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Abstract: The objective of this work was to investigate the molecular origin of the differences in the
thermal expansivity of four ROY polymorphs (Y, R, OP, and ON) using variable temperature single
crystal X-ray diffractometry (VT-SCXRD). Thermal expansivity was found to be directly influenced
by the crystal packing and the number and type of directional interactions, such as hydrogen bonds,
involved in packing. Polymorphs with layered molecular packing, i.e., ON, OP, and R, show higher
volume expansivity, where the axial component of the expansion is the largest in the directions
perpendicular to the hydrogen-bonded layers and the smallest along the layers. Polymorph Y shows
the least volume expansivity, which corresponds to the presence of a denser hydrogen-bonded
network structure in the crystal, and absence of apparent molecular layers. The largest overall
expansivity is observed for polymorph ON that lacks intermolecular hydrogen bonds and exhibits
a layered packing pattern along two axes. The differences in the thermal expansivity of the ROY
polymorphs lead to violations of the density rule in polymorph stability prediction due to crossover
in crystal density with change in temperature, which means the rank order of crystal density of
polymorphs is temperature-dependent. Thus, at absolute zero, the most thermodynamically stable
polymorph Y is predicted to not have the highest density, which violates the density rule. Likewise,
for all enantiotropic polymorphs undergoing the density crossover phenomenon, the density rule
is valid only within the temperature range bracketed by the temperatures of density crossover (Td)
and thermodynamic transition (Tt). For all monotropic polymorphs, the density rule is valid only
above Td.

Keywords: thermal expansion; polymorphs; density; thermodynamic stability; crystal packing;
solid-state chemistry; thermally induced lattice changes

1. Introduction

Polymorphism, a phenomenon where the same molecule(s) crystallize in more than
one solid phase, is a well-studied phenomenon in solid-state chemistry [1–3]. Polymor-
phism in pharmaceutical molecules has been extensively investigated because of its rele-
vance to solid form selection for the development of robust drug products [2,4]. Different
polymorphs may exhibit differences in thermodynamic, crystallographic, spectroscopic,
kinetic, thermal, surface, and mechanical properties [4–8]. While many physical properties
of polymorphs have been extensively studied, the thermal expansivity of molecular crystals
has received relatively less attention. Thermally induced volume expansion of crystal is
a consequence of faster thermal vibrations of molecules with increasing temperature [9],
resulting in atoms populating the asymmetric portions of the potential energy-well, which
causes changes in bond lengths [10]. Bond angles in a molecule may also vary with tem-
perature [11] to accord with the new force equilibrium among atoms. Negative thermal
expansivity (NTE) of molecular crystals can occur, but to a lesser extent than positive
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thermal expansivity (PTE) [12,13]. In addition, there have been reports of zero thermal
expansivity (ZTE) in some crystals attributed either to isotropic bonding strength in the
lattice or the mutual cancellation of positive and negative expansivities in a crystal [14,15].
The packing of molecules in organic crystals is typically anisotropic. Therefore, the thermal
expansion behavior in molecular crystals is also expected to be anisotropic, i.e., unit cell
dimensions do not all change proportionately with temperature. Studies correlating crystal
packing with thermal expansion in molecular crystals are relatively few [16] compared to
other classes of crystals, such as metallic and inorganic systems [9]. In addition to phar-
maceuticals, thermal expansion of molecular crystals is of interest in the fields of geology,
cosmochemistry [17,18], and polymer sciences [19].

The stability relationship among polymorphs may be predicted from their densities,
where a polymorph with a lower density is thought to be less stable at absolute zero (the
density rule) [20,21]. The most reliable understanding of relative stability relationships
among polymorphs is obtained from the free energy–temperature (G-T) phase diagram,
which may be mapped using heat capacity [22], solubility or dissolution [23,24], heat
of solution/transition [20,21], melting [20,21,25], and eutectic melting data [26,27]. The
density rule has the advantage of easy data collection, e.g., by calculation from single
crystal structure and/or helium pycnometry measurement, but does not always lead to
accurate predictions of stability relationship at room temperature. If the relative rank order
of the polymorph densities changes with temperature, an application of the density rule at
different temperatures of interest would necessarily risk erroneous stability predictions.

The objectives of the present study are twofold: (a) to investigate the molecular origin
of the observed differences in thermal expansivity of polymorphic molecular crystals
through a careful evaluation of their molecular packing as a function of temperature; and
(b) to critically examine the impact of thermal expansivity of polymorphs on the validity of
the density rule.

2. Materials and Methods
2.1. Materials

Four polymorphs of 5-Methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile
(Figure 1, commonly known as ROY for the red, orange, and yellow colors of polymorphs),
yellow prisms (Y, Tm~383 K), red prisms (R, Tm~378 K), orange prisms (OP, Tm~386 K),
and orange needles (ON, Tm~389 K) were used in this study because of their known
thermodynamic stability relationships. Among the six possible pairs of these four ROY
polymorphs, Y–R is a monotropic pair, while the other five pairs are enantiotropic with
phase transition temperatures (Tt) of ~341 K, ~346 K, ~332 K for Y–ON, Y–OP, ON–OP
pairs, respectively [26,28]. The Tt values for the remaining two polymorph pairs, R–OP
and R–ON, have not been definitively established, but are predicted to be below room
temperature.Crystals 2022, 12, x FOR PEER REVIEW 3 of 16 
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were formed after 19 h, which were manually separated based on crystal color and mor-
phology. 
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Thermal expansion of the polymorphs was measured using variable temperature–
single crystal X-ray diffraction (VT-SCXRD). VT-SCXRD is advantageous over other ap-
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etry, because VT-SCXRD yields structural information critical for understanding the ob-
served expansion of the crystals. VT-SCXRD data on the polymorphs were collected at 
four temperatures over 123–273 K temperature range using a Bruker SMART diffractom-
eter (Bruker AXS, operated at 40 kV and 50 mA) equipped with an APEX II CCD detector 
and using Mo-Kα radiation (0.71073 Å) filtered with a graphite monochromator. Single 
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lected between 5° and 75° θ using ω and ϕ scans with 0.5° scan width. Beam exposure 
times varied between 5 and 30 s, depending on the nature and quality of crystals. Diffrac-
tion data were integrated to the same resolution (0.77 Ǻ) for all crystals. To eliminate var-
iations in diffraction data due to different crystal quality, the same crystal was used for 
each polymorph at all temperatures. Temperature was controlled with a temperature con-
troller (Cryostream Controller 600, Oxford, UK) fitted with a CFT-25 refrigerated recircu-
lator (set at 9 psig) to deliver liquid nitrogen. After the data collection at a temperature 
was completed, the temperature was increased at a ramp rate of 6 K/min to the next high-
est target temperature and held for 15 min before data acquisition. Full structures of the 
polymorphs were obtained at multiple temperatures (Tables S1–S13). Polymorph ON 
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OP crystal seeds were first obtained by evaporating an acetone solution of ROY in
an aluminum pan at room temperature. An ethanolic solution of ROY was prepared by
dissolving 68 mg ROY in 5 mL ethanol at 60 ◦C under controlled stirring and the solution
was cooled to room temperature. To a portion of this supersaturated solution, the OP seed
crystals were added, and the tightly closed vial was left on a bench undisturbed. Large
OP single crystals formed after overnight storage were harvested. For the preparation of
the other polymorphs, the remaining portion of the ethanolic ROY solution was stored
in a tightly closed vial at room temperature. A mixture of polymorphs Y, R, and ON
crystals were formed after 19 h, which were manually separated based on crystal color and
morphology.

2.2. Methods
Thermal Expansivity Measurements

Thermal expansion of the polymorphs was measured using variable temperature–
single crystal X-ray diffraction (VT-SCXRD). VT-SCXRD is advantageous over other ap-
proaches, such as interferometry, capacitance dilatometry, and low temperature dilatometry,
because VT-SCXRD yields structural information critical for understanding the observed
expansion of the crystals. VT-SCXRD data on the polymorphs were collected at four tem-
peratures over 123–273 K temperature range using a Bruker SMART diffractometer (Bruker
AXS, operated at 40 kV and 50 mA) equipped with an APEX II CCD detector and using
Mo-Kα radiation (0.71073 Å) filtered with a graphite monochromator. Single crystals were
glued to goniometer glass fiber tips with epoxy adhesive. Data were collected between 5◦

and 75◦ θ using ω and φ scans with 0.5◦ scan width. Beam exposure times varied between 5
and 30 s, depending on the nature and quality of crystals. Diffraction data were integrated
to the same resolution (0.77 Å) for all crystals. To eliminate variations in diffraction data
due to different crystal quality, the same crystal was used for each polymorph at all temper-
atures. Temperature was controlled with a temperature controller (Cryostream Controller
600, Oxford, UK) fitted with a CFT-25 refrigerated recirculator (set at 9 psig) to deliver
liquid nitrogen. After the data collection at a temperature was completed, the temperature
was increased at a ramp rate of 6 K/min to the next highest target temperature and held
for 15 min before data acquisition. Full structures of the polymorphs were obtained at
multiple temperatures (Tables S1–S13). Polymorph ON yielded very thin needles (<0.4 mm
width), so full structure was only solved at 123 K in this study, as satisfactory structure
solutions at higher temperatures could not be obtained. Hence, the structure of ON at
room temperature (QAXMEH) was obtained from CCDC. Only unit cell parameters were
determined at other temperatures for polymorph ON.

3. Results
3.1. Thermal Expansivity of ROY Polymorphs

For all four polymorphs, the crystal unit cell volumes increase linearly with increasing
temperatures. The isobaric volumetric thermal expansion coefficient or expansivity (αv) is
the temperature derivative of volume dilation at constant pressure (Equation (1)) [9].

αv =
(δV/δT)p

V
(1)

The αv value was calculated at a given temperature using the crystal unit cell volume
(V) at that temperature and the slope of the volume–temperature plot (δV/δT). Thermal
expansivity normalizes the effect of the cell volumes on the extent of volume expansion with
temperature. Thus, αv is a more appropriate parameter for comparing thermal expansion
among different crystals instead of the rate of change in volume with temperature, δV/δT .
The αv values for all four ROY polymorphs decrease linearly with increasing temperature
within the temperature range probed (Figure 2). The αv of polymorph Y at all temperatures
is consistently smaller than the other three polymorphs, while polymorph ON consistently
shows the largest αv.
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Figure 2. Variations of unit cell volume (V; solid line) and volume expansivity (αv; dotted line) with
temperature for Y, R, OP, and ON polymorphs. At all temperatures, αv is the smallest for polymorph
Y, and the largest for polymorph ON.

The expansivities along different crystallographic axes and angles are summarized in
Table 1. An analysis of axial and angular expansivity provides information for identifying
the lattice component of a crystal structure making the greatest contribution to the overall
volume expansivity of a crystal. For all four polymorphs, the three axes, a, b, and c, undergo
linear expansion with increase in temperature. However, expansion along different cell axes
in each polymorph is highly anisotropic. Anisotropy in thermal expansivity is common
in molecular crystals, including polymorphs [29–32]. For polymorph Y, the maximum
axial expansivity occurs in the direction of the b axis, while the maximum expansivities of
polymorphs R, OP, and ON all occur along the a axis.

Angular expansivity for monoclinic polymorphs Y, OP, and ON is restricted to 1 unit
cell angle, β, while the other two angles remain invariant (90◦) with changing temperature.
The angle β for all three polymorphs undergo positive thermal expansion with increasing
temperature. Expansivity for angle β is the smallest for polymorph Y, and the largest for
polymorph ON. For triclinic polymorph R, all three unit cell angles varied with temperature,
where angle β expansion is accompanied by contraction in angles α and γ (NTE). Unit cell
angle γ shows the largest absolute expansivity among the three angles in polymorph R.
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Table 1. Axial and angular expansivities of different ROY polymorphs. The direction of maximum
expansivity is highlighted in bold for each polymorph.

Polymorph Temperature
(K)

Crystal
System

Axial Expansivity a

× 10−6 (K−1)
Angular Expansivity b

× 10−6 (K−1)

a b c α β γ

Y

123

Monoclinic

13.80 133.72 34.41

Invariant

22.78

Invariant
173 13.79 132.98 34.34 22.74
223 13.79 132.19 34.29 22.71
298 13.76 130.75 34.20 22.69

R

123

Triclinic

135.44 78.90 14.32 −8.306 25.20 −73.37
173 134.64 78.62 14.31 −8.308 25.17 −73.59
223 133.79 78.33 14.30 −8.311 25.14 −73.86
273 132.73 77.97 14.29 −8.316 25.10 −74.18

OP

123

Monoclinic

174.66 13.023 18.14

Invariant

30.95

Invariant
173 173.31 13.010 18.13 30.92
223 171.85 13.003 18.11 30.87
273 170.19 12.997 18.09 30.81

ON

123

Monoclinic

131.73 51.67 20.13

Invariant

72.80

Invariant
173 130.94 51.49 20.10 72.53
223 130.19 51.34 20.09 72.25
298 128.76 51.22 20.07 71.89

a Axial expansivity =
(δl/δT)p

l where l = length of cell axis; b Angular expansivity =
(δθ/δT)p

θ where θ = cell angle.

3.2. Hydrogen Bonds and Crystal Packing of Polymorphs

The hydrogen bond motifs in the four ROY polymorphs are compared in Figure 3.
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Figure 3. Hydrogen bonding motifs in different ROY polymorphs at 123 K. Polymorph Y has the
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Intramolecular hydrogen bonds are shown as teal lines.

The thermal expansivity of the corresponding hydrogen bonds is tabulated in Table 2.
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Table 2. Expansivity hierarchy of hydrogen bonds in ROY polymorphs at 123 K.

Polymorph Hydrogen Bond Bond Type Bond Length
(Å)

Bond
Expansivity ×
10−6 (K−1) *

Y

N2
. . . H–N1 Intermolecular 3.067 88.03

S1
. . . H–N2 Intermolecular 3.304 96.85

O2
. . . H–C9 Intermolecular 3.184 75.37

O2
. . . H–N1 Intramolecular 2.620 7.63

R
O2

. . . H–O2 Intermolecular 2.936 66.07
O2

. . . H–N1 Intramolecular 2.634 −6.07
S1

. . . H–C2 Intramolecular 3.145 39.43

OP
O1

. . . H–O1 Intermolecular 2.943 102.62
O2

. . . H–N1 Intramolecular 2.654 −18.84
S1

. . . H–C2 Intramolecular 3.239 30.26

ON
O2

. . . H–N1 Intramolecular 2.616 −3.27
S1

. . . H–C2 Intramolecular 3.356 −59.59

* Bond expansivity =
(δx/δT)p

x where x= bond length

In polymorph Y, several intermolecular hydrogen bond interactions with N–H and
C–H as hydrogen bond donors are observed (Figure 3 and Table 2). These interactions are
relatively weak (hydrogen bond with lengths >3 Å) [33,34] and the bond length increases
significantly with increasing temperature (Table 2). However, when these interactions
work together while constructing the molecular packing in the Y polymorph, they create
and fortify a dense hydrogen-bonded network along the a and c axes of polymorph Y
(Figure 4A). Packing is visibly much less dense along axis b, where molecules are arranged
in alternating dimers with no intermolecular hydrogen bond interactions running along
direction b (Figure 4B). Interestingly, the maximum axial expansivity occurs along axis b in
polymorph Y (Table 1), corresponding to the direction of less dense packing of molecules.
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Figure 4. Crystal packing in polymorph Y showing (A) very dense hydrogen-bonded network along
axes a and c, and (B) molecules arranged in alternating dimers with less dense packing along axis b.
Weak hydrogen bonds are shown as teal lines.

In polymorph OP, there is a single moderately strong intermolecular O . . . H–O in-
teraction (bond length ~2.9Å at 123 K). In addition, there are a couple of intramolecular
hydrogen bonds. The intramolecular hydrogen bonds in all four polymorphs show small
expansivity. These interactions are not expected to majorly influence the overall volume
expansivity of the unit cells. In this polymorph, molecules pack in flat hydrogen-bonded
layers along the bc plane (Figure 5). The maximum expansivity is observed in the direction
along the a axis (Table 1).
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In polymorph ON, the polymorph that displays the maximum volume expansivity,
only intramolecular and no intermolecular hydrogen bonds could be identified (Figure 3).
Molecules in this polymorph are packed into layers parallel to the bc plane perpendicular
to axis a (Figure 6), which exhibits maximum expansivity (Table 1).
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Figure 6. (A) Crystal packing in polymorph ON shows a layered structure along axes b and c. (B)
The maximum expansion occurs in directions perpendicular to these layers (i.e., along axis a), while
the directions along the layers show much smaller expansivities.

In polymorph R, only one type of intermolecular hydrogen bond (O . . . H–O) is formed
along with two intramolecular hydrogen bond interactions. Molecules are packed to form
flat (100) layers in this crystal (Figure 7A). The direction of maximum axial expansivity is a
(Table 1). Adjacent (100) layers are connected by the intermolecular O . . . H–O hydrogen
bond interactions (Figure 7B).

3.3. Crossover of Thermal Density Lines

Corresponding to linear volume expansion, the densities for the four ROY polymorphs
decrease linearly with increasing temperature but with different slopes, i.e., different
thermal density gradients (Figure 8). The rank order of the thermal density gradients (unit
of ×10−4 g mL−1K−1) is 3.05 (ON) > 2.88 (OP) > 2.84 (R) > 2.34 (Y). A linear regression
model best describes the relationship between crystal density and temperature, with a high
R-square value of > 0.99 indicating an excellent fit for all four polymorphs. The thermal
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density lines are projected to cross at ~83 K for polymorph pair Y–R (monotropic pair),
and ~17 K for polymorph pair Y–OP (enantiotropic pair, Tt~346 K). No density crossover is
expected between the polymorph ON, which consistently shows the lowest density over
the entire temperature range of 0–300 K, and any of the other three polymorphs. The
projected rank order for crystal densities at absolute zero is R (1.5247 ± 0.0029 g/mL >
OP (1.5215 ± 0.0029 g/mL) > Y (1.5206 ± 0.0007 g/mL) > ON (1.5189 ± 0.0016 g/mL),
which is different from the density rank order at the room temperature Y (1.447 g/mL) > R
(1.438 g/mL) > OP (1.435 g/mL) > ON (1.428 g/mL).
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4. Discussion
4.1. Structure–Expansivity Correlations

The materials science tetrahedron (MST) entails that properties of a material are deter-
mined by its structure, which can be engineered to attain desired properties [35]. Strong
correlations between the crystal structure and several properties, such as solubility [20,23],
physicochemical stability [20,36], and mechanical performance [8,37–40], have been demon-
strated. Even though the phenomenon of thermal expansion has been well-studied for a
wide range of materials [9,17,18,41–43], its relationship with structures of molecular crystals
has been relatively less explored [11,16,44,45]. This work has yielded new insights into the
relationship between crystal structure and thermal expansion of molecular crystals.

The thermal expansivity of the four polymorphs of ROY studied in this work can be
explained based on their crystal packing differences. Expansion is anisotropic in all cases,
which corresponds to anisotropic molecular packing in these crystals. Volume expansivity
(Y < OP ≈ R < ON, Figure 2) shows an inverse dependence on the number of intermolecular
hydrogen bonds: Y (3) > OP (1) = R (1) > ON (0). Among the four polymorphs investigated,
polymorph Y shows the lowest volume expansivity (Table 1), the smallest thermal density
gradient (δρ/δT), and the densest network of intermolecular hydrogen bonds.

For the layered polymorphs (e.g., polymorph ON), the expansivity is the largest along
the directions perpendicular to the layers. Similar observations were made in β-succinic
acid, oxalic acid, and α-adipic acid crystals [44,46], where the expansivity is the largest
along the direction perpendicular to the layers and the smallest in the plane of the layers.
Indeed, the largest overall volume expansion among the four polymorphs; hence, the
absolute value of density change, is observed for polymorph ON, which has a flat, layered
structure but without intermolecular hydrogen bonds. It should be noted that the absence
of intermolecular hydrogen bonds in ON leads to a more energetically isotropic structure
than the other three polymorphs, which is reflected by the relatively more uniform lattice
expansion (Table 1).
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In comparison to polymorph ON, the experimental volume expansivity of polymorph
R is higher despite its similar layered structure. This is attributed to the presence of O . . . H–
O interactions between adjacent (100) layers, which leads to more resistance to expansion
in the direction perpendicular to the layers. The contraction of the α and γ unit cell
angles in R is a consequence of the new force equilibrium among atoms to accommodate
the large increase along the a axis to achieve overall positive thermal expansion. The
contraction of a unit cell component on heating, though not as common as expansion, has
been observed in structures involving metallophilic interactions [47], as well as organic
molecular crystals [13,43].

4.2. Density Crossover among Polymorphs

An important consequence of the different thermal expansivity of polymorphs is the
possible violation of the density rule. Polymorph Y has the lowest free energy among the
four ROY polymorphs below ~70 ◦C [26,28]. At room temperature, polymorph Y has the
highest density, and hence the closest packing, which is consistent with its thermodynamic
stability. Thus, density is a good predictor of stability of Y with respect to other polymorphs
at room temperature. However, the significant differences in the volume expansivities of
the four polymorphs suggests the possibility of crossover of their thermal density lines
(Figure 8). When density lines cross, the density rule is necessarily violated at a temperature
either below or above the density crossover temperatures (Td), since the density order
of polymorphs switches when temperature passes Td. In fact, despite being the most
thermodynamically stable, polymorph Y does not have the highest density at absolute zero,
owing to the density crossover phenomenon (Figure 8).

Polymorph R is predicted to have the highest density at absolute zero when applying
linear regression analysis to thermal density data. However, it has been shown that the
relationship between V and T sometimes may deviate from linearity for inorganic atomic
crystals at very low temperatures (typically <30 K) because individual atomic vibrations
assume a cubic temperature variation as temperature approaches absolute zero [9]. A linear
extrapolation of the density gradient is used here as most molecular organic crystals show
linear density gradients up to temperatures very close to 0 K based on an analysis of crystal
structures in the Cambridge Structure Database (CSD) [16]. Although deviations of the
thermal density lines from linearity affect Td, violation of the density rule is inevitable as
long as the thermal density lines cross.

This density crossover phenomenon is independent of thermodynamic stability re-
lationships (i.e., enantiotropic or monotropic) between two polymorphs. For example,
the density lines cross for both the monotropic Y–R pair at ~83 K and the enantiotropic
Y–OP pair at ~17 K. Therefore, for the enantiotropic Y–OP pair, the density rule is valid
only within the temperature range bracketed by the temperatures of density crossover
(Td = ~17 K) and thermodynamic transition (Tt = 346 K). For the monotropic Y–R pair, the
density rule is valid above the density crossover temperature of ~83 K.

Thus, the use of density rule for predicting the thermodynamic stability of polymorphs
requires the consideration of thermal density functions of the polymorphs. The use of only
density values of polymorphs at a single temperature is less reliable than the use of thermal
density functions. At a minimum, when applying the density rule, crystal packing features
should be considered where structures containing a denser hydrogen bond network tend
to be more resistant to thermal expansion. Thus, a polymorph with a lower density at a
given temperature and exhibiting a stronger lattice, e.g., presence of a denser hydrogen
bond network, likely retains its lower density at absolute zero because of its slower rise
in density with decreasing temperature. Therefore, the density rule should be applied
with greater caution, since failed cases are many, especially when the crystal packing is
dominated by hydrogen bonding [20,21,48]. As shown by polymorph R, a polymorph
with a higher density at absolute zero may not necessarily be the most thermodynamically
stable form [16]. It should also be mentioned that the density rule may fail even in the
absence of the thermal density gradient crossover phenomenon. An example of such
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violation is the case of acetaminophen polymorphs I and II. The thermodynamically stable
acetaminophen polymorph I is consistently less dense at all temperatures up to 0 K, which
is again attributed to the differences in the strengths of hydrogen bond interactions in the
two polymorphs [48].

Mechanistically, the impact of crystal density (or volume) on polymorph stability is
linked to its effect on the rank order of free energy (∆G) of polymorphs. Under constant
pressure (P) at 0 K, ∆G is equivalent to the rank order of the crystal enthalpies (∆H), which
is dependent on the differences in both internal energies of polymorphs (∆U) and the
cell volumes (∆V) or densities, since ∆H = ∆U + P∆V [49]. Thus, both internal energy
and density differences among polymorphs contribute to their different thermodynamic
stabilities. The difference in crystal packing, in particular the number and type of hydrogen
bonds among polymorphs, contribute to differences in both density and ∆U.

5. Conclusions

Thermal expansion, a fundamental physical property of materials, has received lim-
ited exploration for polymorphs of molecular crystals. In this study, we established the
qualitative relationships between the thermal expansivity of four ROY polymorphs and
their crystal-packing patterns. Thermal expansivity is highly anisotropic in all four ROY
polymorphs, which is consistent with their structural anisotropy. A layered molecular
packing pattern seems to favor overall volume expansion of the lattice, while the presence
of a dense hydrogen-bonded molecular network hinders it. These observations suggest
that directional hydrogen-bonding interactions are more resistant to thermal expansion
than nondirectional van der Waals’ interactions. The phenomenon of thermal expansion
complicates the application of the density rule in predicting stability relationships among
polymorphs. Thermal density functions of different polymorphs can cross, leading to
the temperature dependence of the rank order of their density. As such, it is risky to
determine stability relationships of polymorphs based on density values determined at a
single temperature, especially if it is far away from the temperature of interest. Despite
being the most stable polymorph at absolute zero, polymorph Y does not have the highest
density, owing to the density crossover phenomenon resulting from the different thermal
expansivities of ROY polymorphs.

Supplementary Materials: Summary of crystal structure solution parameters at different temper-
atures for the polymorphs are provided in the supporting information. The following supporting
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