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Abstract: Using a hierarchy of three sigmoid growth models with increasing complexity, i.e., number
of parameters, we reanalyzed kinetic data for heterogeneous nucleation—the number of nuclei N(t)
vs. time t—from archetypical experiments on the electrodeposition of mercury on platinum by I.
Markov and E. Stoycheva, to obtain two scales: Nmax and τ. The universal character of the studied
phenomenon was revealed when replotting the original data as α ≡ N(t)/Nmax vs. t/τ. Yet the
simplest model, the recently introduced α21 model which is aimed to describe diffusion-limited
growth in 2D, α21 = tanh2(2t/τ21), fits all datasets with an R2 ≥ 0.989. This can be rationalized by
attracting the non-classical notion of two-step nucleation—the nuclei form in a metastable phase
which, in this case, grows on the electrode surface. Beyond the universality, we find the dependence
of the two obtained scales on the overvoltage, which is increased systematically from 83 to 88 mV
to generate the six N(t) datasets for each of the two electrode types—planar and hemispherical.
Surprisingly, for one of them, the planar electrode, there is a discontinuity in the dependence—an
almost horizontal jump from 85 to 86 mV, while for the hemispherical electrode, τ decreases smoothly.

Keywords: heterogeneous nucleation; electrodeposition; N(t)-curves; α21 model; Richards model;
model of Johnson–Mehl–Avrami–Kolmogorov (JMAKn); universality and master curve; cusp
catastrophe

1. Introduction

Here, we develop a detailed program that uses a hierarchy of three sigmoid growth
models, shortly called the Hierarchy of Models which is thus abbreviated in what follows as
HoM. The notion of hierarchy comes from the increasing complexity, i.e., from the increasing
number of parameters—2, 3 and 4—suited here to reanalyze nucleation data published by
Ivan V. Markov and Evgenia Stoycheva in [1] in terms of N(t)-curves. While finding the
corresponding parameters from all three models with high numerical precision, our study
remains neutral with respect to the current achievements in the field of electrochemical
nucleation [2,3] and growth [4], and we do not engage with analyzing the classical theories
in the field [5]. Rather, based on the rationalization of the numerical data, we conclude
that it is the growth of a metastable phase preceding the nucleation itself that determines
the particular outcome from our numerical analysis. Therefore, we use the models in
a numerically straightforward manner, not trying to suit them to conform to classical
notions of the nucleation theory, such as the induction time and the stationary nucleation
rate, especially when not obtaining them as a numerical result. This approach has proven
successful; yet, the simplest model from the hierarchy, the one with 2 parameters, the so
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called α21 model, which is a particular solution of the general model of crystal growth
αDg in decaying supersaturation [6], shows a fit with high numerical precision of all
12 datasets from [1]. Further, we will show that the additional parameters from the more
complex models do not show a clear dependence on the overpotential, the control parameter
that is varied systematically in the experiment to produce the different datasets. Thus,
more parameters do not bring more understanding of the phenomenon of heterogeneous
nucleation in the electrodeposition of mercury on platinum and could even hide the
true understanding of the phenomena whilst lacking a physical insight. Eventually, we
conclude with the hypothesis that the numerically obtained behavior from the α21 model is
a clear manifestation of the non-classical two-step nucleation process [7]—the nuclei form
uniformly in the growing two-dimensional metastable phase and its growth is described
by the α21 model.

The thorough and precise study of Markov and Stoycheva provides, in our view,
a unique opportunity to analyze the nucleation kinetics in terms of the so-called “N(t)-
curves” by counting the number of nuclei on the time-scale of milliseconds. In [8] and in
the further papers by C. Nanev on the same subject, the logistic dependence was employed
to study the kinetics of insulin nucleation. Our present study not only implements a well-
thought hierarchy of models with an increasing number of parameters, i.e., complexity, it,
in particular, uses a generalization of the logistic model or Verhulst model [9]—the so-called
Richards model [10], in which an additional “tweaking” exponent is introduced. Another
elaboration beyond [8] is that here, after finding the two scales towards transforming the
data into universal forms, we continue by studying the dependencies of the scales used
in this transformation on the parameter that makes the several data sets different: the
driving force of the process, the overvoltage (in [8] it is the supersaturation). In this way,
the program initiated in [8] unfolds to show its full strength.

In principle, the idea to fit sigmoid models to growth and nucleation data is not
new [11–14]; however, having not found clear analogues between these studies and our
hierarchy of models, we leave the task of a systematic review for further studies.

2. Hierarchy of Models (HoM)

For the reanalysis of the nucleation data by I. Markov and E. Stoycheva [1], we use
a set of three models with a different number of fitting parameters. Two of them are
always Nmax—the maximal number of the observed nuclei at the end of the process and
the timescale of the phenomenon generally denoted by τ. The α21-model contains only
these two parameters, which means that after using these two scales to re-scale the original
data they should collapse onto a single or master curve defined by the mathematical
expression of the model without any parameters in it. In the model of Johnson–Mehl–
Avrami–Kolmogorov (JMAKn), an additional “tweaking” parameter is used—the so called
Avrami exponent n to which the ratio of the time and the timescale is raised, denoted by
τJ. The dimensionless equation of the Richards model contains two more parameters in
addition to Nmax and τR (which itself is composed by the fit parameters)—the additional
power q and the dimensionless constant K, a combination of three of the model parameters
but Nmax—the power q and the two particular timescales, the time to the inflection point ti,
and the inverse of the kinetic coefficient τk. Anticipating a main result from our study, it is
not the number of parameters that improves the fit quality! In opposite, the use of the two
more complex models, JMAKn and Richards, does not increase the numerical precision
but results in values for the exponents n and q, respectively, that do not allow a consistent
treatment. Thus, we can conclude that the two more complex models are “artificially
good” [6] in describing the concrete experimental data and, even worse, the high numerical
precision of their output can hide the physics behind the phenomenon observed.
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2.1. The α21 Model [6]

The α21 model is a particular case of the αDg model, introduced recently in [6] to
describe two-dimensional, D = 2, diffusion-limited, g = 1, crystal growth with exhaustion of
the initial supersaturation. It is suited for the purposes of our present study as the following:

N(t) = Nmaxtanh2(2t/τ21) (1)

The core of the integral version of the model, tanh2(2t/τ21), results from the integration
of the following differential equation:

dα21

d(t/τ21)
= 4

√
α21(1 − α21)

g; g = 1 (2)

Further, it should be noted that α21 = (l/lmax)2 where l is the side length of the growing
in 2D square(s) and lmax is the maximal size achievable with the initial supersaturation.
Thus, in the right hand side of Equation (2) the positive feedback becomes 4l/lmax, which is
the perimeter of the growing square(s).

The αDg model is a further development of the idea behind the model of crystallization
in three dimensions, describing the evolution of the rescaled size of the growing cube(s) [15]
to obtain a differential equation for the size or, as in [6], for the transformation ratio α. In
the context of this study, α could be defined as α ≡ N/Nmax.

The model derivation starts [6,15] with a conservation law for the exhausted concen-
tration in time t as spread among N equally sized crystals and continues with a kinetic
law for the remaining part of the concentration, linking the normal growth velocity to the
supersaturation raised to a power g, the so-called growth order. In the index of α and τ above,
Equation (1), 2 stands for the spatial dimension, i.e., 2D, and 1 stands for g = 1. The time t is
multiplied by the coefficient of 2 and this follows naturally from the model derivation. The
crystal grows simultaneously in the two opposite directions with the same normal velocity,
and the coefficient of 2 is not “hidden” in the timescale, thus keeping the inflection point,
in the present context, (ti, Ni) closer to, but not on the line, N(t)/Nmax = t/τ21:

Ni/Nmax = 1/3 (3)

ti = 0.329τ21 (4)

The value of 0.329 can easily be mistaken for 1/3 (one third) [6], but it is numerically
different from 1/3. Still, the inflection point (0.329, 1/3), formulated in terms of rescaled
quantities, is far from the (1/2, 1/2), which is the inflection point of the logistic dependence
used in [8], and this difference can help to distinguish between the models and to go
even further from pure numerical considerations to identify the different physics behind
the models.

The α21 model is the model with the lowest number of parameters from the HoM, only
Nmax and τ21, and we will use these scales first to rescale the number of nuclei N and the
time t, a program that is already constructed in [8] to study protein nucleation. The rescal-
ing operation of the N-axis can also be considered as another formulation of the so-called
transformation ratio, defined for the purpose of the present study as α ≡ N/Nmax. Ideally,
all the rescaled data should collapse onto the same master curve and a failure to conform
to this expectation for some of the datasets should be considered a failure of the model to
adequately describe this particular dataset. An important aspect in favor of the α21 model
is that it is lacking a “tuning exponent” as in the other two models from our hierarchy.
Therefore, only the α21 model naturally provides a master curve N/Nmax = tanh2(2t/τ21),
while for the other two more complex models, JMAKn and Richards, the “master curves”
are as many as there are different values obtained for the “tuning exponents”—n and q,
correspondingly. In such situations, one could force the collapse by fixing the excessive pa-
rameter(s) to certain presumed value(s), but this has consequences. Conceptually, this means
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judgement that is outside the numerical procedure. Numerically, this would eventually
lead to a decrease in the numerical precision, and we will see an example below.

Another complementary part of the program is initiated in [8], and is yet to be de-
veloped in detail to study the dependence on the supersaturation of the scales τ and Nmax
found along the two axes t and N, respectively. A similar strategy was adopted in [16] to
study the cloud condensation nuclei (CCN) as counted in 20 boxes by size at 6 different
supersaturations. Then, to map them onto universal distributions after rescaling each of
the 20 counts by the total number of CCN, in order to study further the peculiarities of the
scale, using one for each value of the supersaturation the “total number of CCN” (corrected
to concentration in this particular case [16]) and how it correlates with the meteo-elements.

From the autonomous Equation (2), one can derive a more useful expression in practi-
cal context for the rate of transformation as time dependent:

dα21

d(t/τ21)
= 4tanh(2t/τ21)

[
1 − tanh2(2t/τ21)

]
(5)

where in the right-hand side of (1) α21 is substituted with tanh2(2t/τ21).
Building a model of dynamical system is not completed by introducing/deriving only

the integral and differential forms of the mode, as there is also the so-called chaotic map,
an iterative scheme based on the discretization of the corresponding differential equation.
In the case of the present model, and in analogy with the archetypical logistic map, the
chaotic map would be introduced as the following:

xn+1 = r
√

xn(1 − xn) (6)

Only a further study devoted specifically to the αDg model(s) could reveal the links
between the three different parts of the model(s) for different combinations of the concrete,
presumably integer values of D and g. Here, we should point out only that the value of the
fully developed chaos r = 2.6, see Figure 1, is less than the coefficient of 4 in (2). Thus, one
could integrate (2) with a general coefficient of r instead of 4 to obtain a family of curves,
one for each value of r, in order to follow how the generalization reflects on the integral
behavior of the model.
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2.2. The Johnson–Mehl–Avrami–Kolmogorov Model (JMAKn)

This model is most used in theoretical studies in the field of crystallization, which was
introduced in the 1930’s by Kolmogorov [17], Johnson and Mehl [18], and Avrami [19] and
is adopted here as:

N = Nmax

{
1 − exp

[
−
(
2t/tJ

)n
]}

(7)

Note the use of a third parameter in the model, the power n. In [6] it is incorporated in
the abbreviation of the model to eventually extend it to JMAKn. Originally, n is the spatial
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dimensionality D and n = D + k where k = 0, 1 to account for the (lack of) nucleation during
the growth, respectively. With the years and with its extensive use in a broad range of
mainly experimental contexts, see for example [20–23], n is at present considered more as
an additional fitting parameter, and its non-integer values are considered as challenging
further conceptual developments and discussions of why it is not integer as predicted and
why it is varying from experiment to experiment, and even from one upper value of α to
another to which values the concrete fitting is carried. See [6] for a detailed study of this
last mentioned effect. The link between JMAKn and α21 is also studied in detail in [6] and,
in particular, it is found that the conversion factor between the two timescales is as follows:

τJMAK1.725 ≈ 1.1τ21 (8)

As anticipated, there is no constant conversion factor between the two models intro-
duced so far and the next one, the model of Richards.

The differential form of the JMAKn model is derived in [6]:

dα

d(t/τJMAK)
= 2n(1 − a)

[
ln
(

1
1 − α

)] n−1
n

(9)

and, applying the same procedure that leads to (6), we can infer the chaotic map of the
JMAKn model:

xn+1 = r(1 − xn)

[
ln
(

1
1 − xn

)] d−1
d

(10)

and in Figure 2 a particular case when d is set to 1.725 is shown:

xn+1 = r(1 − xn)

[
ln
(

1
1 − xn

)] 1.725−1
1.725

(11)
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Note that the value of r where the map reaches the fully developed chaos, r ≈ 2.19, is
less than the coefficient of 3.5 in (9) (when n = 1.725). This again points at a direction for
further study, in which the dynamic behavior of the two models may be compared.

2.3. Richards Model

This is another general model that describes sigmoid growth [10] under the combined
action of two feedback mechanisms: positive and negative ones (the differential forms of
the two models above are discussed and studied in [6]):

N(t) =
Nmax

{1 + (q − 1) exp[−(t − ti)/tk]}(1/(q−1))
(12)



Crystals 2023, 13, 1690 6 of 14

and this could easily be seen in the differential version of the model:

dN
dt

=
kN

(q − 1)

[
1 −

(
N

Nmax

)q−1
]

(13)

Note that in (12) tk, the inverse the kinetic coefficient k, is used. Thus, the positive
feedback in Equation (13), when q > 1, is represented by kN/(q − 1), while the negative
one is −kNq/[(q − 1)Nq−1

max]. When q < 1, the role of the two feedbacks is reverted. This is
the value of q that fine-tunes the position of the inflection point of the model and, in [10],

the exact dependence is found: Ni(ti) = Nmaxq
1

1−q . This points at the way of finding the
model’s timescale τR when using the second timescale in (12) and the time to the inflection
point ti, which comes into the model only after finding the integration constant from the
integration of Equation (13):

τR ≡ tiq1/(q−1) (14)

to obtain the non-dimensional version of the model:

α ≡ N(t)
Nmax

=

{
1 + (q − 1) exp

[
−K

(
t

tR
− q

1
1−q

)]}( 1
q−1 )

(15)

where K is defined as K = q1/(q−1)ti/tk and remains the only parameter in addition to q.
This non-dimensionalization procedure brings the inflection point of the model to the line
α ≡ N/Nmax = t/τR, independent of K. Note that the inflection point is the same for a
fixed value of q for any value of K, and that this provides the basis of a further study by
considering the subtle connection between the integral curve and the corresponding chaotic
map. In the “map-language”, K is usually denoted by r as in the two chaotic maps shown
above. It is also worth mentioning here that the inflection points of the two previous models
from the HoM are only close to the line α ≡ N/Nmax=t/τR [6]. In addition, it is worth
stressing that for the non-dimensionalization of the differential Equation (13), namely, the
time-scale τR, Equation (14), is to be used.

The Richards model has two commonly used special cases on its own: the logistic
model of Verhulst [9], with q = 2, used in the context of protein nucleation by Nanev et al. [8],
and the Gomperz model [24], with q = 1. Note that the inflection point of the Gomperz
model is (1/3, 1/3) which is close enough to (0.329, 1/3), which is the inflection point of
the α21 model. Thus, one can re-visit concrete situations where the Gomperz model was
used but the α21 model was possibly applicable as well, not only in the technical sense but
also in terms of the physics behind [6].

The Richards model also generates chaotic maps for each value of q, and the most
famous of them, the logistic map, is built when q = 2. For each value of q, there is a family of
curves for different values of K that show the cusp catastrophe [25] type of behavior and the
critical value of Kc = qq/(q−1), for which the model curve still crosses the line N/Nmax = t/τR
once the value of K or r is the same as in the corresponding chaotic map showing the fully
developed chaos. For K > Kc, the integral curve of the model with a fixed value of q crosses
the line N/Nmax = t/τR three times already, with the midpoint of these three points being
the inflection point.

With this, we conclude the ad hoc building of the HoM, although further tweaking
is possible. For example, one could fit the Richards model with uniform datasets drawn
by the αDg model with concrete values of D = 1, 2, 3 and g = 1, 2 in order to bracket the
studies in which the Richards model was used. However, one could also try the αDg model
to reanalyze the datasets used there. Anticipating such a study, when fitting α21 with the
Richards model one obtains q = 0.823, far below the logistic model with q = 2, and K = 3.842,
well beyond the value of Kc = 2.474, see Figure 3 (also for the slow decrease of R2 apart
from q = 0.823).
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3. Results

After introducing the hierarchy of models (HoM) to be used in analyzing the nucle-
ation data, the first practical step of our reanalysis was to digitize the N(t) data for the
“plane structureless platinum electrode” or, simply, planar electrode (Figure 5 in [1]) and
“hemispherical single-crystal electrode”, or simply hemispherical electrode (Figure 6 in [1])
from the paper of I.V. Markov and E. Stoycheva published in 1976 [1]. There are numerous
tools for digitization, ranging from standalone applications such as DataThief and Engauge
Digitizer to special packages from the high-level programming languages as R.

Further, one can use the curve_fit function from SciPy in Python or nls() in R for fitting
the data.

We provide, in full detail, the results from the α21 model, while the other two models
serve more to verify the results from the simplest one in the HoM. For them we give only
specific details of general interest in the Appendix A such as the rescaled data according to
the scales found and the values of n and q, respectively.

3.1. Fitting with the α21 Model

We used a python code to both fit (with curve_fit) and plot (with Matplotlib) the results.

3.2. Summary of the Fitting Procedure

Here, we provide the results from the fitting procedure, as illustrated in Figures 4–9,
in a data format that permits further comparisons. Thus, the values of the parameters as
found from fitting the experimental data from Figure 5 in [1] are given in Table 1, while in
Table 2 are listed these found when fitting data from Figure 6 in [1] from the same study.
Note that the high values of R2 obtained do not allow for discrimination between the
models in our hierarchy and, thus, physical considerations must come into the play.
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Table 1. Parameter values found from fitting Figure 5 from [1], that was obtained from the planar
electrode, with the models from the HoM. Note that the timescale from the Richards model is not
obtained directly from the fit, see Equation (14), and since no conclusions are drawn based on the
values of ti, tk and K = q1/(q−1)ti/tk, they are not shown in the tables.

Over-
Voltage, mV

α21 JMAKn Richards

Nmax τ21 R2 Nmax τJMAK n R2 Nmax τR q R2

83 30.43 5.22 0.9974 29.9 5.6 1.89 0.9977 30.29 5.20 0.83 0.9967

84 44.61 4.11 0.9937 45.78 4.75 1.39 0.9986 46.28 3.93 0.53 0.9981

85 56.94 3.19 0.9986 56.86 3.51 1.67 0.9980 57.36 3.28 0.64 0.9984

86 74.51 3.20 0.9976 75.06 3.61 1.58 0.9992 75.60 3.09 0.79 0.9988

87 92.7 2.62 0.9988 92.37 2.89 1.70 0.9995 93.17 2.52 0.96 0.9989

88 111.01 2.23 0.9974 109.19 2.40 1.86 0.9990 109.57 2.09 1.35 0.9983
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Table 2. Parameter values found from fitting Figure 6 from [1] from the models of the hierarchy. Note
that the timescale from the Richards model is not obtained directly from the fit, see Equation (14).

Over-
Voltage, mV

α21 JMAKn Richards

nmax τ21 R2 Nmax τJMAK n R2 nmax τR q R2

83 24.41 7.27 0.9966 23.92 7.79 1.91 0.9978 24.12 6.95 1.18 0.9963

84 33.84 5.17 0.9977 33.68 5.69 1.72 0.9978 33.93 4.98 0.93 0.9971

85 48.69 4.38 0.9969 48.97 4.92 1.55 0.9985 48.19 4.62 0.43 0.9987

86 72.78 3.57 0.9890 74.50 4.13 1.38 0.9967 73.07 3.36 0.51 0.9948

87 103.77 2.82 0.9923 106.51 3.30 1.38 0.9993 103.81 2.68 0.54 0.9990

88 151.22 2.60 0.9891 156.27 3.03 1.35 0.9971 151.30 2.43 0.52 0.9958

4. Discussion and Conclusions

Here, our study adds a solid argument to the discussion on the existence of an au-
tocatalytic loop in the N(t) dependence next to the one in [8] by attracting the notion
of the two-step nucleation [7]. It is modified in the experiments we reanalyze the data
from here by the heterogenous substrates: the nuclei form within a growing along the
electrode two-dimensional metastable phase. It is the growth of this phase that is described
by the recently introduced α21 model of crystallization, which has an autocatalytic loop
by definition.

Note that in the first from the set of two papers [26], I. Markov provides an expression
for the saturation density but does not provide theoretical ground of how to treat the
obtained timescales nor of how they are obtained explicitly.

Our study is intended to remain on a mainly methodological ground, providing correct
numerical analysis. However, we also attribute the phenomenon of heterogeneous nucle-
ation observed by Markov and Stoycheva in [1] to the non-classical two-step nucleation
pathway. We used a hierarchy of models (HoM) to achieve numerically correct estimations
of the two scales, describing the phenomenon of nucleation—the maximal number of
nuclei Nmax and the time-scale τ—for a given (and fixed) driving force (overvoltage) of the
phenomenon. Thus, it is tempting to study the obtained data in a quantitative manner. A
major result of this study is the dependence of the obtained time-scales on the overvoltage,
smoothly decreasing for one of the cathodes—the hemispherical one, and discontinuous
for the planar electrode. The combination of the two behaviors resembles the so-called
“cusp catastrophe” known to the general public from the isotherms drawn from the Van
der Waals equation above and below Tc.

It is our expectation that the HoM and the template we built on it will become a part
of the toolbox used to study experimental situations where sigmoid growth is observed
and, in particular, those where non-classical nucleation is expected.
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Appendix A

The results from fitting the experimental datasets of Markov and Stoycheva [1] with
the two more complex models—the JMAKn and Richards model—are separated in an
appendix because they do not bring a deeper insight beyond the one obtained using the
simplest of the three models from the Hierarchy of Models(HoM), the α21 model. Hence,
they are eliminated by the action of a thinking experiment, the so called “Ockham’s razor”.
The referenced sources and equations are presented in the main text.
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Figure A1. Rescaling the data for the planar electrode (Figure 5 in [1]) with the fit parameters from
JMAKn, see also Table 1, Equation (7), the dotted line is α ≡ N/Nmax = t/τJMAK. There is no master
curve since n is different for each value of the overpotential.
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Figure A2. Rescaling the data for the hemispherical electrode (Figure 6 in [1]) with the fit parameters
from JMAKn, see Table 2, Equation (7), the dotted line is α ≡ N/Nmax = t/τJMAK. As in the
previous plot, no master curve could be drawn.
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Figure A7. Values of the “tuning” exponent q in the Richards model, Equation (12), as obtained from
fitting Figure 5 in [1].

Figure A8. Values of the “tuning” exponent q in the Richards model, Equation (12), as obtained from
fitting Figure 6 in [1].

We do not provide a plot in Avrami coordinates here because, again, the only master
curve would be the one from α21, while in order to plot curves from the Richards model,
one should chose values not only for q but also for K!
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