Laser-repairing parameters were firstly optimized.
Residual stress, repaired deformation, microstructure and tensile strength were observed
and tested. The corresponding results are listed as follows:

1. The relationship between repairing parameters and repaired formation was explored
under a single laser-repairing process. With the increase in laser power, repairing
height and width values became larger. With the increase in scanning speed, repairing
height and width values became smaller. The repairing height values became larger
while the repairing width values varied little under a higher powder feeding rate.

2. Optimized parameters obtained under different repaired layers were explored. When
the repaired layers were three, laser power was 1100 W, scanning speed was 0.6 m/min
and powder feeding rate was 5 g/min. When the repaired layers were five, laser
power was 800 W, scanning speed was 0.9 m/min and powder feeding rate was
3.5 g/min.

3. The numerical simulation results showed that more repaired layers would result in
larger residual stress and repaired deformation. It was found that the von Mises and
repairing deformation were 872.6 MPa and 0.20 mm when repaired layers were three
while they increased to 911 MPa and 0.26 mm when repaired layers were five.

4. With the enhancement of repaired layers, a wider HZA was produced. The microstruc-
tures from the TC4 matrix to the repaired area transited from lamellar α phase + inter-
crystalline β phase—basketweave structure—martensite structure—widmannstatten
structure.

5. Tensile tests for these two samples showed that ductile fractured models occurred
when repaired layers were three and five layers. A higher tensile strength of 910.5 MPa
was obtained when repaired layers were three, which resulted from lower residual
stress and deformation.
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