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Abstract: Sb2Se3 has recently emerged as a promising material for optic-electronic applications. In
this work, trapped carrier recombination in Sb2Se3 was investigated by joint use of time-resolved
microwave conductivity (TRMC) and photoluminescence (PL) spectroscopy. trapped carrier thermal
excitation into the continuous band was observed in TRMC kinetics. Based on the exponential band
tail model, the depth of the trap state, where trapped carriers are released into a continuous band,
was estimated to range from 33.0 meV to 110.0 meV at room temperature. Temperature-varying
TRMC and PL were further employed to study the influence of temperature on the trapped carrier
recombination. Negative thermal quenchings of PL intensity and quantity of thermal emission
carriers were observed and can be well explained by the thermal excitation of deep trapped carriers
into shallow trap states and the continuous band. Two thermal activation energies of 12.5 meV
and 304.0 meV were also revealed. This work is helpful for understanding the trapped carrier
recombination process in polycrystalline Sb2Se3 film.

Keywords: Sb2Se3; trapped carrier; thermal excitation; TRMC

1. Introduction

Sb2Se3 has emerged as an excellent material for applications such as photovoltaic cells,
photo detectors, photo-electrochemical water splitting, and phase-change materials [1–5].
The attractive properties of Sb2Se3 for the above applications include a suitable band
gap (1.0–1.2 eV) [6], a high absorption coefficient and decent carrier mobility [7,8]. The
carrier recombination kinetics in Sb2Se3 intrinsically determine its performance in those
applications. It is very important to explore the characteristics of photo-generated carrier
recombination in Sb2Se3.The free-carrier lifetime in Sb2Se3 has been reported to be on the
order of tens of picoseconds by use of transient absorption spectroscopy, time-resolved
terahertz spectroscopy and time- and angle-resolved two-photon photoemission [9–11].
Carrier trapping has been viewed as the main mechanism for shortening free-carrier lifetime
in Sb2Se3. Recently, self-trapping originating from electron–phonon coupling in Sb2Se3
has also been reported as the explanation of short free-carrier lifetime [12,13]. Though
it is a binary semiconductor, Sb2Se3 shows complicated defect chemistry due to its low-
symmetry crystal structure [14,15]. Following the free carrier recombination at a time
scale of tens of picoseconds, trapped carrier recombination persists on a time scale from
nanoseconds to microseconds. Exploring trapped carrier recombination is also important
for fully understanding photophysical properties of Sb2Se3. However, the research work
focusing trapped carrier recombination is still rare [11,16,17].

In this work, trapped carrier recombination in polycrystalline Sb2Se3 film was studied
by use of time-resolved microwave conductivity (TRMC) and photoluminescence (PL). The
slow-decay TRMC kinetics at nanosecond to microsecond time scale was attributed to a
trapped carrier recombination process with thermal emission into the continuous band
mechanism. The depth of the trap state where the trapped carrier was released into the
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continuous band was estimated through fitting the TRMC kinetics with the exponential
band tail model. By use of temperature-varying TRMC and PL spectroscopy, the influence
of temperature on trapped carrier recombination was also investigated.

2. Materials and Methods
2.1. Film Preparation

The polycrystalline Sb2Se3 studied in this work was prepared by use of injection
vapor deposition (IVD) [18]. Because of the low transmission attenuation of microwaves
through fused silica, the fused silica of 0.7 mm thickness was chosen as the substrate. The
temperature of fused silica was set at 480 ◦C. The high-purity Sb2Se3 (99.999%) was kept in
a rotating roller of 390 ◦C. Sb2Se3 vapor was carried to the heated substrate by the injection
of argon gas and deposited on the substrate.

2.2. Steady-State Photoluminescence Measurement

In temperature-varying photoluminescence (PL) measurement, Sb2Se3 film was mounted
in a closed-cycle cryostat (Janis, CCS-150, USA) with temperature variable from 10 to 300 K.
A CW 532 nm laser diode was used to excite Sb2Se3 film, and the emission was detected by
a liquid-nitrogen-cooled CCD detector array (Princeton Instrument, PyLoN:1024-1.7, USA)
attached to an spectrometer (Acton SP2500, USA).

2.3. Time-Resolved Microwave Conductivity Measurement

The photoconductance kinetics of Sb2Se3 film were measured in the open-cell model.
The detailed information on TRMC setup can be found in Ref. [19]. An ITO glass was used
as a microwave reflector, which led microwaves to pass the Sb2Se3 film twice. The distance
between ITO film and Sb2Se3 film was carefully adjusted to ensure Sb2Se3 film was at the
antinode of microwave. The output of Ti: Sapphire laser (800 nm, 100 fs, New Port, Spfire
ACE-100F, Spectra Physics, USA) was frequency-doubled to excite free carriers in Sb2Se3
film. For temperature-varying TRMC measurement, Sb2Se3 film was mounted in liquid
nitrogen cryostat (Oxford Instrument, UK).

2.4. Femtosecond Time-Resolved Reflectivity Measurement

The surface transient reflectivity of polycrystalline Sb2Se3 film was measured by using
a transient absorption setup (Light conversion, Harpia, Lithuania) in the reflectivity mode.
The fundamental output of Ti: Sapphire laser (800 nm, 100 fs) was delivered into an optical
parameter amplification system (TOPAS Prime-F) to generate 650 nm pump pulse for
Sb2Se3 film.

2.5. Structure and Morphology Measurement

The thickness of Sb2Se3 film was measured to be about 600 nm by use of Surface
Profiler (Bruker, Dektak XT, USA). The ultraviolet–visible (UV–vis) absorption spectra were
recorded by U4100 (Hitachi, U4100, Japan). The morphology of the films was observed by
high-resolution field-emission scanning electron microscopy (SEM)(FEI, Nova NanoSEM
450, Czech). The X-ray diffraction (XRD) patterns were measured by a D/max 2400 X-ray
diffractometer (Bruker, D8 ADVANCE, Germany) with Cu Kα radiation (λ = 1.54050 Å).

3. Results and Discussions

Top-view SEM (Figure 1a) and cross-section-view SEM (Figure S1 see Supplementary
Materials) confirm the polycrystalline characteristic of Sb2Se3 film. Sb4Se6 ribbons ran-
domly align, and the average diameter of ribbon was estimated to be about 100∼200 nm.
Figure 1b shows the XRD pattern of Sb2Se3 film. All the diffraction peaks’ positions agree
well with the standard diffraction pattern of orthorhombic phase c-Sb2Se3 (JCPDS No:
015-0861). Diffraction peaks (120), (230) and (240) are the strongest among all diffraction
peaks, meaning the orientation of quasi-one-dimensional [Sb4Se6]n is preferred to be par-
allel to the fused silica substrate. The absorbance of Sb2Se3 film is presented in Figure 1c.
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According to Tauc’s method, the band gap Eg of Sb2Se3 film was calculated to be 1.19 eV,
which is close to the reported band gap of Sb2Se3 [6]. The PL spectrum of polycrystalline
Sb2Se3 (Figure 1d) shows a main peak at about 1.12 eV and a weaker peak at 0.9 eV. Because
of the red shift of the main peak with band-gap decrease (see temperature-varying PL
experiment), we attribute the main peak to a free-to-shallow-bound-state recombination or
shallow donor and acceptor pair recombination. Meanwhile, the position of the weak peak
does not change as the band gap changes, so it possibly originates from a deep trap state.
Recently, Zhu et al. attributed this weak peak to carrier self-trapping due to electron and
phonon coupling [13].
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Figure 1. (a) Top-view SEM, (b) XRD, (c) optical absorbance and (d) photoluminescence of polycrys-
talline Sb2Se3 film. The inset of c is the direct band gap Tauc’s plot of Sb2Se3 film, and the red line is
used for extrapolation.

We investigate the charge recombination kinetics of polycrystalline Sb2Se3 by TRMC
technique. In TRMC measurement, free charge carriers are generated in a semiconductor
by a short laser pulse, giving rise to a light-induced change in the conductance in the
sample. The change in conductance in the sample over time is traced with the power of
the reflected microwave and is displayed by the oscillograph. Assuming that the carrier
mobility does not change during the time window of our measurement, the decrease in the
photoconductance with time is purely due to concentration reduction in mobile carriers in
the conduction and valance band.

The TRMC kinetic curves of Sb2Se3 show two parts, i.e., a fast-decay part and a
slow-decay part (Figures 2a and S2). This indicates that charge recombination occurs in
Sb2Se3 via two different mechanisms. The fast decay meets the instrument response of
our TRMC setup. Assuming the instrument response of the TRMC setup is a Gaussian
function, the time resolution is characterized as the Full-Width Half-Magnitude (FWHM),
which is about 0.3 ns. The reported free carrier lifetime of Sb2Se3 is shorter than the time
resolution of the TRMC setup, so the measured kinetics of free carrier recombination are
very similar to the instrument response [11,20]. Following the free carrier recombination,
a slower recombination process appears with about a 2.0 ns time delay after the carrier
generation (marked by green arrow in Figure 2a). The slower recombination process occurs
on a nanosecond to microsecond time scale. Considering the very short free carrier lifetime
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in Sb2Se3, it is reasonable to attribute this slower carrier recombination to the trapped
carrier recombination process. Under thermal activation, trapped carriers are released
into the conduction band and valance band, inducing a photoconductance response. The
TRMC signal amplitude of the slowing decay part is proportional to the thermal emission
carrier quantity and also proportional to the trapped carrier quantity. We extracted the
free-carrier-related TRMC signal (marked by green arrow) and trapped-carrier-related
TRMC signal (marked by purple arrow) from TRMC kinetics curves. The inset of Figure 2a
displays their amplitudes at different excitation densities. As excitation density increases,
the TRMC signal of thermal emission trapped carriers firstly saturates, confirming the
limiting trap state density where trapped carriers thermally release.
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Figure 2. (a) TRMC kinetic curves of Sb2Se3 under different excitation densities (photons/cm2,
excitation wavelength 900 nm); the inset of Figure 2a shows the dependence of TRMC signals
amplitudes at photoexcitation (green arrow) and 3 ns time delay after excitation (purple arrow) on
the excitation density. (b) TRMC kinetic curve related with the trapped carrier thermal emission
recombination process (starting from 3 ns delay after excitation) and its fitting at different time scales,
excitation density 15.4 × 1012 photons/cm2. (c) TRMC kinetic curves related with trapped carrier
thermal emission process at microsecond time scale under different excitation densities and their
fittings (excitation wavelength 900 nm). (d) The dependence of T

T0
on the excitation density, 900 nm

excitation–black square, 600 nm excitation–red circle.

The evolution of thermal emission carrier quantity from trap states is determined by
the trap state distribution in the forbidden band. According to small stokes shifts of main
PL with respect to the band gap Eg of Sb2Se3, the band tail should be present near the con-
duction band and valance band. The trapped carrier in the band tail should be responsible
for slower recombination process revealed by TRMC. To estimate the distribution of trap
states where trapped carriers thermally release, we employ an exponential distribution
band tail model, where trap state density reduces exponentially with the gap between the
trap state and continuous band (Equation (1)) [21].

g(E) ∝ exp
[
−
(

E0 − E
kBT0

)]
(1)
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where kB is the Boltzmann constant, T is thermodynamic temperature, E is the energy of
the trap state, E0 is the bottom energy of the conduction band (take electron trap state,
for example), and kBT0 is the scale energy of exponential distribution of the band tail. In
the case of exponential band tail distribution of the trap state, the evolution of thermal
emission carrier quantity n(t) with time can be described by Equation (2) [21]:

n(t) ∝ t−(1− T
T0

) (2)

Figure 2b presents a TRMC kinetic curve related with a trapped carrier thermal
emission process in log–log coordinates, and the slope of the curve would equal −

(
1 − T

T0

)
if the TRMC kinetic can be well described by Equation (2). However, we found the extracted
T
T0

value changes at different time scale, i.e., T
T0

is 0.78 in the range of 2–60 ns time delay,
0.68 in the range of 60–330 ns time delay and 0.24 in the range of 330–1800 ns time delay.
With T equal to 300 K, the scale energy of the band tail state kBT0 was calculated to range
from 33.0 meV to about 110.0 meV. Experimental results show that a thermal emission
carrier is not released from a sole exponential band tail. Multiple kinds of trap states are
involved in the trapped carrier thermal emission process. Here, we use the calculated scale
energy kBT0 to estimate trap state depth. The thermal emission trapped carrier mainly
originates from trap states, with depth ranging from 33.0 meV to 110.0 meV.

We further examined the influence of excitation density on the trapped carrier ther-
mal emission process. An averaged T

T0
was used to fit the TRMC kinetic curves with

excitation wavelengths 900 nm (Figure 2c) and 600 nm (Figure S3), respectively. The
extracted average T

T0
values (Figure 2d) reduce with excitation density increase in both

excitation cases. The calculated trap depth extends from 40.0 meV to 51.6 meV as excitation
density increases. It indicates that the trapped carrier occupies deeper trap states in a
high-excitation-density condition.

To understand the trapped carrier recombination process in further detail, temperature-
dependent TRMC kinetic curves of Sb2Se3 were measured. The sensitivity factor of the
TRMC setup changes with temperature due to the variations of Sb2Se3 dielectric constant
ε. Therefore, both carrier concentration and the sensitivity factor of the setup influence
the amplitude of the TRMC signal at different temperatures. To compare the quantity of
remaining trapped carriers in the Sb2Se3 film, we normalized the TRMC kinetic curves
at different temperatures, and we show them from a 2 ns time delay after excitation in
Figure 3a. After normalization, the amplitude of TRMC kinetic curves was proportional
to the quantity of remaining trapped carriers or free carriers released from trap states.
As shown in Figure 3a, the quantity of thermal emission carriers at 2 ns time delay after
excitation obviously changes with temperature, and the minimum appears at about 150 K
(inset of Figure 3a).

The quantity of thermal emission carriers is proportional to the product of N(t)ν(T),
where N(t) is trapped carrier concentration and ν(T) is the thermal emission probability.
The thermal emission probability ν(T) is determined by both temperature T and trap depth
ET , as shown in Equation (3) [21].

ν(T) = ν0 exp
(
− ET

kBT

)
(3)

where ν0 is the crystal lattice vibration frequency, ET is the energy depth of the trap state,
and kB is the Boltzmann constant. According to Equation (3), a trapped carrier has a higher
probability of being released as temperature increased. In the temperature range from 80 K
to 150 K, the reduction in thermal emission carrier quantity should result from the decrease
in trapped carrier concentration N(t) with temperature. This confirms that temperature
increase accelerates the recombination of trapped carriers in the first 2 ns time delay after
excitation. As temperature increases further from 150 K to 200 K, the quantity of thermal
emission carriers shows a recovery. Despite the increase in thermal emission probability
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ν(T), trapped carrier concentration N(t) is also likely to increase in this temperature range
due to the population of trapped carriers from deeper trap states. As temperature exceeds
200 k, trapped carrier concentration N(t) decreases, which counteracts the effect of thermal
emission probability ν(T), so the quantity of thermal emission carriers does not show
obvious change on the whole.
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Figure 3. (a) Normalized TRMC kinetic curves of Sb2Se3 at different temperatures. Excitation
wavelength 650 nm, excitation density 1.4 × 1014 photons/cm2, time scale ranges from 2 ns after
excitation to 180 ns. The inset of (a) shows the change in amplitude of normalized TRMC kinetic
curves at 2 ns after excitation with temperature. (b) Normalized TRMC kinetic curves of Sb2Se3 at
80 K and 120 K and their fittings. The time scale ranges from 30 ns after excitation to 8000 ns after
excitation; inset of (b) shows the dependence of scale energy kBT0 on temperature. (c) Steady PL of
Sb2Se3 at different temperatures (94.8W/cm2); the inset of (c) shows the main PL peak shifts with
temperature. (d )shows the dependence of main PL integration area on temperature and its Arrhenius
equation fitting.

The effect of temperature on the evolution of the quantity of thermal emission carriers
was also investigated. Two TRMC kinetics at 80 K and 120 K are compared in Figure 4.
Obviously, the quantity of thermal emission carriers at 120 K decays more slowly with time.
We suppose that deep trapped carrier thermal emission into a shallow trap state leads to
the slower decay of thermal emission carrier quantity at high temperature. Average scale
energy kBT0 was also extracted by fitting the TRMC kinetics at different temperatures with
Equation (2) (black line in Figure 3b). The scale energy kBT0 can also be used to characterize
the depth of the trap state, which involves a trapped carrier thermal emission process.
The depth of these trap states is about 10.0 meV at 10 K. As temperature exceeds 250 K,
the estimated trap depth shows obvious fluctuations due to a low signal–noise ratio of
TRMC kinetics. At 300 K, the estimated depth of the trap state is about 60.0 meV. In a
phonon-assisted carrier de-trap model, trapped carriers are released into the conduction
band or valance band after receiving energy from thermal lattice vibrations [22–24]. The
average phonon occupation number increases continuously with temperature, which favors
the de-trap process of trapped carriers at deep trap states.
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Figure 4. Schematic of carrier recombination dynamics in polycrystalline Sb2Se3 film. This schematic
intentionally illustrates the hole recombination. Theoretically, a similar process also occurs to electrons.

Temperature-dependent steady PL of Sb2Se3 was also measured for comparison with
temperature-varying TRMC measurement. With temperature increases, the main peak
(1.20 eV at 20 K) red-shifts (inset of Figure 3c), which consists in a change in band gap Eg
with temperature [25], while the position of the minor peak (0.9 eV at 20 K) does not change
with temperature. In addition, the main peak is close to the band gap Eg, i.e., 0.07 eV
discrepancy at 300 K. Thus, the main peak possibly originates from band–shallow trapped
carrier recombination or shallow donor–shallow acceptor pair recombination. In these two
radiation mechanisms, the peak of PL correlates with the band gap Eg and the binding
energy of the shallow trap state. Thus, the main PL peak red-shifts as the band gap Eg
decreases. According to the FWHM of the main PL peak, the extension of radiative trap
states into the forbidden band was estimated to be about 130.0 meV at 300 K.

The dependence of main peak intensity on temperature is presented in Figure 3d. As
temperature increases from 20 K to 40 K, the PL intensity increases. In the temperature
range from 40 K to 140 K, the PL intensity reduces monotonously. While temperature
exceeds 140 K, the PL intensity increases again until about 220 K, at which point the PL
intensity start to reduce again. The negative thermal quenching of PL in Sb2Se3 (140–220 K)
has also been reported in other semiconductors, such as ZnO and FASnI3 [26,27]. In Sb2Se3
film, thermal excitation of a trapped carrier into a continuous band and a shallow trap state
is the main mechanism of negative thermal quenching of PL [28]. In polycrystalline Sb2Se3,
the negative thermal quenching of PL and TRMC coincides in the same temperature range.

Obviously, the thermal emission trapped carriers contribute to both the PL intensity
and photoconductance. This further confirms our attribution of slow-decay TRMC kinetics
to trapped carrier release into the conduction (valance) band. The recombination of these
thermal emission carriers emits fluorescence photons at around the main PL peak. In
further, by use of Arrhenius’ Equation (4), we estimated the thermal activation energy of
non-radiative recombination with the main PL peak [28].

I(T) =
I0

1 + Aexp
(
− ET

kBT

) (4)

where A is the process rate constant, and ET is the thermal activation energy of the non-
radiative process. In the temperature ranges from 40 K to 140 K and from 220 K to 300 K, the



Crystals 2023, 13, 406 8 of 10

two thermal activation energies ET are 12.5 meV and 304.0 meV (Figure 3d), respectively.
Using temperature-varying femtosecond time-resolved reflectivity spectroscopy, we found
the free-carrier recombination rate is independent of temperature (Figure S4). Ghosh also
report that changing temperature nearly does not affect free-carrier recombination [29]. It is
reasonable to deduce that thermal quenching of the PL peak in Sb2Se3 results from trapped
carrier recombination. However, we cannot correlate the two thermal activation energies
with trapped electrons or trapped holes directly at present.

PL of Sb2Se3 confirms the band tail near the continuous band. This band tail extends
into the forbidden band by about 130.0 meV. The TRMC kinetic curve analysis reveals
the trap energy depth ranging from 33.0 meV to 110.0 meV at room temperature. We
suppose that TRMC and PL probe the same trapped carrier in this work. The band tail in
polycrystalline Sb2Se3 film contains not only disorder-induced potential energy fluctuation
but also some point defects. Theoretical calculation shows that SeSb antisites induce shallow
acceptor energy [15,30,31], and its trap depth was measured to be 95∼120 meV [7,32], even
53 meV in nanocrystalline-selenium-poor Sb2Se3 film [33]. Se vacancy Vse forms an electron
trap state, which is reported to be located 0.4 eV below the conduction band [15,34]. The
trap energy distribution revealed in this work is consistent with the reported results on the
whole. Considering the complex defect chemistry, other electron defects and hole defects
could also be present in polycrystalline Sb2Se3 film. In addition, we also checked the trap
station distribution at film surface or bulk. We used the CdS to passivate the polycrystalline
Sb2Se3 film. After passivation, the PL intensity increased by about 20 times, while the
slower TRMC kinetics still persisted. This means that the trap state from which trapped
carrier thermal emission also exists in the bulk of polycrystalline Sb2Se3 film.

We propose the scheme in Figure 4 to explain our experimental results. We take a
hole as an example to illustrate carrier recombination. Similar recombination also occurs
to electrons. All the photo-generated carriers in polycrystalline Sb2Se3 film would be
captured by trap states or recombine radiatively in tens of picoseconds after excitation. The
free-carrier recombination process induces the fast decay of our measured TRMC kinetic
curves. The radiation recombination between free carriers and trapped carriers results
in the main PL peak (1.12 eV at 300 K). A trapped hole can undergo uphill and downhill
relaxation. The trapped hole recombination is thermally activated in temperature ranges of
40 K~140 K and 220 K~300 K. In the temperature range of about 140~220 K, the thermal
excitation of trapped holes into the continuous band and shallow trapped states, leading to
negative thermal quenching of PL and quantity of thermal emission carriers.

4. Conclusions

In this work, TRMC and PL were jointly used to study the trapped carrier recombina-
tion process in polycrystalline Sb2Se3 film. The same trap states in the forbidden band were
probed by these two techniques. trapped carrier thermal excitation into a continuous band
or more shallow trapped state is one important channel for trapped carrier recombination.
Trapped carriers thermally excited into a continuous band lead to the slow decay of TRMC
kinetics on a nanosecond to microsecond time scale. Based on the exponential band tail
model, we estimated the depth of the trap state where trapped carriers are thermally ex-
cited into a continuous band. Our experimental results show that increasing the excitation
density or increasing temperature enables more deep trapped carrier thermal emission into
a continuous band. The trapped carrier thermal emission mechanism can also explain well
the negative thermal quenching of PL intensity and quantity of thermal emission carriers in
the temperature range from 140 K to 220 K. With temperature-varying PL measurement, we
also observe two thermal activation energies of 12.5 meV and 304.0 meV for trapped carrier
recombination. The free-carrier lifetime is short in Sb2Se3 film, and it is sensible to explore
performance of trapped carriers in applications. Understanding trapped carrier recombina-
tion is vital to this aim. Our work provides insight into trapped carrier recombination in
Sb2Se3 film.
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cryst13030406/s1, Figure S1: Cross section SEM of polycrystalline Sb2Se3
film; Figure S2: TRMC kinetic curves of Sb2Se3 under different excitation density (photons/cm2),
excitation wavelength 600 nm; Figure S3: TRMC kinetic curves related with trapped carrier thermal
emission process in microsecond timescale under different excitation density (photons/cm2) and
their fittings (excitation wavelength 600 nm); Figure S4: Femtosecond surface transient reflectivity of
polycrystalline Sb2Se3 film at some typical temperatures.
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