
Citation: Nasri, S.; Guergueb, M.;

Brahmi, J.; O. Al-Ghamdi, Y.; Loiseau,

F.; Nasri, H. Synthesis of a Novel

Zinc(II) Porphyrin Complex, Halide

Ion Reception, Catalytic Degradation

of Dyes, and Optoelectronic

Application. Crystals 2023, 13, 238.

https://doi.org/10.3390/cryst

13020238

Academic Editor: Kil Sik Min

Received: 12 January 2023

Revised: 20 January 2023

Accepted: 24 January 2023

Published: 30 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

crystals

Article

Synthesis of a Novel Zinc(II) Porphyrin Complex, Halide Ion
Reception, Catalytic Degradation of Dyes,
and Optoelectronic Application
Soumaya Nasri 1,2,*, Mouhieddinne Guergueb 2, Jihed Brahmi 2, Youssef O. Al-Ghamdi 1, Frédérique Loiseau 3 and
Habib Nasri 2

1 Department of Chemistry, College of Science Al-Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
2 Laboratory of Physical Chemistry of Materials, Faculty of Sciences of Monastir, University of Monastir,

Avenue de l’environnement, Monastir 5019, Tunisia
3 Département de Chimie Moléculaire, 301 rue de la Chimie, Université Grenoble Alpes, CS 40700, CEDEX 9,

38058 Grenoble, France
* Correspondence: soumaya.n@mu.edu.sa

Abstract: This work describes the synthesis of a novel zinc(II) porphyrin complex, namely [Meso-
4α-tetra-(1,2,3-triazolyl)phenylporphyrinato]zinc(II) symbolized by 4α-[Zn(TAzPP)] (4), using the
click chemistry approach in the presence of copper iodide. All of the synthetic porphyrin species
reported herein were fully characterized by elemental analysis, infrared spectroscopy, proton nuclear
magnetic resonance, UV-visible spectroscopy, and fluorescence. To synthesize the 4α-[Zn(TAzPP)]
complex (4), we produced 4α-Meso-tetra-o-nitrophenylporphyrin (H2TNO2PP) and 4α-meso-tetra-
o-aminophenylporphyrin (4α-H2TNH2PP) (1) using known classic literature methods. This 4α
atropisomer was converted to 4α-meso-tetra-o-azidophenylporphyrin (4α-H2TN3PP) (3) by reaction
with sodium nitrite and sodium azide, and then it was metalated by Zn(II), leading to [4α-meso-tetra(2-
azidophenyl)porphyrinate]zinc(II) (4α-[Zn(TN3PP)]) (3). The click chemistry synthetic method was
finally used to prepare 4α-[Zn(TAzPP)] (4). This new tetracoordinated zinc(II) porphyrin complex
was prepared and characterized in order to: (i) produce a receptor for anion recognition and sensing
application for Cl− and Br−; (ii) study the catalytic decomposition of rhodamine B (RhB) and methyl
orange (MO) dyes; and (iii) determine the electronic characteristics as a photovoltaic device. Complex
(4) formed 1:1 complex stoichiometric species with chloride and bromide halides and the average
association constants of the 1:1 addicts were ~ 103. The photodecomposition of RhB and MO dyes in
the presence of complex (4) as a catalyst and molecular oxygen showed that complex (4) presented a
photodegradation yield of approximately 70% and could be reused for five successive cycles without
any obvious change in its catalytic activity. The current-voltage characteristics and impedance
spectroscopy measurements of complex (4) confirmed that our zinc(II) metalloporphyrin could be
used as a photovoltaic device.

Keywords: zinc(II) porphyrins; click chemistry; optical anion sensing; UV-visible titration; photoelec-
tronic degradation; photovoltaic devices

1. Introduction

Porphyrins are aromatic tetrapyrrolic macrocycles that are widely represented in living
systems. They participate, in a metalated form, in many biological processes. This is the case
of hemoglobin and myoglobin, which are built on the basis of the iron protoporphyrin IX
complex (heme) and ensure the transport and storage of molecular oxygen [1]. Such natural
macromolecules are also involved in the oxidation of substrates by cytochromes (especially
cytochromes P450) [2] or in photosynthesis in plants and photosynthetic bacteria.

Unlike iron, cobalt, magnesium, and nickel metals present in natural metallopor-
phyrins, zinc(II) is not present in biological systems. Nevertheless, synthetic zinc(II) por-
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phyrin complexes are actually widely used in a large number of fields, e.g., the manufacture
of liquid crystals used in display devices for watches, computer screens, etc. [3,4]. These
porphyrinic derivatives are also used in the design of biosensors [5] as well as in photolu-
minescent [6] and optoelectronic systems [7].

In is worth noting that anion sensing is a rapidly expanding area of research in
supramolecular chemistry [8–14]. This stems from many fundamental roles that the anion
plays in nature, with biological, chemical, biomedical, and environmental applications.

During the last two decades, many investigations have been devoted to the prepara-
tion, characterization, and study of new compounds to be used in the detection of ionic
species. Studying the recognition and sensing of such ionic inorganic species is important
for several reasons: (i) cationic and anionic inorganic compounds, such as cations of heavy
metals (e.g., Cd2+, Hg2+, Pb2+, Sb5+) and many anions (e.g., CN−, Cr2O7

2−, AsO43−), are
very toxic and must be removed from the environment; (ii) anions such as NO3

− and
PO4

2− are present in agricultural fertilizers; and (iii) many ions, such as K+, Na+, and
F−, have very important roles in the functioning of biological systems [15,16]. Among
compounds used for the detection and sensing of inorganic ions, metal-organic frameworks
(MOFs) should be mentioned in the first place [17,18]. The other important species used
as receptors and sensors of anionic and cationic inorganic compounds are the calixarenes,
especially the calix [6], homooxacalix [3], and homoazacalix [3] arenes [19,20].

On the other hand, porphyrins and metalloporphyrins are very attractive hosts to use
for anion recognition studies, as they are spectrophoto-electroactive, which enables the com-
plexation of anions via several physical methods. It has been shown that the well-known
meso-tetraphenylporphyrin (H2TPP) does not have anion binding power alone [21,22]. This
is due to the small size of the cavity of this porphyrin, which does not complex anions via
hydrogen bonding interactions between the ion anion and the porphyrin N . . . H bonds.

In addition, the rigidity of the porphyrin backbone and the cavity also weaken the
formation of anionic bonds. This gave rise to the expansion of the porphyrinic cavity.
This is the case for urea porphyrins, also known as “picket fence porphyrins” [23], and
metalloporphyrin-cage systems [24].

The sensing of anions by hosts that are zinc(II) porphyrin complexes can be monitored
by UV-visible spectral titration studies, e.g., the detection of Cl− and Br− ions by the zinc(II)
porphyrin complex [24]. On the other hand, recent developments with porphyrin-based
solar cells exhibit a promising advance because they use low production cost materials,
are easy to synthesize, have low toxicity, rigid geometry, and efficient electron transfer,
etc. [25–33]. Moreover, porphyrin-based solar cells possess high molar absorption coeffi-
cients and exceptional light harvesting properties, which make them excellent sensitizers
for dye-sensitized solar cells (DSSCs) [34–42].

In this work, a new meso-porphyrin, namely [4α-meso-tetra-(1,2,3-triazolyl)-
phenylporphyrinato]zinc(II) symbolized by 4α-[Zn(TAzPP)] (4), was synthesized using
the click chemistry method [43–45], and the ability of this new zinc(II) porphyrin complex
to capture Cl− and Br− ions was studied. UV-visible, fluorescence, IR, and 1H NMR
spectroscopic characterization of (4) is described. The bonding of Cl− and Br− ions by
complex (4), investigated by UV-visible titration, is also reported. Furthermore, the effi-
ciency of the catalytic oxidative degradation and photocatalysis of rhodamine B (RhB) and
methyl orange (MO) dyes using the triazole meso-arylporphyrin zinc complex were also
investigated. Additionally, the current-voltage characteristics and impedance spectroscopy
measurements of 4α-[Zn(TAzPP)] (4) were studied to determine their electronic properties.

2. Method and Materials

All commercially available reagents were used without further purification. All anions
that were used for selectivity testing were in the form of tetrabutylammonium salt.

UV-visible absorption spectra and titration were recorded on a WinASPECT PLUS
(SPECORD PLUS version 4.2 validation) scanning spectrophotometer. 1H NMR spec-
troscopy was performed on a Bruker DPX 400 spectrometer and chemical shifts are reported
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in ppm below the internal tetramethylsilane (TMS) field. IR spectra with Fourier transfor-
mation were obtained using a PerkinElmer Spectrum Two FT-IR spectrometer. Emission
spectra were recorded in dichloromethane at room temperature on a Horiba Scientific
FluoroMax-4 spectrofluorometer. Samples were placed in 1 cm path length quartz cuvettes.
Luminescence lifetime measurements were performed after irradiation at = 430 nm ob-
tained by the second harmonic of a titanium: sapphire laser (Tsunami Spectra Physics
3950-M1BB picosecond laser + 39868-03 pulse doubler) at a repetition rate of 800 kHz. The
luminescence decays were studied with FLUOFIT software (Picoquant). The emission
quantum yields were calculated at room temperature in dichloromethane solutions using
the optical dilution method. [Zn(TPP)] in air-equilibrated dichloromethane solution was
chosen as the quantum yield standard (φf = 0.031) [46].

The oxidative degradation and photodegradation of MO and RhB dye experiments
were performed at room temperature using 10 mg of the catalyst compound and 10 mL
of an aqueous solution of the MO and RhB dyes (at pH = 6). Stirring was kept at 250 rpm.
The resulting mixture was filtered, and the concentration was then recorded by measuring
the absorption at 555 and 418 nm for MO and RhB dyes, respectively. The decolorization
yields (R%) are given by the following relationship (Equation 1):

R% = (Ao − At)/Ao.100 (1)

where Ao and At are the absorption at t = 0 and at the t instant, respectively.

3. Results and Discussion
3.1. Synthesis

4α-meso-tetra-o-nitrophenylporphyrin(H2TNO2PP) was synthesized using the method de-
scribed in the literature [47]. 4α-meso-tetra-o-aminophenylporphyrin (1) (4α-H2TNH2PP) was
then prepared by the reduction of the nitro group of 4α-meso-tetra-o-nitrophenylporphyrin
to the amine group, following the literature method [47] (Scheme 1). Separation was
carried out using a one-column procedure that enriched the desired cis isomer (desig-
nated by α atropisomer), as described in the literature [48], leading to 4α-meso-tetra-o-
aminophenylporphyrin (4α-H2TNH2PP) (1). 4α-meso-tetra-o-azidophenylporphyrin (2)
(4α-H2TN3PP) was produced using sodium nitrite (NaNO2) and sodium azide (NaN3).
Compound (2) was then metalated using Zn(OAc)2·2H2O, leading to [4α-meso-tetra(2-
azidophenyl)porphyrinate]zinc(II) (3) (4α-[Zn(TN3PP)]). Finally, using the click chemistry
reaction [49], [4α-meso-tetra-(1,2,3-triazolyl)phenylporphyrinato]zinc(II) (4) (4α-[Zn(TAzPP)])
was synthesized.

3.2. Spectroscopic 1H NMR and IR Data

For the 4α-H2TNH2PP (1) and 4α-H2TN3PP (2) free-base porphyrins, the characteristic
types of protons were observed. Thus, the NH-pyrrolic protons, which are exchangeable
and strongly shielded, appeared between −2.5 and −2.7 ppm. The eight β-pyrrolic protons
of the porphyrin macrocycle resonated around 8.8 ppm. The phenyl protons of these
two meso-porphyrins resonated in the range of 8.88 to 7.49 ppm. For the 4α-H2TNH2PP
porphyrin, a singlet was shown around 3.56 ppm, which corresponded to the amine protons
(Figures S5 and S6).

The disappearance of the signal at −2.68 ppm, corresponding to NH-pyrrolic protons
of compound (2), was an indication of the insertion of the Zn(II) ion into the porphyrin ring
(Figure S6). The positions of the peaks of the Hβ-pyrrolic protons, as well as those of the
phenyl protons of the 4α-[Zn(TN3PP)] and 4α-[Zn(TAzPP)] complexes (3)–(4), underwent a
slight shift compared to those of the 4α-H2TNH2PP and 4α- H2TN3PP free-base porphyrins
(Figures S5–S8) [49].

The azide stretching vibration ν(N3) was easily identified from the IR spectra of
compounds (2) and (3), which appeared in the 2130–2068 and 2133–2098 cm−1 domains,
respectively. The IR spectrum of 4α-[Zn(TAzPP)] (4) confirmed the formation of the triazole
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meso-arylporphyrin which showed a strong absorption band at 1731 cm−1 attributed to the
ν(N==N) and ν(C==N) stretching vibrations of the triazole group (Figures S1–S4) [50].
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Scheme 1. General scheme for the synthesis of compounds (1–4): (a): (1) HCl, H2O; (2) NaNO2, HCl,
H2O; (3) NaN3, HCl, H2O, (b): Zn(OAc)·2H2O, CHCl3/C2H5O, (c): CuI, Et3N, Phenylacetylene, in
THF/Acetonitrile.

3.3. Optical Absorption

Figure 1 depicts the electronic absorption spectra of compounds (1)–(4), while the
UV-visible data of these porphyrinic species are given in Table 1. 4α-H2TNH2PP and 4α-
H2TN3PP free-base meso-porphyrins (1)–(2) presented similar UV-visible spectra in solution,
with λmax values of the Soret band at ca. 424 nm and four Q bands at ca. 515, 550, 590,
and 660 nm. The UV-visible spectra of the 4α-[Zn(TN3PP)] (3) and 4α-[Zn(TAzPP)] (4)
Zn(II) porphyrin complexes were slightly shifted compared to those of the corresponding
free-base porphyrins, and the number of Q bands was reduced from four to two, which
was indicative of the metalation of a porphyrin [51].

The optical gap (Eg-op) values of compounds (1)–(4) were 1.83, 1.92, 2.02, and 2.03 eV,
respectively. In particular, the Eg-op values of Zn(II)-metalloporphyrins were close to
2.00 eV. It is worth mentioning that the optical gap values of the two zinc(II) metallo-
porphyrins indicated that these complexes could be used for the development of new
optoelectronic organic semiconductor materials [52].
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Figure 1. UV–visible spectra of compounds (1)–(4) recorded in dichloromethane at concentrations
~10−6 M. The inset shows the enlarged view of the Q bands region.

Table 1. UV-visible data of the free-base porphyrins and the meso-arylporphyrin zinc(II) tetracoordi-
nated complexes. The spectra were recorded in dichloromethane.

λmax (nm) (ε × 10−3M−1.cm−1) Egap-opt (eV) Ref

Compound Soret band Q bands

Free-base meso-arylporphyrins

H2(TPP) a 416(419) 513(20) 550(20) 590(6) 646(6) 1.89 [53]

H2(TEBOP) b 422(295) 517(9) 554(8) 593(5) 651(7) 1.85 [54]

H2(TAzP-IVP) c 424(576) 520(46) 555(29) 595(24) 652(18) 1.86 [55]

H2TNH2PP 424(545) 514(39) 552(41) 592(40) 677(35) 1.83 this work

H2TN3PP 424(519) 516(39) 550(37) 594(38) 642(36) 1.92 this work

Zinc(II) meso-arylporphyrin complexes

[Zn(TPP)] 421(524) 550(21) 591(25) 1.91 [43]

[Zn(TAzP-IVP)] 424(530) 551(26) 592(10) 2.04 [50]

4α-[Zn(TN3PP)] 430(535) 560(410) 598(361) 2.02 this work

4α-[ZnTAzPP] 430(544) 561(394) 601(321) 2.03 this work
a: TTP = meso-tetratolylporphyrinato, b: TEBOP = meso-tetrakis(ethyl-4(4- butyryl)oxyphenyl)porphyrinato, c:
TAzP-IVP = 4-((1-(4-iodinephenyl)-1H-1,2,3-triazol-4-yl)methoxy)-3-methoxyphenyl.

3.4. Photoluminescence Studies

Porphyrins and metalloporphyrins are known to exhibit two types of emissions. The
first emission type, which is between the second excited state S2 and the ground state So
(S2→So), corresponds to the Q bands [Q (0,0) and Q(0,1)]. The second emission type is
between the first exited state S1 and the ground state So (S1→So), corresponding to the
Soret band. The S2→So emission is very weak and negligeable; only the S1→So emission is
considered for porphyrins and metalloporphyrins.

As shown in Figure 2, we noticed a major hypochromic shift of approximately 50 nm
of the Q(0,0) and Q(0.1) bands between free-base porphyrins (1) and (2) and their corre-
sponding zinc porphyrins. The Q(0,0) and Q(0,1) emission bands of compounds (3) and
(4) had wavelengths of about 600 and 665 nm, respectively. The quantum yield values
of compounds (1)–(4) were 0.085, 0.078, 0.054, and 0.033, respectively. The decrease in
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the fluorescence quantum yield values (Φf) was due to the insertion of zinc(II) on the
free-base porphyrins. The fluorescent lifetime values of compounds (1)–(4) were 8.61,
8.78, 3.1, and 1.91, respectively. The photophysical property values of the synthesized
compounds showed that they could be used for various optoelectronic applications, a
priori DSSC systems.
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3.5. Anion Binding Studies

[4α-meso-tetra-(1,2,3-triazolyl)phenylporphyrinato]zinc(II) complex (4) (4α-[Zn(TAzPP)])
was tested as a detector of Cl− and Br− anions by UV-visible titration in dichloromethane.
Anions were added as their salts of the non-complexing cation tetrabutylammonium (TBA).

The UV-visible titration spectra of complex (4) showed a clear change of the Soret
and Q bands as the concentration of the Cl− and Br- anions increased (Figure 3a,b). The
titrations for Cl− and Br− ions on [Zn(TTP)] (TTP = meso-tolylporphyrin) used as a reference
are shown in Figure 3c,d. Table 2 summarizes the values of the association constants Kas for
[Zn(Porph)Cl] (Porph = TTP and TAzPP) and [Zn(Porph)Br] complexes. The Kas values
obtained from the titration of the [Zn(PC)X] complex with the cage porphyrin (PC = 4α-
meso-(tetrakis(2-azidoacetamidophenyl)porphyrinate [23] with Cl− and Br− ions are also
shown in Table 2.

Upon successive addition of Cl− to complex (4), the UV-visible titration study showed
a bathochromic shift of the Soret band from 430 to 439 nm (∆λmax = 9 nm), with one distinct
isosbestic point at 434 nm, thus proving the formation of a 1:1 coordination complex type
[Zn(Porph)(L)] (L = axial ligand). A red shift was also observed for the Q(0,0) and Q(0,1)
bands. Similar changes were also noted upon Br− addition to a solution of 4α-[Zn(TAzPP)]
(4), using the same concentrations, showing a red shift of the Soret and Q bands. As the
titration progressed, an isosbestic point was also observed at 436 nm for the Soret band.

A UV-visible titration with zinc(II)-meso-tetratolylphenylporphyrin ([Zn(TTP)]) was
also performed to compare the Cl− and Br− detecting properties of zinc complex (5) with
those of the [Zn(TTP)] complex.

The association constants for the 1:1 complex, calculated using the so-called “strong
interactions” method [56] (see the supplementary information for details), are summarized
in Table 2. From this table, it can be seen that in the case of Cl-, the average Kas value of
4α-[Zn(TAzPP)] (4) was 0.301 × 103, which was higher than that of [Zn(TTP)] porphyrin
with a Kas value equal to 0.063 × 103. On the other hand, these two values were far lower
than that obtained with the cage porphyrin PC [23], with a value is equal to 1.220 × 104.
For the bromide ion, the Kas values were 0.441 × 103 for porphyrin derivative (4) and 0.168
× 103 for the [Zn(TTP)] complex, while the association constant Kas value for [Zn(PC)Br]
was equal to 0.005 [23]. These results showed that our synthetic zinc(II) porphyrin 4α-
[Zn(TAzPP)] (4) was selective for Br− over Cl− anions and that complex (4) presented a
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better binding affinity for Br− than the cage porphyrin (PC). This could be explained by
the fact that the cage porphyrin has a cavity which is not large enough to accommodate the
large size of the bromide ion.
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Table 2. Values of association constants (Kas) and log(Kas) for our zinc(II) metalloporphyrins and
other related complexes.

Complexes log(Kas) (Kas) Ref.

[Zn(TAzPP)Cl] 2.407 0.301 × 103 this work

[Zn(TTP)Cl] 1.791 0.063 × 103 this work

[Zn(PC)Cl] - 1.220 × 104 [23]

[Zn(TAzPP)Br] 1.299 0.441 × 103 this work

[Zn(TTP)Br] 1.789 0.168 × 103 this work

[Zn(PC)Br] - 0.005 [23]

3.6. Degradation of Rhodamine B (RhB) and Methyl Orange (MO) Dyes

The ability of complex (4) to catalyze the degradation of RhB and MO dyes was tested
using an aqueous hydrogen peroxide solution at room temperature. The optimal condition
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of this degradation was found to be as follows: mass of complex (4) was m = 10 mg, the
H2O2 aqueous solution concentration was Co = 20 mg.L−1.

The oxidation of organic compounds by hydrogen peroxide catalyzed per metallic
species is known to involve the radical •OH, leading to a formation of intermediate species.
In our case, the disappearance rate of the RhB and MO dyes could be obtained through the
following equation (Equation (2)):

dC
dt

= −k.C.[OH.] (2)

where C is the concentration of the MO and RhB dyes at time t and k is defined as the second
order rate constant of the MO and Rh B dyes reacting with •OH. The equation can be further
simplified if one considers that the concentration of •OH is constant, assuming the steady
state situation for the net formation rate of these intermediates. Thus, the degradation rate
of the MO and RhB dyes due to the combination of hydrogen peroxide is finally given by
Equation (3):

dC
dt

= −ko.C (3)

where ko (in min−1) is the pseudo-first order rate constant, and Ct and Co are the concentra-
tions at time t and the initial concentration, respectively. Figure 4 shows the curves Ct/Co
versus time. The degradation yield (R%) is given by the following relation (Equation (4)):

R(%) =

(
Co − Ct

Co

)
.100 (4)
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As shown in Figure 4, when we used only MO and Rh B dyes with the H2O2 aqueous
solution, there was no degradation of the organic dyes. The use of an aqueous solution
of H2O2 (Co = 10 mg.L−1) led to degradation yields of 45.5% and 42.3% for the MO and
RhB dyes, respectively, after 60 min of reaction. The ko values of the pseudo-first order
rate constant of the degradation concerning the MO or RhB dye-H2O2-complex (4) systems
were 0.01 × 10−2 min−1 (R2 = 0.9017) and 0.011 × 10−2 min−1 (R2 = 0.9776), respectively.

3.7. Photodegradation of MO and RhB Dyes

First, complex (4) was utilized to degrade MO and RhB dyes under visible light il-
lumination (λ > 400 nm) for the sake of exploring further photocatalytic transformations.
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In a typical trial, an aqueous suspension (50 mL) containing MO or RhB dye (20 mg/L)
and 10 mg of complex (4) was placed in the reactor under visible light irradiation. The
suspension was stirred in the dark for 30 min before illumination to ensure the adsorp-
tion/desorption balance was established.

At defined time intervals, an appropriate amount of suspension was centrifuged and
filtered through a filter membrane to remove solid particles and collect the filtrate for
further analysis. The maximum absorption wavelength of the MO and RhB dyes (λmax)
were 418 and 555 nm, respectively.

As shown in Figure 5, complex (4) showed effective degradation of MO dye. More
than 75% of the RhB dye was degraded after irradiation for 60 min, while the percentage of
degradation of the MO dye was 63%.
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RhB + complex (4). (Right) Kinetics of complex (4)-catalyzed photo degradation of MO and Rh B
dyes in aqueous solution.

The kinetics of the degradation reaction can be described using a first-order model
for low concentrations of the MO and RhB dye solutions. The pseudo first-order kinetics
equation is expressed as follows (Equation (5)):

ln(Co/Ct) = kot (5)

where Ct is the MO or Rh B dye concentration in aqueous solution at time t (mg/L), Co is
the initial MO or RhB dye concentration (mg/L), and ko is the apparent pseudo-first-order
kinetic constant (min−1). The plots ln(Ct/Co) as a function of time are shown in Figure 5.
The calculated values of ko were 1.6 × 10−2 min−1 (R2 = 0.9344) and 2.3 × 10−2 min−1

(R2 = 0.9856) for the MO and RhB dyes, respectively. The excellent fitting indicated that the
photoreaction followed first-order reaction kinetics.

The principle of heterogeneous photocatalysis (Figure 6) is based on the activation
of complex (4) by a supply of light energy hν ≥ Eg (Eg = band gap energy). During this
activation step, an electron (e−)/hole (h+) pair is created, which results from the passage of
an electron from the valence band to the conduction band. The electron will react with the
oxygen adsorbed on the surface of our porphyrinic compounds, while the hole h+, reacts
with the surface of the OH ions to form highly oxidizing hydroxyl radicals (OH.), which is
responsible for the degradation of pollutants.
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Figure 6. Pictorial representation of indirect dye degradation process.

Complex (4), repeatedly used, exhibited properties identical to those of the initial
complex, with no obvious drop in photocatalytic efficacy even after five cycles, achieving
photodegradation efficiency of 60% and 73% for the MO and RhB dyes, respectively
(Figure 7).
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4. Electronic Study on Complex (4)

To prepare the thin film containing complex (4), ITO glass slides were washed in an
ultrasonic bath containing acetone, then in an isopropyl alcohol bath. Subsequently, the
clean substrates were dried with a nitrogen gas flow. A 15 mg sample of complex (4) was
dissolved in 10 mL of dichloromethane. Afterwards, the solution containing the zin(II)
coordination compound was deposited on an indium tin oxide (ITO) glass slides by spin
coating at 2000 rpm for 25 s. The aluminum (Al) electrodes were deposited by thermal
evaporation. To obtain the best quality images of the film surface, AFM (atomic force
microscopy) was employed, which showed the homogeneity of the film with a coherent
structure (1.86 nm).

Owing to the interesting value of the gap energy of complex (4), which was in the
range of semiconductor materials, we carried out electrical and dielectric tests on this new
zinc(II) porphyrin compound in order to study its electronic properties.
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The I-V measurements were obtained using a Keithley 236 instrument and the spectro-
scopic impedance measurement was performed using an impedance analyzer (Solartron
1260). The electronic properties of the ITO/complex (4)/Al system can provide information
about the transmission properties in organic materials. The current-voltage curve measured
at room temperature of the ITO/Complex (4)/Al system is shown in Figure 8. The curve
shown in this figure presents a similar behavior to that of electronic devices, such as diodes,
indicating complex (4) could be used as a photosensitizer in DSSCs (dye-sensitized solar
cells) [57–60]. The threshold voltage was approximately 0.64 V.
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Indeed, we observed an asymmetric curve for high voltage, which was related to the
difference in the injection of electrons and holes of the anode (ITO) and cathode (Al). At
low voltage, the I-V curve indicated symmetric behavior. This behavior is explained by the
theory that the localized state with defects provides the localized gap states.

Notably, recent work [61] has shown a useful current hysteresis behavior for some
porphyrin species. By introducing a triazole group, the hysteresis behavior was eliminated
and consequently, we completely changed the electronic properties of our tested molecule.

The semi-logarithmic scale of the I-V curve of complex (4) indicated that the value of
the barrier height of this species was approximately 1.3083 V and the saturation current
value was 5.97 × 10−6 A.

In addition, we studied the mechanism of electrical conduction through the junction
by presenting the I-V characteristics in double logarithmic plot (Figure 9). The I-V plot
of the ITO/complex (4)/Al system showed the presence of different parts in which the
current depended mainly on the applied voltage. At low voltage, the first part of the curve
corresponded to a value of the slope in the order of 1.2, indicating prevention of the charge
injection due to the presence of a small amount of interface barrier. For this part of the
curve, which defines the ohmic region, the amount of the heat-activated charge carriers
was too small and the trap levels were vacant. The current density equation is as follows
(Equation (6)):

JΩ = q.p0.µ.
V
d

(6)

where µ represent the charge mobility, q defines the electronic charge, d refers to the film
thickness, and p0 is the free carrier density.
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In the second part of the curve, where the voltage was moderate, the value of the
slope was close to 2.2. This can be explained by the dependence of the voltage according to
the power law (I-V), which is associated with the space charge limited current mechanism
(SCLC) [62]. In addition, the applied voltage increased and passed through the transition
voltage, which reflected the increase in the density of charges injected by the electrodes.
The charge density injected will govern the transport ability of the layer of complex (4).
The current density varies following equation (Equation (7)):

JSCLC =
9
8

ε.µe f f .
V2

d3 (7)

where d is the film thickness, V is the applied voltage, ε is the material permittivity, and
µeff is the effective carrier mobility.

Based on the SCLC model (Equation (7)), the µeff in the film of complex (4) had a
value of 0.45 (10−5 cm2/Vs). In the third part of the curve, where the voltage is high, the
value of the slope was approximately 3.4. This represented the trapped charge limit current
(TCLC) area where the distribution of traps changed exponentially. However, the transition
between SCLC and TCLC mechanisms is affected by the trapping levels. This transition
occurs when the quantity of injected carriers surpasses the density of free carriers [63].

4.1. Impedance Spectroscopy

To investigate the dielectric characteristics of complex (4) and determine the participa-
tion associated with the volume and interface, we carried out an impedance spectroscopy
study [64–66]. Equation (8) describes the impedance Z(ω) of complex (4) as a function of
frequency:

Z(ω) = Re (Z) + jIm (Z) = Z’(ω) + jZ”(ω) (8)

This equation shows that the complex impedance Z(ω) is composed of two parts: the
first part is the real part (Re (Z) = Z’) and the second part is the imaginary part (Im (Z) = Z”).
The semicircular spectrum present in the impedance spectrum (Nyquist plot) of the complex
(4) structure suggested the homogeneity of the electrode-organic interface (Figure 10).
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4.2. Conductance

Figure 11 shows two regimes of conductance of complex (4), which depended essen-
tially on the frequency applied. The first regime was observed at low frequency, where the
conductance increased with increasing frequency until reaching a maximum at a frequency
of approximately 1.4 Hz, which indicated a disordered system. However, the second regime
observed at high frequency indicated that the conductance tended toward zero, where the
dipoles neglected the frequency. This phenomenon was associated with the jump transport
mechanism, where the dipoles will be guided by the applied field, which will lead to an
increase in the charge hopping process (Figure 11) [67].
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5. Conclusions

We successfully synthesized a new zinc(II) meso-arylporphyrin coordination com-
pound: [meso-4α-tetra-(1,2,3-triazolyl)phenylporphyrinato]zinc(II) (4) with the formula
4α-[Zn(TAzPP)]. This new Zn(II) metalloporphyrin was characterized by 1H NMR and
infrared, UV-visible, and fluorescence spectroscopies. This coordination compound was
able to make 1:1 stoichiometric complexes with Cl− and Br− ions, with average association
constant values of 0.30 × 103 and 0.44 × 103, respectively, which were higher than those of
the related [Zn(TPP)] (TPP = meso-tetraphenylporphyrinate) complex. In addition, complex
(4) was tested as a catalyst in the degradation reaction of rhodamine B (RhB) and methyl
orange (MO) dyes, using both photodegradation and degradation by aqueous hydrogen
peroxide solution. The photodegradation yield values of the MO and RhB dyes using
complex (4) were close to 63% and 75%, respectively, while the degradation yield values
using aqueous dye solutions, H2O2, and complex (4) were 45.5% and 42.3% for MO and
RhB, respectively. Notably, the use of this complex several times without variation in
the degradation yield of the MO and RhB dyes indicated that complex (4) was a good
catalyst for such reactions. Furthermore, our new Zn(II)-porphyrin species was used in
the ITO/complex (4)/Al system for current-voltage and impedance spectroscopy mea-
surements. The I-V curve of this system exhibited a similar behavior to that of diodes,
with a threshold voltage of approximately 0.64 V. The impedance spectrum (Nyquist plot)
of complex (4) presented a semicircular spectrum that suggested the homogeneity of the
electrode-organic interface. Finally, the conductance properties of complex (4) were investi-
gated, indicating the presence of two regimes of conductance depending essentially on the
frequency applied.

Supplementary Materials: The following supporting information can be downloaded at: https://
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IR spectra of the complex 4α-[Zn(TN3PP)]) (3); Figure S4: IR spectra of complex 4α-[Zn(TAzPP)]
(4); Figure S5: 1H NMR spectrum of the free base porphyrin 4α-H2TNH2PP (1) (400 MHz, CDCl3);
Figure S6: 1H NMR spectrum of free base porphyrin 4α-H2TN3PP (2) (400 MHz, CDCl3); Figure S7:
1H NMR spectrum of 4α-[Zn(TN3PP)] (3) (400 MHz, CDCl3); Figure S8: 1H NMR spectrum of
α4-[Zn(TAZPP)] compound (4) (400 MHz, CDCl3).
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