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Abstract: Non-equilibrium molecular dynamics simulations have been used to investigate strain-
rate dependence of plasticity and phase transition in [001]-oriented single-crystal iron under ramp
compression. Here, plasticity is governed by deformation twinning, in which kinetics is tightly
correlated with the loading rate. Over the investigated range of strain rates, a hardening-like
effect is found to shift the onset of the structural bcc-to-hcp phase transformation to a high, almost
constant stress during the ramp compression regime. However, when the ramp evolves into a
shock wave, the bcc–hcp transition is triggered whenever the strain rate associated with the plastic
deformation reaches some critical value, which depends on the loading rate, leading to a constitutive
functional dependence of the transition onset stress on the plastic deformation rate, which is in
overall consistence with the experimental data under laser compression.

Keywords: plasticity; iron; alpha–epsilon; phase transition; molecular dynamics simulations; ramp;
shock wave; hardening-like effect

1. Introduction

Over the past few decades, there has been an increasing interest in using dynamic
compression at extremely high strain rates to investigate both plasticity and pressure-
induced phase transition [1–3]. Usually, such studies are performed under the conditions
of uniaxial strain, which involve large deviatoric stresses. High strain rates affect material
behavior in both the mechanisms of plastic deformation and the kinetics of polymorphic
phase transitions [4,5]. They can even affect melting temperatures at high pressures [6].
Shock-loading experiments were classically realized under planar plate impacts where
the strain rates are typically about 104 to 106 s−1 [7–9]. Then, iron was found to plasti-
cally yield at a stress of 0.92 to 1.3 GPa, while the ground-state body-centered cubic (bcc)
structure (α phase) was found to transform into the high-pressure hexagonal close-packed
(hcp) structure (ε phase) at a stress σT of about 12.88 to 14.26 GPa, which is higher for
single-crystal than polycrystalline iron [7,9,10]. Higher strain rates can be achieved under
laser ramp compression. Indeed, strain rates from 3 to 9 × 107 s−1 were reported by
Amadou et al. [11] under nanosecond laser compression, where the phase transformation
onset stress, σT , was found to vary from 11 to 25 GPa with a constant completion time of
1 ns, suggesting the existence of an isokinetic regime over the explored range of strain rates.
Furthermore, an extended analysis of strain-rate effects, up to 108 s−1, on both plastic flow
and phase transition kinetics in iron was reported by Smith et al. [12,13], where the elastic
limit (σE) in polycrystalline iron was found to vary from ∼1 to ∼5.5 GPa, while σT ranged
from ∼14 to ∼40 GPa. Moreover, a constitutive functional dependence on the plastic
deformation strain rate,

.
εP, was evidenced for both σE and σT . At strain rates higher than

about 5 × 106 s−1, a sharp increase in σE with increasing
.
εP was interpreted as a transition

in the plastic flow regime from thermally activated to phonon drag dislocation dynamics,
which affects the structural phase transition kinetics by limiting the new phase growth
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through energy dissipation [13]. In this regime, σT was found to scale as
.
ε

0.18
P . A strain

rate on the order of about 108 s−1 was also reported by Hawreliak et al. [14]. However, σT
was found to be much lower, at about 15 GPa, with no obvious correlation with the strain
rate. Even higher strain rates up to about 109 s−1 are currently available under picosecond
laser compression [15,16]. In this ultra-fast deformation regime, Crowhurst et al. [17] and
Hwang et al. [18] found σT values of 25 and 34 GPa, respectively.

These experimental ultra-high strain rates are comparable to those currently available
in molecular dynamic simulations. Thus, Gunkelmann et al. [19], using the modified
version of the Ackland EAM potential [20] to study the behavior of polycrystalline iron at
a strain rate of about 109 s−1, showed that yielding occurs through dislocation activities
around the grain boundary at 10 GPa with the onset stress of a structural bcc-to-hcp phase
transformation σT of about 23 GPa. A strain-rate regime ranging from 109 s−1 to 1011 s−1

was explored by Wang et al. [21] using a modified analytic embedded atom model [22],
and they found that σT varied from 25 to 38 GPa with an exponential dependence in

.
εP,

σT ∝
.
ε

0.196
P . Finally, using Voter–Chen potential [23], singularized by a lack of plasticity

before the structural phase transformation [24], Shao et al. reported a linear dependence
of σT on

.
εP [25] over a strain rate range from 1010 s−1 to 1011 s−1 with σT ranging from 15

to 25 GPa. Thus, despite extensive research, the dynamic response of iron, including the
bcc–hcp phase transition, its kinetics, and its strain-rate dependence under high strain rates
still remains an open issue. In this context, using the modified version of the Ackland iron
potential [20], we have reported in previous papers that defect-free single-crystal iron at a
50 K initial temperature subjected to ramp compression along the [001] direction exhibits a
hardening-like effect, which has been shown to inhibit the nucleation of the hcp phase so
that the onset of the phase transformation is shifted to very high pressures (on the order
of 100 GPa) [5,26–28]. This remarkable effect, never reported before, deserves extensive
study because it may contribute to the strong variations in the transition onset pressure
with the loading rate classically observed experimentally. Here, we go further to explore
the strain-rate dependence of both plasticity and phase transition and to investigate the
influence of the hardening-like effect on the σT − .

εP relationship. Because we reported that
this hardening-like effect is more important when the ramp wave propagates along the
[001] direction than along other low-index crystallographic directions [26], we choose to
simulate the response of a [001]-oriented single-crystal iron.

2. Method and Computational Details

Samples with up to 28 million atoms, 100a0 × 100a0 cross-section, and a length up
1400a0 (with a0 = 2.87 Angstrom, the lattice constant) were simulated using the Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS) molecular dynamics code [29].
The interactions between atoms were modeled through the embedded atom model (EAM)
formalism [30,31], where the iron model was a modified version of the Ackland poten-
tial [20], which was successfully used to address both plasticity and phase transition in
iron [5,19,26]. The sample was thermalized at a 50 K initial temperature, then dynamic
ramp-wave compression was realized by driving an effective infinite-mass wall piston
with an imposed velocity v(t) along the z-axis, oriented along the [001] crystallographic
direction, while periodic boundary conditions were used for the transverse directions. In
order to investigate strain-rate effects, the piston velocity was increased linearly from 0 to
1600 m·s−1 with a rise time varying from 15 to up to 150 ps. The corresponding loading
rates were about 1–10 × 109 s−1, which is comparable with that reported under picosecond
laser dynamic compression [15–18]. The local thermodynamic and mechanical properties,
such as longitudinal stress σz, shear stress, temperature, etc., were evaluated within a
spatial planar bin (of 3-lattice constant width) perpendicular to the wave propagation di-
rection in the same manner as our previous work [5,26,27]. Finally, local structural analysis
was performed by adaptative common neighbor analysis (CNA), centrosymmetry, and
DXA, as implemented in OVITO software (https://www.ovito.org, accessed on 18 January
2023) [32].

https://www.ovito.org
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3. Results and Discussion

Figure 1 shows snapshots of atom configurations for simulations where the ramp
rise time was 30, 45, and 60 ps. At each loading rate, the compressed material exhibits
four distinct regimes: an elastic compression of bcc-iron (yellow zone); a regime where
defects associated with plastic deformation can be observed (green zone with brown
micro-features identified as twins); a regime where these defects associated with plastic
deformation progressively disappear (blue zone); and a regime where iron is transformed
from bcc to hcp phase (violet zone). More details on wave propagation and splitting of
the compression fronts can be found in ref. [5]. At each loading rate, the sample is found
to yield at a stress σz of about 12 GPa via the generation of micro-twins with no sizeable
influence on the loading rate. The fact that twinning deformation is independent of the
loading rate is consistent with the well-known existence of the twinning threshold in
bcc materials, such as tantalum, reported under both experiments [1,33] and molecular
dynamics simulations [34]. Thus, regardless of the loading rate, twinning is found to be
the main deformation mechanism for the defect-free single-crystal iron ramp compressed
along the [001] crystallographic direction.
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Figure 1. Snapshots of the atom configurations at times 33 ps (a), 48 ps (b), and 60 ps (c) under ramp
compression rise times of 30 ps (a), 45 ps (b), and 60 ps (c). The bcc atoms are colored according to
their σz Va value, where Va is the atomic volume, and σz is the stress component along the wave
propagation z-axis. The hcp and fcc atoms, detected by the adaptative CNA analysis, are colored
in magenta and white, while twins (detected by centrosymmetry analysis) are colored in brown
(regardless of the stress). A double nucleation front of the hcp phase (violet) can be observed since the
transformation occurs (i) at the top of the pressure ramp propagating from left to right and (ii) where
the ramp wave steepens into a shock (see text for more details). Note that a longer ramp rise time
requires longer propagation distance. Thus, the sample length in the wave propagation direction was
800 a0 for (a), while it was 1400 a0 for both (b) and (c).

Figure 2 shows the evolution of the twin fraction during the compression for a ramp
rise time of 15, 30, 45, and 60 ps. After the nucleation period, the twin fraction grows
rapidly, reaching its maximum within 3–4 ps. Then, the twin fraction starts to decrease,
i.e., twins formed under moderate pressure are removed upon further compression, which
we refer to as a hardening-like effect (see Figure 1, blue zone). The longer the ramp rise time,
the more important the twins’ fraction and the duration of the subsequent receding phase.
Thus, upon increasing the ramp rise time, the maximum twins’ fraction increases from 28%
to a value as high as ≈67%, in consistence with the 50% twins’ fraction usually assumed
under dynamic loading [1,33]. Furthermore, this increase in the twins’ fraction upon
increasing the ramp duration is consistent with both experimental observations [35] and
thermo-mechanical simulations, including a model of twins’ nucleation and growth [36].
In the region affected by the hardening-like effect (blue zone), where twins are almost
fully removed and no dislocation activities can be detected, the shear stress increases with
compression, as can be seen in Figure 3. Such elastic stiffening of the bcc matrix leads to
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a confinement effect inhibiting the nucleation of the hcp phase. This confinement effect
has been interpreted in the context of classical nucleation and growth theory, and it has
been shown that in order to activate new phase nucleation two different scenarios are
possible [5]: (i) ramp compressing must be kept at a much higher pressure by increasing
the piston maximum velocity or (ii) the ramp wave, which steepens during its propagation
due to the increase in sound velocity with pressure in the bcc phase, should be allowed
to evolve into a shock wave. Thus, for the simulations shown in Figure 1, both piston
maximum velocity and propagation distance are enough that two nucleation fronts can
be observed. The first front, on the left part of the sample, corresponds to the top of the
ramp, where pressure is sufficiently high for the hcp nuclei to grow and reach a critical size,
despite a rigid, confining bcc matrix due to the hardening-like effect. The second nucleation
front, in the middle of the sample, corresponds to the second scenario above (ii), where the
so-called P1 wave evolves into a shock wave during its propagation.
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Figure 3. Shear stress profiles along the loading direction Z for ramp rise times of 15 ps (a), 30 ps (b),
and 60 ps (c).

Thus, the resulting instantaneous thermodynamic driving force is high enough for hcp
embryos to grow and reach a critical size almost immediately behind the shock front [37].
If the ramp rise time is increased to a sufficiently high value, the P1 wave does not form a
shock upon the simulation duration. Thus, the second nucleation front can no longer be
observed for a ramp rise time above 150 ps.

Figure 4 shows the structural phase transition onset stress, σT , as a function of the
ramp rise time for both scenarios (i) and (ii) mentioned above. In the first scenario, upon
increasing the ramp rise time, i.e., decreasing the loading strain rate, the phase transition



Crystals 2023, 13, 250 5 of 11

onset stress can be observed to remain almost constant, at about 100 GPa (red triangles), so
that no loading rate dependence can be observed. This observation can be interpreted as
follows: As the hardening-like effect confines the hcp embryos, only the material strength
determines the maximum pressure supported by the bcc matrix. Yet, it has been shown
that above a critical strain rate of 105 s−1, the material strength becomes strain-rate inde-
pendent [38,39]. This result highlights the crucial role of the strength of the parent phase
matrix in the dynamics of structural phase transformation due to the generation of the
elastic strains necessary to accommodate the difference between the parent and daughter
crystalline structures.
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and scenario (ii) where the ramp wave steepens into a shock (blue stars).

Although the transition onset stress in scenario (i) remains almost constant after the
hardening-like effect, the pressure relaxation accompanying the structural phase trans-
formation is found to be rate-dependent (Figure 5). Indeed, this relaxation is due to the
coexistence of both bcc and hcp phases in the sample, which causes a drop in the sound
velocity that evolves as a result of the balance between the hcp nucleation and loading
rates [13]. Moreover, increasing the ramp compression duration seems to enhance both the
size and the ovaloid shape of the hcp nuclei (see Figure 6).
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Figure 6. Snapshots of atom configurations showing a cross-section of the phase transformation front
once compression overcomes the hardening-like effect scenario (i) for a ramp compression rise time
of 30 ps (a), 45 ps (b), and 60 ps (c).

Ramp compression can be seen as a succession of infinitesimal compression waves,
which all propagate at the speed of sound in the upstream medium. Because this speed
usually increases with pressure (above the elastic limit), these elementary waves catch up
with each other so that the ramp becomes steeper with increasing propagation distance and
evolves naturally into shock waves. Its rise time and the associated plastic deformation
strain rate,

.
εP, is thought to be associated with the microscopic processes of dislocation

multiplication and motion, twinning, vacancy production, precipitate alteration, etc. [40,41].
Figure 5 clearly shows such gradual steepening of the compressive wave beyond the elastic
limit (Pz > 12 GPa). This wave, usually referred to as the P1 wave, is associated to the plastic
compression of the bcc phase, up to the onset of the transition to hcp. The average plastic
deformation strain rate,

.
εP, associated with the P1 wave is calculated as follows [41,42]:

.
εP =

1
∆zP1

∫
∆zP1

.
ε(z)dz (1)

where ∆zP1 is the width of the P1 wave between the elastic front and the bcc–hcp phase
transition front in the scenario (i), as can be seen in Figure 7. The evolution of

.
εP as a

function of time for various ramp rise times is presented in Figure 8. It ranges from a
few times 109 s−1 to about 1011 s−1, in consistence with the values reported under the
picosecond laser compression experiment [16,17]. As expected, when the ramp steepens,
.
εP increases as a function of time more rapidly for lower ramp rise time than for higher
ramp rise time [43]. For each rise time,

.
εP shows a vertical asymptotic upward variation

corresponding to the shock formation during the wave propagation through the sample.
The lower the loading ramp rise time, the earlier the shock formation. Due to the complexity
of the plastic response involved here, i.e., twins’ formation, hardening-like effect, and phase
transition, including hcp phase nucleation and growth, the time taken for steepening is
much lower than the ratio of ~1.4 to 1.6 times the rise time of the ramp found from the
analytical models and MD simulations of simple materials such as Al and Cu [43,44].

The bcc-to-hcp phase transition is triggered in scenario (ii) whenever the plastic strain
rate,

.
εP, reaches a certain critical value that depends on the loading conditions (see Figure 8).

This critical
.
ε

c
P ranges from 6.71 × 1010 s−1 to 0.88 × 1010 s−1 when the ramp loading rise

time increases from 15 to 60 ps. Indeed, when these critical values are reached, the dynamic
loading switches from ramp to shock compression, where the material is carried almost
instantaneously from the thermodynamic stability conditions of the bcc phase to those
of the hcp phase. The resulting driving force is high enough for hcp embryos to reach a
stable critical volume almost instantly behind the shock front. Thus, the hcp phase starts to
nucleate behind the elastic–plastic transformation front leading to a second phase transition
front in the sample, referenced above as scenario (ii), as can be seen in Figure 1. In this
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scenario, the transition onset stress, σT , can be observed to decrease from 60 to 42 GPa
upon increasing the ramp rise time from 15 to 60 ps. Thus, in contrast with scenario (i),
σT is rate-dependent. It increases with the strain rate, which is due to the kinetics of the
transformation, and is consistent with experimental observations [11,13,45].
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Figure 9 shows the variation in σT , as a function of
.
ε

c
P (red stars), in comparison

with various data reported in the literature under both experiments and MD simulations.
The black line is the prediction of the Swegle–Grady (SG) law σT = α

.
ε

β
P [40], using the

parameters reported in ref. [14]. The red curve presents the fit of our data using a similar
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law where α = 44.88 ± 0.47 and β = 0.15 ± 0.01. MD simulations are from Wang et al. [21],
using a MEAM potential where the plasticity is dominated by twins; Shao et al. [25], using
the Voter–Chen EAM potential [23], which does not predict plastic deformation before the
structural phase transformation; and Gunkelmann et al. [19], using the same potential as
we did.

σ T
(ii

)(G
Pa

) 

!εP (s
−1)

Figure 9. Variation in the onset stress, σT (in scenario (ii)), with the plastic strain rate,
.
ε

c
P (red stars),

compared with various data reported in the literature in both experiments and MD simulations, see
text for more details.

Experimental data come from Smith et al. [13], where plastic deformation was thought
to be dominated by phonon scattering from defects, nanosecond laser ramp compression
iron by Amadou et al. [11] and Hawreliak et al. [14], or picosecond laser compression
by Crowhurst et al. [17] and Hwang et al. [18]. Although our data deviate from the
predictions by both the original SG model and Smith et al.’s constitutive relationship [13]
at an ultra-high strain rate, their extrapolation to lower strain rates using this updated
SG fit is consistent with the experimental data, including those by Amadou et al. [11],
Smith et al. [13], and Hwang et al. [18]. On the other hand, the magnitude of the power
law exponent in our simulations is slightly different from the 0.196 value reported by
Wang et al. [21] in single-crystal iron for the same crystallographic orientation under MD
simulations using the MEAM interatomic potential. This discrepancy is thought to be
due to the difference in the underlying plastic deformation micro-process predicted by the
different potentials. Indeed, in our simulations, twinning is followed by a hardening-like
effect under further compression, while such a post-twinning effect is not predicted by the
MEAM potential used by Wang et al.

4. Conclusions

NEMD simulations were used to investigate the strain-rate dependence of plasticity
and phase transition in the [001]-oriented single-crystal iron at 50 K under dynamic ramp
compression between 109 s−1 and 1010 s−1. Iron was found to yield at 12 GPa, regardless
of the loading rate, through the generation of micro-twins, which grew rapidly to a peak
fraction before receding upon further compression. The longer the ramp rise time, the
higher the maximum twins’ fraction and the longer the subsequent receding regime, in
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consistence with both experimental and theoretical observations in iron. As reported
previously, twin recession in the absence of any dislocation slip induced a hardening-like
effect, which shifted the phase transition onset stress to a very high value of ≈100 GPa
scenario (i) independently of the loading rate. On the other hand, the phase transition
could be triggered at lower stresses when the ramp evolved into shock wave scenario (ii).
Then, the onset stress σT was evidenced to be strain-rate-dependent. Indeed, the transition
was triggered whenever the strain rate associated with the plastic deformation reached
some critical value,

.
ε

c
P. The higher the ramp compression time, the lower both

.
ε

c
P and σT .

Thus, the onset stress, σT , in this scenario has been shown to follow a Swegle–Grady power
law type [40] in

.
ε

c
P with an exponent of 0.15, i.e., σT ∝

.
ε

c 0.15
P , which is in overall consistence

with some experimental data under laser compression.
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