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Abstract: In the present study, the predication of the binding affinity (log RBA) of estrogen receptor
alpha with three categories of environmental endocrine disrupting chemicals (EDCs), namely, PCB,
phenol, and DDT, is performed by the quantum chemical genetic algorithm multiple linear regression
(GA-MLR) method. The result of the optimal model indicates that log RBA increases with increasing
the electrophilicity and hydrophobicity of EDCs. However, by using the quantum chemical cluster
model approach, the modeling results reveal that electrostatic interaction and hydrogen bonding
play a significant role. The chemical reactivity descriptors calculated based on the conceptual density
functional theory also indicate that the binding mechanism of charge-controlled interaction is superior
to that of frontier-controlled interaction.

Keywords: estrogen receptor alpha; endocrine disrupting chemicals; quantum chemical genetic
algorithm multiple linear regression; quantum chemical cluster model; conceptual density
functional theory

1. Introduction

Endocrine disrupting chemicals (EDCs) are a class of chemicals that come from the
outside world, which can interfere with the production, release, transport, metabolism,
binding, and elimination processes of hormones in the body [1]. Many household and in-
dustrial products are EDCs, however, their disposal results in the release of many chemicals
into the ecosystem, adversely affecting environmental and human health. One of the most
extensively studied nuclear receptor targets associated with endocrine disrupting effects
is the estrogen receptor alpha (ERα) [2]. The binding mechanisms of the stable ERα-EDC
complexes are thought to be specific hydrogen bonds and hydrophobic interactions in the
ligand binding pocket (LBP) [3]. Furthermore, the EDCs with larger sizes have higher
binding affinity from the viewpoint of hydrophobic interactions [4].

Using quantum chemical descriptors, several predicting models have been applied to
account for molecular and electronic properties that influence estrogen potency of EDCs.
For example, the higher values of dipole moment indicate that higher polarity will result in
larger intermolecular interactions. [5]. It has been found that Bis AF (4.762 Debye) and Bis
S (5.571 Debye) have higher values of dipole moment, which proves the ligands bind to
receptors with higher binding affinity [6]. The previous literature has shown that DDT and
its metabolite (DDE) and hydroxychloride (HPTE) can bind strongly to hERα LBD [7,8].
Metabolic hydroxylation of aromatic compounds was found to enhance the binding affinity
of PCB and DDT. The higher polar surface area and atomic partial charges supported that
the derivatives exhibit stronger electrostatic and hydrogen bonding interactions [9]. In
addition, the hydrophobicity also has a significant effect on the binding affinity [10,11].
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The objective of this study is to investigate the interaction mechanism of PCB, phenol,
and DDT binding to ERα. By using the quantum chemical GA-MLR method, a model is
developed to predict the binding affinity (log RBA). In addition, the quantum chemical
cluster model approach is used to advance the understanding of the binding interaction of
PCB, phenol, and DDT by providing structures and electronic properties in detail. From
the conceptual density functional theory (CDFT) perspective, the global and local reactivity
descriptors are also calculated to clarify the binding mechanism.

2. Computational Details
2.1. Dataset

The dataset used to construct and validate the GA-MLR model is from the EDKB
database, which has been divided into 14 categories according to chemical structure,
namely, benzene, DDT, DES, flutamide, NoRing, PAH, PCB, pesticide, phenol, phthalate,
phytoestrogen, siloxane, steroid, and other [12]. We chose three categories, PCB, phenol,
and DDT, as ligands for this study. In addition, observed estrogen activities are expressed
by relative binding affinity (RBA = (E2 IC50/Competitor IC50) ×100) as the experimental
dataset of endocrine disrupting chemicals.

2.2. Quantum Chemical Descriptors

In this study, the following quantum chemical descriptors are used to construct the
GA-MLR model: the highest occupied molecular orbital (HOMO) and the lowest unoccu-
pied molecular orbital (LUMO) energies can be used to indicate the electron-donating and
electron-accepting ability, respectively, which are two important descriptors affecting the bi-
ological activity of compounds [13]. Ionization potential (IP) and electron affinity (EA) have
similar implications to the frontier molecular orbital energies HOMO and LUMO [14–16].
The chemical potential (µ) drives the charge transfer reaction between estrogen receptor
and endocrine disruptor, which can be divided into charge-acceptance (µ+) and charge-
donation (µ−) parts [17]. Chemical hardness (η) is the resistance to electron redistribution,
while softness (S) is the inverse of chemical hardness and is correlated with the molecu-
lar polarizability [18]. Dipole moments can be used to indicate molecular polarity [19].
Polar surface area (PSA) and apolar surface area (APSA) are related to hydrophilic and
hydrophobic interactions, respectively.

2.3. GA-MLR Method

Based on the fingerprint calculation and diversity selection method, the DTC Lab
software package (https://dtclab.webs.com/software-tools) (accessed on 4 June 2022)
divided the dataset into a training set and a test set (the ratio of the two sets of data in this
study was set to 75%:25%). The genetic algorithm multiple linear regression (GA-MLR)
method [20] was used to perform the feature selection out of the test set. The criteria for
optimal model construction have been discussed in the previous literature [21]. By using
acceptable thresholds for internal and external validation metrics, it is ensured that the
predicting model is robust and reliable. The thresholds for validation metrics are: R2 > 0.6,
R2

adj > 0.6, Q2
F1 ≥ 0.5, Q2

F2 ≥ 0.5, r2
m > 0.5, ∆r2

m < 0.2, and CCC > 0.85 [22–26]. According
to both the leverage and the standardization approaches, the applicability domain (AD)
of the predicting model has been defined as the physicochemical, structural or biological
space, knowledge, or information that the training set of the developed model has and is
suitable for conducting predictions for new compounds [27].

2.4. Molecular Docking

The X-ray crystal structure of the ERα receptor (pdb code: 3ERT) was retrieved from
the RCSB protein database (www.rcsb.org) (accessed on 6 June 2022), and all non-bonded
water molecules and ligands were removed. Then, the endocrine disrupting chemicals
were docked with ERα via the AutoDock Vina, a protein-ligand docking program packaged
by the AutoDock Vina Extended SAMSON Extension [28]. The overall size of ERα was

https://dtclab.webs.com/software-tools
www.rcsb.org
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set to the search domain and the center of the grid, and molecular docking simulations
were performed using default parameters. Finally, among the top 200 docking poses, the
best conformation was selected as the bioactive conformation of the ligand according to a
standard scoring function.

2.5. Quantum Chemical Cluster Model Approach

Geometry optimization calculations were performed using AM1 Hamiltonian by
MOPAC 2016 Quantum Chemistry software [29]. All amino acids in the cluster model of
the ERα receptor (pdb code: 3ERT) were truncated at the α-carbon, and hydrogen atoms
were added manually. During geometry optimization, the truncated α-carbon remains
fixed in its input position. The protonation states of residues are derived from experimental
evidence. The solvent effect is implicitly treated by the conductor-like screening model
(COSMO), which uses a dielectric constant of 78.4 for water [29].

2.6. Density Functional Theory Calculations

All DFT calculations were performed by the Gaussian 16 software package [30]. The
electronic properties were obtained using the M06-2X density functional method and the
6-31G(d,p) basis set. The solvent effect of water is modeled using the Self-Consistent
Reaction Field (SCRF) method. For the local reactivity descriptors, the maximum partial
charge of the hydrogen atom (ρ+

max(H)), the maximum partial charge (ρ+
max), the maximum

nucleophilic Fukui function (f+
max), the maximum electrophilic Fukui function (f−max), the

maximum nucleophilic condensed local softness (s+
max), and the maximum electrophilic

condensed local softness (s−max), have been obtained at the same level of the above DFT
method. Polar surface area (PSA) and apolar surface area (APSA) were calculated using
VEGAZZ software (PSA, probe radius = 1.4, density = 10) [31].

3. Results and Discussion
3.1. Quantum Chemical GA-MLR Model

Table 1 summarizes the M06-2X/6-31G(d,p)/SCRF calculated descriptors for vari-
ous endocrine disrupting chemicals. Quantum chemical descriptors have explicit phys-
ical meaning and help to elucidate many aspects of chemical–biological interactions.
Equation (1) represents the four quantum chemical descriptors used to construct the opti-
mal GA-MLR model, namely, LUMO, µ−, dipole moment, and APSA, which can be used
to indicate electrophilicity, polarity, and hydrophobicity. The observed, predicted, and
residual values of NCTR log RBA are listed in Table 2. The correlation plot of the observed
and predicted values is shown in Figure 1. Statistical analysis of the model for NCTR log
RBA obtained by the quantum chemical GA-MLR method yields R2 and R2

adj of 0.9101
and 0.8911, respectively. The values for Q2

F1 and Q2
F2 are 0.7820 and 0.7813, respectively,

indicating that the training and test sets are close to the mean. The concordance correlation
coefficient (CCC) is 0.8968, representing that the predictive model is reliable. The above
values are all in line with the validation criteria of the model; therefore, the developed
model has good robustness and predictive power.

Table 1. M06-2X/6-31G(d,p)/SCRF calculated descriptors for the quantum chemical GA-
MLR method.

Category Compound HOMO
(eV)

LUMO
(eV)

µ+

(a.u.)
µ−

(a.u.)
Dipole

Moment (D)
APSA
(Å2)

PCB 2,3,4,5-Tetrachloro-4′-biphenylol −7.502 −0.430 −0.070 −0.182 4.753 399.6
2,5-Dichloro-4′-biphenylol −7.407 −0.083 −0.088 −0.186 2.142 353.9

2-Chloro-4-biphenylol −7.693 0.384 −0.077 −0.188 1.065 342.0
4-Chloro-4′-biphenylol −7.141 0.012 −0.082 −0.179 3.506 383.3

4-Hydroxybiphenyl −7.487 0.550 −0.069 −0.180 1.777 322.3
3-Phenylphenol −7.556 0.628 −0.066 −0.180 1.772 325.9

2,4′-Dichlorobiphenyl −8.203 0.275 −0.083 −0.203 3.964 404.9
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Table 1. Cont.

Category Compound HOMO
(eV)

LUMO
(eV)

µ+

(a.u.)
µ−

(a.u.)
Dipole

Moment (D)
APSA
(Å2)

Phenol 4-n-Octylphenol −7.270 0.860 −0.061 −0.173 1.811 452.9
2-sec-Butylphenol −7.369 0.894 −0.061 −0.174 1.513 320.0
4-sec-Butylphenol −7.285 0.824 −0.062 −0.173 1.837 305.3
4-tert-Butylphenol −7.292 0.847 −0.062 −0.173 1.850 293.8

4-Chloro-3-methylphenol −7.454 0.657 −0.069 −0.180 3.190 249.0
4-Phenethylphenol −7.288 0.831 −0.060 −0.173 1.768 389.2

3-Ethylphenol −7.446 0.897 −0.061 −0.176 1.434 264.1
a,a-Dimethyl-b-ethylallenolicacid −6.976 −0.207 −0.087 −0.176 1.487 370.8

4-Chloro-2-methylphenol −7.439 0.638 −0.069 −0.180 3.670 258.8
2-Cholor-4-methylphenol −7.476 0.576 −0.071 −0.181 4.155 258.3
Heptylp-hydroxybenzoate −7.793 −0.079 −0.092 −0.195 4.521 447.5

2-Ethylhexyl-4-hydroxybenzoate −7.793 −0.082 −0.092 −0.195 1.723 430.2
Benzyl4-hydroxybenzoate −7.805 −0.113 −0.093 −0.196 1.833 366.5

DDT o,p′-DDT −8.134 −0.246 −0.099 −0.211 3.389 491.9
2,4-Dihydroxybenzophenone −7.558 −0.726 −0.107 −0.195 7.199 291.3

Phenolphthalein −7.497 −0.520 −0.101 −0.192 9.135 363.6
Phenol red −7.631 −0.332 −0.097 −0.194 9.753 355.4

4,4′-Sulfonyldiphenol −7.766 −0.261 −0.082 −0.196 8.662 258.9
4,4′-Dihydoxy-benzophenone −7.708 −0.662 −0.108 −0.204 4.990 272.9

2,2′-Methylenebis(4-chlorophenol) −7.468 0.165 −0.082 −0.189 3.955 374.5
Bis(4-hydroxyphenyl)methane −7.145 0.758 −0.061 −0.174 1.332 303.5
Monohydroxy methoxychlor −7.335 0.049 −0.087 −0.188 2.570 443.8

Monohydroxy methoxychlor olefin −7.057 −0.150 −0.067 −0.173 4.977 429.8
p-Cumylphenol −7.259 0.712 −0.061 −0.173 1.612 376.0

Table 2. The binding affinity (log RBA) of the endocrine disrupting chemicals (experimental, predicted
and residual values).

Category Compound Expt. Pred. ∆ (Expt. − Pred.)

PCB 2,3,4,5−Tetrachloro−4′−biphenylol −0.64 −0.60 −0.04
2,5−Dichloro−4′−biphenylol −1.44 −1.59 0.15

2−Chloro−4−biphenylol −2.77 −2.74 −0.03
4−Chloro−4′−biphenylol −2.18 −1.33 −0.85

4−Hydroxybiphenyl −3.04 −2.81 −0.23
3−Phenylphenol −3.44 −3.03 −0.41

2,4′−Dichlorobiphenyl −3.61 −3.65 0.04
Phenol 4−n−Octylphenol −2.31 −2.20 −0.11

2−sec−Butylphenol −3.54 −3.26 −0.28
4−sec−Butylphenol −3.37 −3.15 −0.22
4−tert−Butylphenol −3.61 −3.27 −0.34

4−Chloro−3−methylphenol −3.38 −3.83 0.45
4−Phenethylphenol −2.69 −2.57 −0.12

3−Ethylphenol −3.87 −3.75 −0.12
a,a−Dimethyl−b−ethylallenolicacid −0.02 −0.34 0.32

4−Chloro−2−methylphenol −3.67 −3.79 0.12
2−Cholor−4−methylphenol −3.66 −3.80 0.14
Heptylp−hydroxybenzoate −2.09 −2.05 −0.04

2−Ethylhexyl−4−hydroxybenzoate −1.74 −1.70 −0.04
Benzyl4−hydroxybenzoate −2.54 −2.11 −0.43

DDT o,p′−DDT −2.85 −2.31 −0.54
2,4−Dihydroxybenzophenone −2.61 −1.95 −0.66

Phenolphthalein −1.87 −2.07 0.20
Phenol red −3.25 −2.78 −0.47

4,4′−Sulfonyldiphenol −3.07 −3.62 0.55
4,4′−Dihydoxy−benzophenone −2.46 −2.48 0.02

2,2′−Methylenebis(4−chlorophenol) −2.45 −2.60 0.15
Bis(4−hydroxyphenyl)methane −3.02 −2.96 −0.06

Monohydroxy methoxychlor −0.89 −1.51 0.62
Monohydroxy methoxychlor olefin −0.63 −0.45 −0.18

p−Cumylphenol −2.30 −2.35 0.05
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Figure 1. The scatter plot of experimental and quantum chemical GA-MLR predicted log RBA.

Log RBA = 9.8648 (±2.1265) − 2.4609 (±0.2291) LUMO + 73.3633 (±11.1238) µ− − 0.1667 (±0.039)
Dipole Moment + 0.0067 (±0.0012) APSA

(1)

Internal validation metrics:
R2 = 0.9101
R2

adj = 0.8911
Standard Error of Estimation (SEE) = 0.3386
Q2

LOO = 0.8484
SDEPLOO = 0.3912
Scaled r2

m (LOO) = 0.7956
Scaled ∆r2

m (LOO) = 0.0637
Mean Absolute Error (MAE) = 0.2989
External validation metrics using a test set:
Q2

F1 = 0.7820
Q2

F2 = 0.7813
Scaled r2

m (Test) = 0.7125
Scaled ∆r2

m (Test) = 0.0998
CCC (Test) = 0.8968
Mean Absolute Error (MAE, Test) = 0.3403
In addition, the four descriptors in Equation (1) are tested with the VIF and showed

that all values are less than 3.152 (Table 3), confirming the absence of multicollinearity in
the modeling results. The t-values of the descriptors represent the individual contribu-
tion of one descriptor relative to other descriptors in the model; the +/− signs indicate
whether the descriptor contributes positively or negatively to molecular potency. Fur-
thermore, the larger the absolute t-value, the larger the contribution of the descriptor to
the molecular potency. As can be seen in Table 3, the contribution of the descriptors is
LUMO > µ− > APSA > dipole moment, implying that electrophilicity plays an important
role in the interaction of endocrine disruptors with estrogen receptor α. The negative con-
tribution of LUMO indicates that the value of log RBA increases as the electron-accepting
ability of EDCs decreases. From the LUMO values shown in Table 1, it can be seen that DDT
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has the largest negative value and is a soft electrophile, which mainly reacts with proteins
belonging to soft nucleophiles, resulting in a higher log RBA value. Soft electrophilic
descriptors have been shown to be positively correlated with binding affinity [32,33]. The
positive contribution of µ− suggests that lowering the charge-donating chemical potential
of EDCs reduces log RBA. µ− is expressed as the chemical potential that controls the charge
donation process, however, phenol has the smallest value due to fewer benzene rings
(nucleophilic groups), resulting in fewer electrons flowing to ERα.

Table 3. The variance inflation factors (VIFs) and t-values of four descriptors in the quantum chemical
GA-MLR model (Equation (1)).

Descriptor VIF t−Value

LUMO 3.152 −10.740
µ− 2.561 6.595

Dipole Moment 2.076 −4.273
APSA 1.162 5.496

The positive contribution of APSA indicates that log RBA increases with increasing
hydrophobicity. This is consistent with the positive correlation between aromatic chemicals
and hydrophobicity proposed in the previous literature [32,33]. It can be found that the
APSA value increases with the number of halides (chlorides) and benzene rings, making
the DDT value the largest and the phenol value the smallest. The negative contribution
of the dipole moment indicates that the log RBA decreases with increasing polarity of the
endocrine disrupting chemical, since as the molecular dipole moment increases, so does
the hydrophilicity of EDCs [34].

3.2. Quantum Chemical Cluster Model

The quantum chemical cluster method with the combined computational technique of
AM1/DFT is used to clarify the binding interactions of ERα with EDCs. It is well known
that the semiempirical AM1 method for the geometry optimization of molecules is faster
than the DFT method, and there is an outstanding relationship between the optimized
geometries of AM1 and DFT [35–37]. In addition, the semiempirical AM1 method confirms
that stable structures appear in ligand orientations as seen by X-ray crystallography [38].
Therefore, the AM1 Hamiltonian is used in this study to obtain the equilibrium structures of
nine compounds in complex with the ERα receptor (pdb code: 3ERT). However, although
semiempirical methods can be used to obtain acceptable equilibrium geometries, they are
not reliable enough to accurately calculate electronic properties [39]. Therefore, this study
uses M06-2X/6-31G(d,p)/SCRF calculations to obtain binding energies. Nine compounds
with different binding energies (∆E) are selected from three categories of PCB, phenol,
and DDT for the following discussion (Table 4). The nine compounds are 2-Chloro-4-
biphenylol, 4-Chloro-4′-biphenylol, 2,4′-Dichlorobiphenyl, 4-Phenethylphenol, 4-Chloro-2-
methylphenol, 4-Chloro-3-methylphenol, 2,4-Dihydroxybenzophenone, p-Cumylphenol,
and 2,2′-Methylenebis(4-chlorophenol).

2-Chloro-4-biphenylol (−16.93 kcal/mol) and 4-Chloro-4′-biphenylol (−24.33 kcal/mol)
are monohydroxylated PCBs (Figure 2a,b), the hydroxyl groups of which are linked to the
side chains of Leu387, Glu353, and Arg394. 2,4′-Dichlorobiphenyl (−9.84 kcal/mol) is an
unhydroxylated PCB (. 2c), which does not form any hydrogen bonds with amino acid
residues. Compared to monohydroxylated PCBs, unhydroxylated PCBs poorly bind to
ERα receptors [40]. Among them, due to the key amino acid residue Phe404 near 4-Chloro-
4′-biphenylol, it provides hydrophobic group binding with the benzene ring of the ligand,
forming a π–π interaction to generate a larger binding energy.
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Table 4. The conceptual density functional theory descriptors and binding energies of nine endocrine
disrupting chemicals.

Category Compound ρ+
Max(H)

(a.u.)
ρ+

Max
(a.u.) f+

Max

Sites for
Nucleophilic

Attack

s+
Max

(a.u.) f−Max

Site for
Electrophilic

Attack

s−Max
(a.u.)

∆E
(kcal/mol)

PCB 2−Chloro−4−biphenylol 0.369 0.369 0.129 Cl1 0.582 0.125 O1 0.567 −16.93
4−Chloro−4′−biphenylol 0.366 0.366 0.107 Cl1 0.553 0.095 O2 0.492 −24.33

2,4′−Dichlorobiphenyl 0.167 0.167 0.097 C5 0.407 0.241 Cl2 1.010 −9.84
Phenol 4−Chloro−3−methylphenol 0.367 0.367 0.115 C15 0.519 0.191 O1 0.860 −16.94

4−Phenethylphenol 0.363 0.363 0.118 C5 0.522 0.124 Cl1 0.548 −22.19
4−Chloro−2−methylphenol 0.366 0.366 0.111 C4 0.504 0.185 Cl1 0.837 −10.19

DDT 2,4−Dihydroxybenzophenone 0.371 0371 0.151 O2 0.860 0.132 C10 0.748 −24.37
p−Cumylphenol 0.364 0.364 0.070 C14 0.312 0.120 O1 0.537 −26.62

2,2′−Methylenebis(4−chlorophenol) 0.371 0.371 0.099 C13 0.461 0.118 Cl2 0.548 −21.21
Crystals 2023, 13, x FOR PEER REVIEW 8 of 17 
 

 

 

Figure 2. The quantum chemical cluster models for the ERα receptor (PDB 3ERT) with PCBs: (a) 

2-Chloro-4-biphenylol, (b) 4-Chloro-4'-biphenylol, and (c) 2,4'-Dichlorobiphenyl. 

Figure 3a shows 4-Chloro-3-methylphenol (−22.19 kcal/mol), whose hydroxyl 

groups form hydrogen bonds with Glu353 and Arg394 with bond distances of 1.968 Å  

and 2.183 Å . Figure 3b shows 4-Phenethylphenol (−10.19 kcal/mol), whose hydroxyl 

Figure 2. The quantum chemical cluster models for the ERα receptor (PDB 3ERT) with PCBs:
(a) 2-Chloro-4-biphenylol, (b) 4-Chloro-4′-biphenylol, and (c) 2,4′-Dichlorobiphenyl.



Crystals 2023, 13, 228 8 of 13

Figure 3a shows 4-Chloro-3-methylphenol (−22.19 kcal/mol), whose hydroxyl groups
form hydrogen bonds with Glu353 and Arg394 with bond distances of 1.968 Å and 2.183 Å.
Figure 3b shows 4-Phenethylphenol (−10.19 kcal/mol), whose hydroxyl groups form
hydrogen bonds with Leu387 and Lys449 with bond distances of 2.117 Å and 2.643 Å.
Figure 3c shows 4-Chloro-2-methylphenol (−16.94 kcal/mol), whose hydroxyl group forms
a hydrogen bond with Glu353 with a bond distance of 1.974 Å. It can be found that not only
the length of the hydrogen bond affects the strength of the binding energy, but also the
amino acid residues (Glu353 and Arg394) that form hydrogen bonds with the ligand are
also important. The biological activity of ERα depends on the specific binding of ligands to
the ligand-binding cleft (LBC) and activation function 2 (AF-2) [41]. Furthermore, due to the
presence of Phe404 around 4-Chloro-3-methylphenol and 4-Chloro-2-methylphenol, a π–π
interaction is formed, generating a larger binding energy. Among them, the bond distance
between 4-Chloro-3-methylphenol and Phe404 is significantly shorter than that of 4-Chloro-
2-methylphenol. Therefore, 4-Chloro-3-methylphenol forms a strong π–π interaction to
result in a larger binding energy.
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The values of binding affinity for DDT ranged from−21.21 kcal/mol to−26.62 kcal/mol.
The results show that DDT tends to bind to the ERα receptor and achieves endocrine
disrupting functions through hydrogen bonds or salt bridge interactions at either end
of the steroid binding site [40]. The hydroxyl group of 2,4-Dihydroxybenzophenone
(−24.37 kcal/mol) forms a hydrogen bond with the side chain of Leu387 (Figure 4a). Be-
cause 2,4-Dihydroxybenzophenone has the cis conformation of the hydroxyl groups, on
the contrary, the trans conformation of them does not occur in hydrogen bonding inter-
actions, so a cis effect arises. The hydroxyl group of p-Cumylphenol (−26.62 kcal/mol)
forms hydrogen bonds with the side chains of His524 and Leu525 (Figure 4b). The ex-
perimentally demonstrated amino acid residues involved in the biological activity of the
agonist are His524 and Leu525 [42,43]. After their conformation is stabilized, the complex
tends to stabilize, resulting in a large binding energy. 2,2′-Methylenebis(4-chlorophenol)
(−21.21 kcal/mol) does not form hydrogen bonds with amino acid residues (Figure 4c),
but has a short bond distance with Phe404, which causing a strong π–π interaction.
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The results of structural analysis show that hydrogen bondings play a significant role
in ERα-ligand interactions, and the key residues are Glu353, Arg394, His524, Leu525, and
Leu387. Glu353 and Arg394, the regions near these two amino acids, are hydrophilic [44],
being easily combined with ligands to form hydrogen bonds. In particular, Glu353 can
form a strong hydrogen bond with a phenolic group [3], and a protein–ligand complex
structure can be observed that forms hydrogen bonds with Glu353; its binding energy is
large. Next, the side chains of His524 and Leu525 form polar and/or non-polar interactions
with the benzene ring in the ligand, making them form part of the binding site of helix 12 or
the previous ring [45] that stabilizes the conformation of the complex. Moreover, residues
of the binding pocket form a hydrophobic network, and the formation of hydrophobic
interactions with ligands is also important in Erα–ligand interactions. From Figures 2–4,
not only it can be observed that the key residues are Leu346, Leu387, Leu391, Phe404 and
Ala350, of which leucine is the most abundant, it is also found that the ligand will be closer
to these residues to provide van der Waals interactions. The key residues mentioned in
the previous literature to use MM-GBSA to identify ERα-ligand interactions are Leu346,
Leu387, Leu391, Phe404, and Ala350 [44], which is consistent with the results of this study.
Among the three categories of PCB, phenol, and DDT, DDT has the largest binding energy,
which is not only related to hydrogen bonding but also to the hydrophobic interaction. This
means that efficiently filling the LBC cavity with larger molecules can promote binding
between hydrophobic amino acid residues and ligands [41].

3.3. Conceptual Density Functional Theory

Pearson′s hard-soft acid-base (HSAB) principle and conceptual density functional
theory have provided important insights into the nature of chemical reactions and the
stability of molecular systems. Global HSAB reactivity descriptors are often used to indicate
the stability of compounds, while local HSAB reactivity descriptors are often used to discuss
site selectivity issues [46–49]. The HSAB reactivity descriptors can also help to clarify the
mechanism of target–toxicant interactions and have been applied to explain chemically
induced toxicity [50].

The maximum partial charge of the hydrogen atom (ρ+
max(H)) and the maximum

partial charge (ρ+
max) can be considered as the indicator of electrostatic interactions. The re-

sults shown in Table 4 demonstrated the order of binding energies is DDT > phenol ~ PCB.
In particular, 2,2′-Methylenebis(4-chlorophenol) has the largest ρ+

max(H). On the contrary,
the ρ+

max(H) of 2,4′-Dichlorobiphenyl is the smallest, which leads to the weak binding inter-
action. It can be seen in Figure 4c that the chlorine atom of the ligand is inclined towards
Phe404, and the electrophilic region at the top of the chlorine atom tends to the π-system of
the aromatic groups in the side chains of tyrosine, phenylalanine, histidine, and tryptophan.
It not only forms interactions between receptor and ligand, but also for the regulation and
stabilization of intramolecular short peptides and proteins [7]. Among the nine complexes,
p-Cumylphenol has the highest binding energy, and its f+

max, s+
max, f−max, and s−max

are the smallest. Furthermore, it not only has large ρ+
max(H) and ρ+

max, but also has two
hydrogen bonds. Therefore, it is improved for hard–hard (charge-controlled) interaction.

Fukui functions f+ and f− are reactivity indices which can govern nucleophilic and
electrophilic attacks, respectively. The larger value of Fukui function for a specific site
supports the reactivity of that site [51]. Besides, the local softness should be interpreted as
the concentration of the corresponding global softness, related to the Fukui function, which
has been shown to be useful for ligand docking, active site detection, and protein folding
prediction [52,53]. Pearson′s HSAB principle states that soft acids or bases tend to react
with soft bases or acids, whereas hard acids or bases preferentially react with hard bases
or acids. Soft–soft interactions are essentially covalent front-controlled, while hard–hard
interactions are essentially ionic charge-controlled [52].

From the local reactivity descriptors and binding energies summarized in Table 4,
2,4-Dihydroxybenzophenone has the largest f+

max and s+
max, which can be considered as

soft–soft (frontier-controlled interaction), indicating that there are strong nucleophilicity.
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Due to its smaller f+
max and s+

max values for p-Cumylphenol, it tends to have hard–hard
(charge-controlled) interactions, and has two hydrogen bonds with ERα. Combined with
its large nonpolar surface area (APSA) and strong hydrophobic interactions, the binding
affinity of p-Cumylphenol is maximized. 4-Chloro-4′-biphenylol has the smallest f−max and
s−max, and it has two hydrogen bonds with ERα, thus proving to be a hard–hard (charge-
controlled) interaction. The lowest binding energy is 2,4′-Dichlorobiphenyl due to the
non-H-bond with ERα and the lowest value of quantum chemical descriptors. Furthermore,
as the number of hydroxyl groups increases, the values of f−max and s−max will decrease.

4. Conclusions

The quantum chemical GA-MLR and cluster model approaches are used to investigate
the binding interactions of PCB, phenol, and DDT to ERα. The results of hydrogen bonding
analysis reveal that the key residues are Glu353, Arg394, His524, Leu525, and Leu387.
In particular, the hydrogen bonding with the amino acid Glu353 has a stronger binding
tendency. The mechanism of binding interaction of endocrine disrupting chemicals is also
proved from chemical reactivity theory according to the conceptual density functional
theory descriptors. The binding mechanism of the electrostatic interaction is superior to
that of the electrophilic interaction.
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