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Abstract: Mixed metallic oxides are getting increasing attention as novel electrode materials for
energy conversion devices. However, low mixed ionic-electronic conductivity and high operating
temperature hamper the practical applications of these devices. This study reports an effective
strategy to improve the conductivity and performance of the fuel cell at low temperature by partially
incorporating graphene in the Li0.1Cu0.2Zn0.7-oxide (LCZ) composite. The proposed cathode material
is synthesized via the cost effective conventional solid-state route. Graphene incorporated LCZ
shows excellent performance, which is attributed to the favorable charge transport paths offering
low area-specific resistance. An X-ray diffractometer (XRD) and scanning electron microscope
(SEM) are employed for microstructural and surface morphological analyses, respectively. Electrical
conductivities of all the materials are determined by the DC four probe method, and interestingly,
LCZ-1.5% graphene exhibits an excellent conductivity of 3.5 S/cm in air atmosphere at a temperature
of 450 ◦C with a minimum value of 0.057 Ωcm2 area-specific resistance (ASR) that demonstrates
significantly good performance. Moreover, the three-layer fuel cell device is fabricated using sodium
carbonated Sm0.2Ce0.8O (NSDC) as an electrolyte, which can operate at low temperatures exhibiting
open circuit voltage 0.95 V and shows a peak power density, i.e., 267.5 mW/cm2 with hydrogen as
the fuel.

Keywords: nanocomposite; cathode materials; LTSOFC; graphene incorporation; power density

1. Introduction

The increasing population and industrialization in contemporary times have increased
energy consumption in the modern world. Conventional fossil fuels are unable to meet
the unprecedented demand of energy resources. This scarcity of conventional resources,
along with their hazards of environment pollution, stimulate researchers to discover,
invent, explore, and improve renewable, clean, and sustainable energy resources [1,2].
Consequently, developing sustainable, environment-friendly, and high-efficiency energy
assets is one of the most challenging tasks these days. Several energy conversion devices
such as batteries, super capacitor fuel cells, and solar cells based on renewable energy
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resources such as hydrogen fuel and solar energy have already demonstrated their efficiency,
but they come with limited practical applications [3]. Fuel cells offer electrical energy by
converting chemical energy with high efficiency and zero emission and is categorized into
various types, depending upon the electrolyte materials being utilized [4].

Solid oxide fuel cell gained attention due to its higher efficiency, low emission, and
fuel flexibility as compared to the other fuel cell families [5–7]. At the same time, solid
oxide fuel cells (SOFC) have certain limitations, such as high operating temperatures
(800–1000 ◦C), precious electrode materials, and degradation of the material, which hamper
their production at the commercial level [8]. Lowering the operating temperature and
developing electrodes material with good electrical and catalytic behavior have been the
ambitions of the fuel cell community [9]. Composite materials based on nickel yttrium-
stabilized zirconia (Ni-YSZ) are widely used electrodes for conventional SOFC with YSZ
as the electrolyte exhibiting good catalytic and electrical properties at 1000 ◦C. The same
electrode materials can work at 800 ◦C with gadolinium-doped ceria (GDC) and samarium-
doped ceria (SDC) without sacrificing the results [10]. However, the current temperature
is still high and remains a major challenge to commercialize SOFC technology, including
the carbon deposition, poisoning on the layer, and poor oxidation for hydrocarbon fuel
issues [11].

Lowering the operational temperature for SOFC and decreasing the polarization re-
sistance of the cathode is a big dream of the fuel cell research community [12]. A major
contribution of polarization losses has been observed usually at the cathode layer [13]. Lan-
thanum strontium iron La0.8Sr0.2FeO3 (LSF), lanthanum strontium manganese La0.8Sr0.2MnO3
(LSM), and samarium strontium cobalt Sm0.5Sr0.5CoO3−δ (SSC) are widely used as the cath-
ode materials. LSM is being developed due to its stable attribution with yttrium-stabilized
zirconia (YSZ) at higher temperatures [14]. Huang et al. reported a LSFN inspection
as a cathode exhibiting improved electrical conductivity and ionic conduction beyond
550 ◦C [15]. BaxSr1−xFeO3−δ, La0.8Sr0.2FeO3−δ perovskite oxide cathode materials are
based on, are commonly proposed in terms of electrical conductivity and thermal stability
for intermediate-temperature IT-SOFC [16].

Improved performances have been obtained by the nanostructure approach [17,18]
and composite electrodes of transition metal oxides such as NiO, CuO, Fe2O3, SrO, and
ZnO [19,20]. Nanocomposite-based cathode materials LSMZ developed with SDC were
found compatible for low-temperature solid oxide fuel cells [21]. A ZnO-modified lithiated
NiO composite cathode has been reported as a good material for electrocatalytic oxygen
reduction activity with a yielded power density of 808 mW/cm2 and polarization resistance
of 0.22 Ωcm2 at 550 ◦C [22]. A zinc-based nanostructured Mn0.20FexZn0.80−xOδ composite
has been examined as a suitable electrode using natural gas fuel over a temperature of
600 ◦C [23].

Graphene, a monolayer of carbon atoms, exhibits ultra-high porosity, large specific
area, and good electronic and electrochemical properties [24], has shown excellent catalytic
performance for LT-SOFC [25] and the YSZ/rGo composite displayed good electrochemical
applications in the temperature range 150–800 ◦C [26]. Graphene with groups 4–9 has been
reported as electrocatalysts in oxygen evolution reactions (OER) and oxygen reduction
reactions (ORR) [27]. Composites of other nanomaterials such as sulfides, metal–metal
oxides, alloys, and polymeric materials exhibited interactive effects with graphene and
found it a potential candidate for energy conversion and storage devices [28–30].

The present work focuses on incorporating graphene into LCZ oxide with different
weight ratios to study its applications as a cathode material for LT-SOFC. The effects of Gr
on electrical conductivity and catalytic activity are examined and found very synergistic.
A significant enhancement of the fuel cell performance is also observed by fabricating a
three-layers fuel cell device at low temperatures in a hydrogen atmosphere.
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2. Experimental Technique
2.1. Synthesis of Cathode Materials

The cathode was prepared by the conventional solid-state reaction method. The stoi-
chiometric molar ratio of composition Li0.1Cu0.2Zn0.7 oxide using Li2CO3, CuCO3.Cu(OH)2,
and ZnO (all from Sigma Aldrich, St. Louis, MO, USA) were used as starting materials.
The planned precursor powders were mixed in mortar and ground with pestle to make
a homogeneity of the mixture. This mixture was sintered at 800 ◦C in a furnace for 4 h.
The sintered powder was again ground for 25 min, and a fine homogenous composite
powder of LCZ material was obtained. The as-prepared graphene via cost effective and eco-
friendly electrolysis method [31] was used to incorporate into the LCZ composite. Three
samples were prepared and assigned named as 0 wt.% Gr-LCZ (pure), 1 wt.% Gr-LCZ, and
1.5 wt.% Gr-LCZ.

2.2. Characterizations

The XRD pattern of all sintered samples was analyzed by PAN-Alytical X′Pert Pro
with Cu Kα radiation, (λ = 1.5418 Å), 40 kV voltage, and 30 mA currents at room tempera-
ture. The surface morphology and homogeneity of the prepared composites was analyzed
by SEM (TESCAN Vega 3 LMU). The FTIR analysis of prepared LCZ and graphene in-
corporated LCZ cathode materials was carried out to examine the structure and phase
transformation information by using FTIR spectrophotometer at a consistent spectral reso-
lution of 6 cm−1 in the range of 4000–500 cm−1 by taking 116 scans.

2.3. Conductivity Measurements

The electrical conductivities of proposed synthesized LCZ-pure, 1 wt.% Gr-LCZ, and
1.5 wt.% Gr-LCZ cathode materials were measured using four- probe DC method with
2450 SMU (Keithley instrument, Taiwan) from 300 to 600 ◦C range in the air atmosphere.
For this purpose, pellets (13 mm diameter and 2 mm thickness) of each sample were
prepared by hydraulic press using 280 kg/cm2, followed by sintering at 550 ◦C for 45 min.
Silver paste was painted on the both sides of the pellets for conductivity measurements.
The area-specific resistance of all the materials was calculated from conductivity data and
was plotted as a function of temperature in the range of 300–600 ◦C.

2.4. Fuel Cell Fabrication and Performance

In order to fabricate three-layer fuel cells, the already prepared 20 wt.% ratio of NSDC
electrolyte was added in LCZ and graphene-incorporated LCZ cathode materials to make
suitable composite for electronic and ionic conductive phenomenon. It was then co-pressed
using conventionally prepared LNCZ as the anode and NSDC as the electrolyte [32] under
a pressure of 280 kgcm−2. Fuel cell pellets of 13 mm diameter and 1 mm thickness were
painted by silver paste on outer surfaces to collect current. However, the active area was
considered 0.64 cm2 on behalf of the dimension of sample holder. Fuel cell performance
was executed by using fuel cell testing unit (S102, China) fed by hydrogen as fuel (flow rate
110 mL min−1) at anode and air as oxidant (flow rate 80 mL min−1) at cathode side. I–V
and I–P curves were drawn from date recorded at 600 ◦C.

The scheme of fabrication of three-layers cell has been prescribed as below:
LCNZ as anode (already prepared), NSDC (already prepared) as the cathode and

LCZ-pure and LCZ-graphene as the cathode (synthesized in this work).
(80 wt.% LCNZ-20 wt% NSDC/NSDC/80 wt.% LCZ-pure-20 wt.% NSDC and 80 wt.%

LCNZ-20 wt.% NSDC/NSDC/80 wt.% LCZ-graphene-20wt.%).
The dimensions are as LCNZ-NSDC Anode layer 45 mg, NSDC Electrolyte layer

25 gm, and LCZ-pure-NSDC 25 mg for cell 1.
The dimensions are the LCNZ-NSDC Anode layer: 45 mg, NSDC Electrolyte layer:

25 gm, and LCZ-graphene-NSDC: 25 mg for cells 2 and3.
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3. Results and Discussion

The LCZ oxide includes the starting materials Li2CO3, CuCO3.Cu(OH)2, and ZnO
is a composite material. Figure 1 shows the X-ray diffraction patterns of LCZ-pure and
LCZ-Gr composites sintered at 800 ◦C for four hours. The XRD analysis depicted the
two phase materials ZnO and CuO. As earlier, Zhang et al. 2014 developed strontium
and magnesium doped gallate LSGM oxide electrolyte for SOFC and found two phases,
LaSrGaO4 and LaGaO3 in XRD data [33]. The indexing of all the peaks of ZnO phase
illuminated the hexagonal structure confirmed with JCPDs card No. 089-0511 having space
group p63mc. The lattice constants were calculated and found to be a = b = 3.24 and
c = 5.20 Å. The diffracted peaks for ZnO were detected at 31.77◦, 34.43◦, 36.26◦, 47.55◦,
56.14◦, 62.87◦, 66.39◦, 67.96◦, 69.10◦, 72.16◦, and 76.98◦ correspond to crystal plans (100),
(002), (101), (102), (110), (103), (200), (112), (201), (004) and (202), respectively. The second
phase executed the monoclinic structure of tenorite CuO (space group C2/c) with lattice
constants a = 4.65, b = 3.41 and c = 5.10Å according to JCPDs card No. 01-1117. The peaks
at 35.74◦, 38.95◦, 53.88◦, 61.8◦ and 66.22◦ correspond to crystal plans (111), (111), (020), (113)
and (022) of CuO, respectively. High crystalline structure of the prepared compositions was
observed as revealed by the obtained sharp peaks. The two phases depict the composite
behavior of the proposed material which contribute individually for better conductivity
and electrochemical performance of fuel cell [34,35]. The two -phase structure, based on
XRD results, offers co-existence involvement of ZnO and CuO in the composite. The XRD
patterns did not detect obvious graphene peaks for LCZ-Gr samples due to its amorphous
nature; however, graphene was incorporated in LCZ materials [36]. The crystallite sizes
were calculated using the Scherrer’s formula and were found to be in 80–115 nm range
from strong and intense peaks.
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Figure 1. XRD pattern for LCZ-pure and graphene incorporated materials sintered at 800 ◦C for
four hours.

The surface morphology and microstructure of prepared samples were examined
by SEM and are displayed in Figure 2a–c. Oval-shaped structure, along with distributed
powder on these structures, was observed with compact densification in Figure 2c. Oval
shaped morphology of composite material reflected the layers compaction of precursors
sintered at high temperature. Smooth surface, along with pores, can be observed in the
images displayed in Figure 2. Few small whitish-like particles on surface might attribute
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the dispersion of graphene powder. However, the whiteness loops over the particles
were not observed in LCZ-pure image shown in Figure 2a. On investigating the surface
morphology of SEM images by line drawing, the particle sizes were found to be in the
range of 90–125 nm and validated the XRD findings. These expressions illustrate that
the prepared material is homogenous and well porous. Such porous structure in cathode
material provides more channels for the passage of electrons and oxygen ions during
the conduction mechanism of cell reaction [37,38]. The energy dispersive X-ray (EDX)
spectrum of base sample is displayed in Figure 3. The spectrum depicts the presence of
transition metal elements of zinc (Zn) and copper (Cu). No obvious peak appeared for
Li in EDX spectrum due to light weight element having minor stoichiometry amount in
the composition. The conventional EDX instrument cannot detect elements lighter than
boron. These special detectors have a limit of detection of about 20 wt.%. Due to it spread
as whitish loops over LCZ in SEM images clarify the existence of Gr in LCZ material.
However, in XRD for the structural analysis and EDX for the elemental analysis could not
bet detected due to its amorphous nature. For more evidence, Esmaeili et al. 2020 reported
that meaningful picture of element distribution on the surface verified the presence of
carbon, oxygen and iron elements throughout the surface of GO-PEG- Fe3O4. The reported
EDX spectra further showed the corresponding peaks of carbon (C) oxygen (O) and iron
(Fe) in the final conjugate [39].
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Figure 2. Scanning electron microscopy (SEM) images (a) LCZ-pure; (b) 1 wt.% Gr-LCZ;
(c) 1.5 wt.% Gr-LCZ.
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The FTIR spectrum of the prepared composite material is shown in Figure 4. The infor-
mation regarding the prepared materials structural and phase transformation phenomenon
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was studied by FTIR spectroscopy in wavelength of 4000–500 cm−1. The IR spectrum posi-
tioned the peaks at 665, 862,998, 1420 and 3570 cm−1. The sharp peak observed at 665 and
862 cm−1 is ascribed to the Zn–O stretching bonds and C–O vibrations, respectively [40].
The band peak around 998 cm−1 attributes OH bending and C-OH stretching vibrations
and illustrated the existence of hydroxyl groups. This information confirmed the presence
of Copper and Zinc nanophase in the prepared samples [41]. A large absorption peak at
around 1420 cm−1, can be attributed to the CO2 presence which may be due to adsorption
of air on the material surface. No obvious peaks were detected from 1500–3500 cm−1 that
indicates the complete removal of organic species and carbonates of metal precursor and
conversion to oxides at high sintering temperature. The peak shown at around 3570 cm−1

may be attributed to Cu-O-Zn bonding [42]. In addition, no sharp O-H band was ob-
tained in 3000–3600 cm−1 which indicates that water molecules have been eliminated in
the prepared material. Conductivities measurements have been carried out with DC four
probe method in air atmosphere in temperature range 300–600 ◦C. The corresponding
results for the prepared samples are displayed in Figure 5. It can be noticed that electrical
conductivities increased gradually with increase in temperature that depicts the nonmetal-
lic behavior of material [43]. The maximum conductivity of LCZ-pure was measured to
be 2.8 S/cm at 600 ◦C. The 1 wt.% and 1.5 wt.% graphene was incorporated in the LCZ
material, and the measured results of the conductivities indicated a significant increase in
conductivity values was observed from 2.8 to 3.11 and 3.5 S/cm for 1% and 1.5% incorpo-
ration of graphene in LCZ-pure, respectively. Additionally, the conductivity of material
remained stable in temperature range 450–600 ◦C. This enhanced conductivity is attributed
to development of the whitish loops over the LCZ-pure phase due to the incorporation of
graphene contents. As the higher conductivity has been received in LCZ-graphene material
instead of LCZ-pure material. It can be argued that this enhancement in conductivity is
due to graphene incorporation. Additionally, the whitish loops in SEM images differentiate
the pure and graphene incorporated material. This enhanced conductivity is attributed
to development of the whitish loops over the LCZ-pure phase due to the incorporation
of graphene contents. This is an evidence of graphene contents in the material. Because
the obtained SEM images of LCZ-pure and LCZ-graphene incorporated indicate that the
small whiteness loops and only be observed in LCZ-graphene incorporated images and
not in LCZ-pure image. Therefore, it is clear that these whitish loops only represent the
graphene incorporation not any other composite. Memon et al. reported that graphene
may improve the electronic conductivities by loading a sufficient amount of metals or
composites exhibiting higher values of electrical conductance, e.g., by employing CNT
and graphene electrical conductance can be remarkably enhanced. In this regard, we have
tried to incorporate graphene to improve the electrical conductivities of the material at
low temperature. Further, the enhancement in electrical conductivity was observed from
10.6 S/cm to 78.7 S/cm incorporating graphene in La0.6Sr0.4Al0.2Cu0.8O3–graphene [44].
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Figure 5. DC conductivity for pure LCZ and graphene incorporated nanocomposite.

The overlapping thus provided more pathways for the diffusion of gas and electrons
movements through the material, and resulted in improving the conductivity. The maxi-
mum calculated values of conductivities and crystalline size are tabulated in Table 1. The
electrode martial exhibiting electronic conductivity greater than 1 S/cm is considered
suitable for good performance of fuel cell [45]. This suggested the promising conductive
behavior of graphene for electrode composite for LT-SOFC.

Table 1. Crystallite size, conductivity, and area-specific resistance (ASR) of prepared cathode samples.

Sample Name Material Composition Average Crystal Size (nm) Conductivity (Scm−1) at 600 ◦C Area-specific Resistance
(Ωcm2) at 600 ◦C

LCZ-Pure Li0.10Cu0.20Zn0.70-Pure 110 2.8 0.071

1 wt.% Gr-LCZ Li0.10Cu0.20Zn0.70—1 wt%.
Graphene 97 3.11 0.064

1.5 wt.% Gr-LCZ Li0.10Cu0.20Zn0.70—1.5 wt.%.
Graphene 82 3.5 0.057

The area-specific resistance (ASR) of the prepared temperature dependent (300–600 ◦C)
cathodes is illustrated in Figure 6. The minimum ASR values are determined to be 0.071,
0.064 and 0.057 Ωcm2 at 600 ◦C for LCZ, LCZ-1 wt.%Gr, and LCZ-1.5 wt.%Gr, respectively.
A relatively low ASR value (0.057 Ωcm2) is seen for LCZ-1.5% Gr sample. This minimum
value of ASR suggests it to be a good cathode. The data of DC conductivity was used
to plot Arrhenius curves between ln(σT) and 1/T. A linear relation was found by linear
fit data as shown in Figure 7. The values of activation energies were calculated from the
formula given below:

σ =
A
T

exp
(
−Ea

KT

)
(1)

where σ and Ea represent electrical conductivity and activation energy, while T, A, and K
are the temperature, exponential factor, and Boltzmann’s constant, respectively.

The activation energies were calculated as 0.159, 0.148 and 0.139 eV. Smaller value of
activation energy was found for 1.5 wt.% Gr-LCZ sample. This smaller value of activation
energy demonstrated the quick chemical reaction start up for fuel cell catalytic activity [46].



Crystals 2023, 13, 434 8 of 12

Crystals 2023, 13, x FOR PEER REVIEW 8 of 13 
 

 

The overlapping thus provided more pathways for the diffusion of gas and 

electrons movements through the material, and resulted in improving the conductivity. 

The maximum calculated values of conductivities and crystalline size are tabulated in 

Table 1. The electrode martial exhibiting electronic conductivity greater than 1 S/cm is 

considered suitable for good performance of fuel cell [45]. This suggested the promising 

conductive behavior of graphene for electrode composite for LT-SOFC. 

Table 1. Crystallite size, conductivity, and area-specific resistance (ASR) of prepared cathode 

samples. 

Sample Name Material Composition 
Average Crystal 

Size (nm) 

Conductivity (Scm−1) 

at 600 °C 

Area-specific Re-

sistance (Ωcm2) at 

600 °C 

LCZ-Pure Li0.10Cu0.20Zn0.70-Pure 110 2.8 0.071 

1 wt.% Gr-LCZ Li0.10Cu0.20Zn0.70—1 wt%. Graphene 97 3.11 0.064 

1.5 wt.% Gr-LCZ 
Li0.10Cu0.20Zn0.70—1.5 wt.%. Gra-

phene 
82 3.5 0.057 

The area-specific resistance (ASR) of the prepared temperature dependent (300–600 

°C) cathodes is illustrated in Figure 6. The minimum ASR values are determined to be 

0.071, 0.064 and 0.057 Ωcm2 at 600 °C for LCZ, LCZ-1 wt.%Gr, and LCZ-1.5 wt.%Gr, 

respectively. A relatively low ASR value (0.057 Ωcm2) is seen for LCZ-1.5% Gr sample. 

This minimum value of ASR suggests it to be a good cathode. The data of DC 

conductivity was used to plot Arrhenius curves between ln(σT) and 1/T. A linear 

relation was found by linear fit data as shown in Figure 7. The values of activation 

energies were calculated from the formula given below: 

𝜎 =
𝐴

𝑇
𝑒𝑥𝑝 (

−𝐸𝑎
𝐾𝑇

) 
(Error! No 

sequence 

specified.) 

where σ and Ea represent electrical conductivity and activation energy, while T, A, and K 

are the temperature, exponential factor, and Boltzmann’s constant, respectively. 

 

Figure 6. Area-specific resistance (ASR) of prepared cathode. Figure 6. Area-specific resistance (ASR) of prepared cathode.

Crystals 2023, 13, x FOR PEER REVIEW 9 of 13 
 

 

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
6.6

6.8

7.0

7.2

7.4

7.6

7.8

8.0

L
n

T

 (
S

c
m

-1
)

1000/T (k
-1

)

 LCZ-Pure

 LCZ-1% Gr

 LCZ-1.5 % Gr

 

 

 

Figure 7. Arrhenius plots: (a); LCZ-pure; (b) LCZ-1 wt.% Gr (c); LCZ-1.5 wt.% Gr. 

The activation energies were calculated as 0.159, 0.148 and 0.139 eV. Smaller value 

of activation energy was found for 1.5 wt.% Gr-LCZ sample. This smaller value of 

activation energy demonstrated the quick chemical reaction start up for fuel cell catalytic 

activity [46]. 

The fuel cell performance was carried out using conventional LNCZ as anode with 

the prepared cathode supported by NSDC dense electrolyte. The SDC, GDC, or even 

CDC are widely used as electrolytes for intermediate-temperature SOFC and perform 

good results. The carbonated coated sodium-like carbonated samarium doped ceria 

(NSDC) further enhance the ionic conduction at low temperature because the optical 

carbonated contents construct larger interface area to facilitate the proton migration [47]. 

Zhang 2018 also reported the powder X-ray diffraction patterns of all NSDC 

nanocomposites, the pattern of the controlled sample, SDC, is also included. Na2CO3 

crystallites are less developed than the fluorite ceria phase, almost display as the 

amorphous phase, since no diffraction peaks could be indexed to crystallized Na2CO3 

[48]. A performance test was executed with hydrogen as fuel and air as oxidant at 580 

°C. The following chemical reaction occurred at the electrodes. 

Oxidation at anode side: 

𝐻2 → 2𝐻++2𝑒− 

(Error! No 

sequence 

specified.) 

Reduction at cathode side: 

1

2
𝑂2 + 2𝑒

−→𝑂2−  

(Error! No 

sequence 

specified.) 

Net chemical reactions: 

𝐻2 +
1

2
𝑂2 → 2𝐻++𝑂2− (Error! No 

sequence 

Figure 7. Arrhenius plots: (a); LCZ-pure; (b) LCZ-1 wt.% Gr (c); LCZ-1.5 wt.% Gr.

The fuel cell performance was carried out using conventional LNCZ as anode with the
prepared cathode supported by NSDC dense electrolyte. The SDC, GDC, or even CDC are
widely used as electrolytes for intermediate-temperature SOFC and perform good results.
The carbonated coated sodium-like carbonated samarium doped ceria (NSDC) further
enhance the ionic conduction at low temperature because the optical carbonated contents
construct larger interface area to facilitate the proton migration [47]. Zhang 2018 also
reported the powder X-ray diffraction patterns of all NSDC nanocomposites, the pattern
of the controlled sample, SDC, is also included. Na2CO3 crystallites are less developed
than the fluorite ceria phase, almost display as the amorphous phase, since no diffraction
peaks could be indexed to crystallized Na2CO3 [48]. A performance test was executed with
hydrogen as fuel and air as oxidant at 580 ◦C. The following chemical reaction occurred at
the electrodes.

Oxidation at anode side:
H2 → 2H++2e− (2)
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Reduction at cathode side:
1
2

O2 + 2e−→O2−
(3)

Net chemical reactions:
H2 +

1
2

O2 → 2H++O2−
(4)

2H++O2−→H2O
(5)

The open circuit voltage (OCV) values obtained from LCZ, 1 wt.% Gr-LCZ, and
1.5 wt.% Gr are 0.9, 0.9, and 0.95 V, respectively. The literature indicates that the theoretical
value is 0.98 V at 600 ◦C, in this way, the obtained values are very close to reported
theoretical value [49,50]. The maximum for each sample were found to be 225, 237 and
267 mW/cm2 corresponding to obtained OCV values. Few residual pores possible to be
generated due to gas cross over in electrolyte result in low value of OCV. The low OCV
is obtained due to not proper dispersive of hydrogen at anode side. It also degraded
due to electronic leakage. The I–V and I–P curves drawn from the collected data are
shown in Figure 8. It was observed that the sample containing 1.5wt.% graphene contents
yielded 18.9% enhanced power density as compared to pure LCZ cathode. The linear ohmic
polarization occurred in the process reveals good electrocatalytic activity of gas reaction at
cathode. The electrochemical activity took place at the triple phase boundary (TPB). The
less electrochemical active area at TPB even at high temperatures may affect the migration
of oxygen gases and electronic conduction. Introduction of nanoparticles catalyst increased
the triple phase boundary length leading to enhance electrochemical active area at low
temperature. This resulted in sufficient absorption of O2- ions and migration of electrons,
which improves fuel cell performance [3]. The data of maximum value of OCV, current
density, and power density determined for the developed fuel cells are listed in Table 2.
The obtained power density is better than the already reported ZnO, Li2O composite which
yielded maximum power density 3.86 mWcm−2 at low temperatures and is comparable to
the previous SOFC [51]. Further, the current results are competitive and better as compared
to those reported by Xu et al. [52] for LSCFN electrode with YSZ electrolyte, recording
power density 124 mW/cm2 at 850 ◦C. This indicates the synergistic effects of graphene
particles for the electrochemical application for low-temperature SOFC [53] and can readily
be applied to other electrode materials as well.
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Table 2. Fuel cell performance observations at 600 ◦C.

Sample Name Material Composition Maximum OCV(V) Current
Density (mAcm−2)

Peak Power Density
(mWcm−2) References

BCZYO BaCe0.6Zr0.2Y0.2O3−δ 0.83 1505 3.86 42
LSCFN La0.4Sr0.6Co0.2Fe0.7Nb0.1O3−δ 1.1 900 124 43
LCZ-Pure Li0.10Cu0.20Zn0.70-Pure 0.9 750 225

Our WorkLCZ-1%Gr Li0.10Cu0.20Zn0.70-1 wt.%
Graphene 0.9 770 237.5

LCZ-1.5% Gr Li0.10Cu0.20Zn0.70-1.5 wt.%
Graphene 0.95 785 267.5

4. Conclusions

Graphene incorporated LCZ-oxide has been successfully prepared by a facile solid-
state method as a cathode material for LT-SOFC. It is remarkable to mention that 1.5 wt.%
Gr-LCZ exhibited an excellent electrical conductivity (3.5 S/cm at the rate of 450 ◦C). The
enhanced fuel cell performance at low temperatures can be attributed to the synergistic
effects contributed by the improved conductivity and low area-specific resistance that
provide an efficient path for charge transport. The cell based on the same functional
composition (1.5 wt.% Gr-LCZ) yielded a very good power density (267 mW/cm2 at
580◦ C). The obtained results provide valuable insights into the fabrication of fuel cell
device based on graphene incorporated composite cathode materials for highly efficient
low temperature SOFC applications.
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