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Abstract: This study proposes an automated method for estimating the uncertain parameters of
the solidification model in response to the inefficient and time-consuming problem of manually
estimating multiple uncertain parameters of the solidification model. The method establishes an
uncertain parameter estimation model based on the relationship between the simulated images
equiaxed crystal ratio and the uncertain parameters of the solidification model, fits the parameters
of the model by the least squares method, and finally estimates the uncertain parameters in the
solidification model using the parameters of the fitted model. In comparison with the traditional
method of calculating uncertain parameters manually through empirical formulas, this method
reduces the difficulty of tuning parameters and solves the problem of tuning multiple parame-
ters simultaneously in the nonlinear solidification model. The experimental results show that the
proposed method can accurately estimate the uncertain parameters of the solidification model, im-
prove the efficiency and accuracy of the solidification model estimation parameters, and play a
guiding role in simulating the solidification process of continuously casting billet to control the
solidification structure.

Keywords: equiaxed crystal ratio; solidification model; fitted parameters; parameter estimation
model; least squares

1. Introduction

The iron and steel industry is an important industry in the foundation of the national
economy and an important area for realising green and low-carbon development. More
than 80% of the world’s casting process is related to the continuous casting process, and
the steel industry every year suffers losses amounting to hundreds of millions of dollars
due to billet quality problems, causing direct economic losses. Therefore, billet quality
detection is one of the important problems in the steel industry. The solidification structure
reflects the quality of the cast billet [1–3], and the macroscopic solidification structure of the
cast billet usually consists of three parts: fine equiaxed crystals on the surface, columnar
crystals, and central equiaxed crystals. The equiaxed crystal ratio is one of the important
indicators of the quality of cast billet [4,5], and it is usually hoped to obtain a large equiaxed
crystal ratio of cast billet except for in some special-purpose steel grades that require a
columnar crystal structure. The larger the equiaxed crystal ratio of the cast billet, the
better the stability of the cast billet [6]. Several researchers have used numerical simulation
methods such as phase field models [7–10] and metameric automata models [11–13] to
study the structure changes during metal solidification [14–17] for controlling the quality
of cast billets. Ideally, the simulated image should be consistent with the solidification
organization of the actual as-cast image, but in the practical situation, there are often some
differences between the simulated image and the actual low-magnification specimen, as
shown in Figure 1. Improvement of solidification modelling accuracy has become a key
issue that needs to be solved [18–20].
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Figure 1. (a) Simulation image; (b) actual low-magnification image.

Assuming that the established simulation solidification model is correct, the reason
for the discrepancy is that the parameters in the solidification model are incorrect and need
to be adjusted [21–23]. The traditional tuning method is to adjust the parameters according
to the empirical formula, which has the following problems:

(1) The solidification process of cast billet is complicated and affected by multiple physical
fields and factors. The solidification model is nonlinear, and it is difficult to adjust
the parameters;

(2) There are many uncertain parameters in the solidification model, and the parameters
affect each other. There is the problem of parameter redundancy, and all parameters
cannot be determined at the same time.

To solve the above problems, an automatic estimation method of uncertain parameters
of the solidification model for continuously casting billets is proposed based on the idea
of inverse analysis of the solidification model. The solidification mechanism model has
rigorous logic and derivation, and by inputting a set of model parameters, it can generate a
low-magnification simulation image. According to the inverse analysis idea, it can recog-
nize the equiaxed crystal ratio of the simulated image, analyse the relationship between
the equiaxed crystal ratio and the solidification parameters, and establish a parameter
estimation model to estimate the uncertain parameters.

Several researchers have also carried out studies using inverse analysis for parameter
estimation. Natsume et al. [24] proposed a method to estimate the heat-transfer coefficient of
alloys during solidification, which can accurately model the cooling curve of alloys during
solidification. Drezet et al. [25] proposed an inversion method based on the MAP(Maximum
A Posteriori) algorithm for the steady-state temperature field to study the effect of the
parameter. Cheung et al. [26] studied the determination of transient metal/mould heat-
transfer coefficients by describing an experimental set-up as part of a methodology linked
to a numerical heat-transfer model that can be used to simulate solidification in industrial
processes. Gao et al. [27] proposed a neural-network-based displacement inverse analysis
method to identify the mechanical parameters of the surrounding rock.

The aim of the method in this paper is to establish the nonlinear mapping relationship
between the uncertain parameters of the solidification model and the equiaxed crystal ratio
to achieve the automatic estimation of the uncertain parameters, which can reduce lots of
manual operations and provide a basis for verifying the accuracy of the solidification model.
As the solidification of cast billets is affected by a variety of factors, and there are transitional
mixed crystal regions between the columnar crystal regions in the equiaxed crystal region,
there is no clear definition of the boundary between the various crystal regions [28,29], and
the recognition results inevitably have some errors. This paper analyses the effect of the
error on the estimated parameters by adding noise to the recognized equiaxed crystal ratio
to simulate the recognition error.
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2. Materials and Methods
2.1. Cellular Automaton (CA) Model

This paper investigates a solidification model based on a cellular automaton (CA)
model to simulate the solidification of continuous billets. The CA method enables the
evolution of a solidified structure by defining local transformation rules for nucleation
and growth mechanisms [30]. In the CA method, each cell is divided into three states:
liquid, interface, and solid. Using the continuous kernel model proposed by Thevoz
et al. [31], the increment of the nucleation density is dn. The relationship between dn and
the undercooling at a given undercooling degree ∆T should follow a Gaussian distribution
as shown in Equation (1):

dn

d(∆T)
=

nmax√
2π

exp

[
−1

2

(
∆T − ∆Tn

∆Tσ

)2
]

(1)

where ∆T is the undercooling, ∆Tσ is the standard deviation, and nmax is maximum nucle-
ation density. The ∆Tn corresponds to the mean of the conventional Gaussian distribution,
and ∆Tσ is equivalent to the variance of the conventional Gaussian distribution. ∆Tn, ∆Tσ,
and nmax are uncertain parameters of the solidification model and need to be estimated by
subsequent modelling. The initial values of the nucleation parameters are shown in Table 1.

Table 1. Table of initial values of nucleation parameters.

nmax
(
1/m2) ∆Tn (K) ∆Tσ (K)

2× 105 12 1.5

The KGT [32] model is used to describe interfacial cell growth. Based on the theory of
solute equilibrium at dendrite tips, the relationship between solute supersaturation and
dendrite growth dynamics is given by the KGT model, and the following relationship can
be obtained by boundary stability:

V2 π2Γ
P2

c D2 + V
mC0(1− k0)

D[1− (1− k0)Iv(Pc)]
+ G = 0 (2)

where V is the growth rate of dendrite tip, given in m/s. D is the solute diffusion coefficient
within the liquid phase, given in m2·s−1. Γ is the Gibbs–Thomson coefficient, given in k·m.
m is the slope of the liquid–phase line, given in ◦C·wt%−1. C0 is the initial concentration of
the melt, given in wt%−1. k0 is the initial solute partition coefficient. P is the Péclet number
of solute diffusion, and P = VR/2D. R is the radius of the dendrite tip, given in m, and
G represents the temperature gradient. In the dendrite growth region, the temperature
gradient has a very small effect on the growth rate of dendrites, which can be neglected [33].
Iv(Pc) is the Ivantsov function [34], which is equivalent to the solute supersaturation Ωc,
and Pc is the Beckley number of solute concentration. Assuming that the tip of the dendrite
is a rotating paraboloid, the solution to the steady-state diffusion equation is as follows:

Ωc = Pc exp(Pc)
∫ ∞

Pc

exp(−x)
x

dx (3)

In order to improve the computational efficiency, researchers [35] simplified it
as follows:

v = α∆T2 + β∆T3 (4)

where α and β are the growth coefficient; where a liquid neighbour contacts an interface cell
(father cell), it will be captured and inherit the growth parameters of the father cell. When
all the neighbours are captured, a father cell is completely solidified. Equations (1) and (4)
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show that the cooling of the melt controls nucleation and growth, including solute, thermal,
and standard deviation, as shown in Equation (5).

∆T = Tt − T∗+m(C∗l − C0)− ΓK (5)

where T is the liquid-phase line temperature, T∗ is the melt temperature, and Tt is thermal
undercooling. C0 is the initial concentration, C∗l is the actual concentration, K is the
curvature, and m is set to −78 based on experience. From Equations (1)–(5), it can be
concluded that the melt temperature and the solute are the main factors controlling the
evolution of the solidification structure. The controlling equation for heat transfer is given
by Equation (6).

ρcp
∂T
∂t

=
∂

∂x

(
λ

∂T
∂x

)
+

∂

∂y

(
λ

∂T
∂y

)
+ Q (6)

where ρ is the density, cp is the equivalent specific heat, λ is the thermal conductivity, and
Q is the external heat source. The cast billet transfers the internal heat outward through
the surface, and the boundary conditions differ because the cooling regions have different
characteristics.

• The crystalliser cooling boundary conditions are as follows:

q = a− b
√

t (7)

q is the amount of heat released per unit time per unit volume of the object, a is an
adjustable parameter that can be derived from a combination of empirical parameters
and modelling, and b is a fixed parameter that can be obtained by calculating the average
heat-flow density carried away by the cooling water.

• The boundary conditions of the second cold zone are as follows:

qk = hk(Tb − Tw) + ε1σ
[
(Tb + 273)4 − (Ta + 273)4

]
(8)

where k represents different cooling water segments in the second cooling zone; qk rep-
resents the inner and outer arc heat-flow density, given in W/m2; hk is the coefficient of
water-cooled heat transfer, given in W/(m2·◦C; Ta, Tb, Tw are the ambient temperature,
surface temperature of the billet, and cooling water temperature, respectively, given in ◦C;
ε1 is the value of the surface blackness in the second cooling zone, which is 0.8; σ represents
the Boltzmann’s constant, which is taken as 5.67× 10−8 W/m2K4.

• Water spray cooling:

hk = 1.57W0.55
k (1− 0.0075Tw)/ak (9)

• Mist cooling:

hk = (350Wk + 130)/ak (10)

Referring to the empirical values to determine the heat-transfer parameters of the
second cooling zone results in Equation (9) as ak = 4 and in Equation (10) as ak = 1.

• Radiation heat dissipation in air cooling area:

q = εσ
[
(Tb + 273)4 − (Ta + 273)4

]
(11)

where ε represents the value of the blackness of the surface of the billet in the air-cooled
zone in the empirical range of 0.7~0.8; this paper takes 0.8.
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The governing equations for solutes include solute redistribution and solute diffusion
at the interface. The solute transition at the interface follows local solute conservation.

Cs = kCl (12)

where Cs is the solid concentration, Cl is the liquid concentration, and k is the equilibrium
solute partition coefficient. The current work only considers the case of k < 1. As the interface
progresses, a less-concentrated solid phase is generated at the interface, and the solute ∆C
discharged when the solid-phase rate increases. ∆ fs is calculated from Equation (13).

∆C = Cl(1− k)∆ fs (13)

If the current control unit is completely solidified (∆ fs = 1), it is completely discharged
into the neighbouring control unit. If the current control unit is not completely solidi-
fied (∆ fs < 1), the liquid-phase solute concentration in the current control unit changes
as follows:

Cl = Cl +
∆C

(1− fs)
(14)

If the liquid-phase solute concentration in the current cell is greater than the liquid-
phase equilibrium solute concentration at the current temperature, then the excess is
discharged to a neighbouring cell, and the equilibrium solute concentration is obtained
according to Equation (15):

C∗l = C0 +
T∗ − Tl

m
+

ΓK f (ϕ, θ0)

m
(15)

Tl and T∗ are the liquid-phase line temperature and current temperature at the in-
terface, respectively, given in ◦C; C∗l and C0 are the equilibrium solute concentration and
initial solute concentration, respectively, given in wt%; f (ϕ, θ) is a function describing
the anisotropic interaction of the interfacial energies. The amount of solute discharged to
neighbouring cells is calculated by Equation (16).

∆C′ = (Cl − C∗l )(1− fs) (16)

The initial and boundary conditions are as follows:

Ce(x, y)|t=0 = C0 (17)

All boundaries of the solute field have no exchange with the outside world, and zero
flux boundary conditions are used at the boundaries.

∂Ce

∂x
= 0,

∂Ce

∂y
= 0 (18)

2.2. Sensitivity Analysis of Adjustable Parameters in Solidification Models

The model in Section 2.1 simulates the low-magnification image of solidification
structure, as shown in Figure 2a. It can be seen from the simulated image that the image
is roughly divided into a central equiaxed crystal region and columnar crystal region.
Different dendrites are in different colours, with no obvious directionality in the central
equiaxed crystal region, while the dendrites in the columnar crystal region have a strong
directional character. Adjusting the three parameters in Equation (1) for average nucleation
undercooling, standard deviation, and initial maximum nucleation density, the average
nucleation undercooling was varied by 20 and 30; the standard deviation was varied by
0.1, 0.5, and 1.5; the maximum nucleation density was varied by 1000, 2000, 4000, and 8000;
and 24 low-magnification images were generated.
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Figure 2. (a) Numerical simulation image. (b) Relationship between initial maximum nucleation
density and equiaxed crystal ratio. (c) The relationship between average nucleation undercooling
and equiaxed crystal ratio. (d) Relationship between standard deviation and equiaxed crystal ratio.

The characteristics of the equiaxed crystal ratio of each low-magnification image were
recognition, respectively, which corresponded to 24 groups of different model parameters.
The effects of average nucleation undercooling, standard deviation, and initial maximum
nucleation density on equiaxed crystal ratio were analysed, as shown in Figure 2b–d. As
shown in Figure 2b, the standard deviation and the average nucleation undercooling are
invariant, and the initial maximum nucleation density is greater the greater the equiaxed
crystal ratio, roughly showing logarithmic growth. As shown in Figure 2d, the initial
maximum nucleation density and standard deviation are invariant, and the equiaxed
crystal ratio decreases with greater average nucleation undercooling. There is no significant
relationship between the standard deviation and the equiaxed crystal ratio in Figure 2c.

The correlation coefficients of the average nucleation undercooling, the initial max-
imum nucleation density, and the standard deviation with the corresponding equiaxed
crystal ratio were calculated to analyse their relevance. The correlation coefficient is a
statistical metric that reflects the closeness of the relationship between variables, with
values ranging from 1 to −1, and 1 means that the two variables are completely positively
correlated, −1 means that the two variables are completely negatively correlated, and
0 means that the two variables are not correlated. The closer the data are to 0, the weaker
the correlation. The calculation equation is as follows:

rxy =
sxy

sxsy
(19)

where rxy denotes the sample correlation coefficient, sxy denotes the sample covariance, sx
denotes the standard deviation of the sample x (where the sample denotes the ∆Tn, the nmax,
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and the ∆Tσ data samples, respectively), and sy denotes the sample standard deviation
of the sample y (where it denotes the data samples corresponding to the equiaxed crystal
ratio). Here sxy, sx, and sy are calculated, respectively, by the following Equations (20)–(22).
The correlation coefficients are calculated as shown in Table 2.

sxy =
∑n

1 (xi − x)(yi − y)
n− 1

(20)

sx =

√
∑n

1 (xi − x)2

n− 1
(21)

sy =

√
∑n

1 (yi − y)2

n− 1
(22)

Table 2. Table of correlation coefficients between uncertain parameters and equiaxed crystal ratio.

Average Nucleation
Undercooling and Equiaxed

Crystal Ratio

Initial Maximum Nucleation
Density and Equiaxed

Crystal Ratio

Standard Deviation and
Equiaxed Crystal Ratio

−0.35846 0.86081 0.01832162

It can be seen that the average nucleation undercooling is negatively correlated with
the equiaxed crystal ratio, the initial maximum nucleation density is positively correlated
with the equiaxed crystal ratio, the correlation is greater than that between the average
nucleation undercooling and the standard deviation, and the standard deviation has a
weaker correlation with the equiaxed crystal ratio.

Two simulated low-magnification images with an initial maximum nucleation den-
sity of 1000 and an average nucleation undercooling of 20 were selected, with standard
deviations of 0.1 and 1.5, as shown in Figure 3a,b, and the difference between Figure 3a,b
is presented in Figure 3c. Let the pixel p in Figure 3c with a grey value not equal 0, and
the proportion of different regions to the image in Figure 3a,b was found according to
Equation (23).

D =

N
∑

i=1
pi

N
× 100% (23)

where N is the total number of image pixels, and D is the proportion of different regions
of the image in Figure 3a,b. According to Figure 3c, D was found to be 3.2%. In order to
further analyse the relationship between standard deviation and the equiaxed crystal ratio,
four simulated low-magnification images with a maximum nucleation density of 1000,
average nucleation undercooling of 20, and standard deviations of 0.1, 1.5, 5, and 10 were
selected, and the results of their equiaxed crystal ratio are shown in Table 3, from which
it can be seen that the changes of the equiaxed crystal ratios corresponding to different
standard deviations are small. Therefore, according to the results of Figure 3 and Table 3, it
can be concluded that the influence of the standard deviation on the equiaxed crystal ratio
in the low-magnification images is small.

Table 3. Comparison of equiaxed crystal ratios with different standard deviations.

nmax ∆Tn ∆Tσ Equiaxed Crystal Ratio

1000 20 0.1 0.45
1000 20 1.5 0.44
1000 20 5 0.45
1000 20 10 0.45
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2.3. Establishing the Uncertain Parameter Estimation Model

The following parameter-fitting model was established based on the relationship
between the solidification model parameters analysed in Section 2.2 and the equiaxed
crystal rate.

Y = A log X (24)

where Y is the equiaxed crystal ratio, A is the parameter to be fitted, and X is the column
vector consisting of the maximum nucleation density, the average nucleation undercooling,
and the standard deviation. In order to solve for the parameters, the following deformation
is made to Equation (24): Y2

Y
E

 =

a11 a12 a13
a21 a22 a23
a31 a32 a33

log x1
log x2
log x3

 (25)

where Y is the equiaxed crystal ratio, x1 is the initial maximum nucleation density, x2 is
the average nucleation undercooling, x3 is the standard deviation, and matrix A is the
parameter to be fitted. Twenty groups of selected data were used to fit the parameter matrix
A, and four groups of data were used to test the parameter inversion results. The model
was evaluated by calculating the mean square error (MSE), which is the average of the sum
of squares of the sample data values deviating from the true sample data values. Therefore,
the closer the mean square error is to 0, the better the model is, with calculation as shown
in Equation (26). The results of the fitted-parameter matrix A are shown in Table 4.

MSE =
∑N

i=1(Xi − xi)
2

N
(26)

where N is the number of samples, Xi is the true value, and xi is the predicted value.

Table 4. Table of results of fitting the parameter matrix A of Equation (25).

Fitting Parameters Numerical Value

a11 1.03891782
a12 1.12033505
a13 1.57397863
a21 2.88886031
a22 3.80249366
a23 5.15804239
a31 0.17296562
a32 −0.20450313
a33 −0.89004431
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The MSE of the model for Equation (25) was calculated to be 82.11, which is a large
value, indicating that the estimation of the three solidification parameters using the equiax-
ial crystal ratios is not satisfactory, and the model needs to be improved. In order to improve
the fitting accuracy, we extracted the simulated image of the dendrite aspect ratio features,
and the feature and the equiaxed crystal ratio were put together into a two-dimensional
column vector. Through the above analysis in Section 2.2 of the standard deviation degree
change on the simulated image, the results have less impact, so the only solidification pa-
rameters chosen were the initial maximum nucleation density and the average nucleation
undercooling. Then, Equation (25) could be deformed as follows:[

y1
y2

]
=

[
a11 a12
a21 a22

][
log x1
log x2

]
(27)

where y1 is the equiaxed crystal ratio, y2 is the aspect ratio, x1 is the initial maximum nucle-
ation density, x2 is the average nucleation undercooling, and matrix A is the parameter ma-
trix to be fitted. The results of the fitted-parameter matrix A are shown in Table 5. The MSE
of this model was calculated as 0.33, which is much smaller than the Equation (25) model’s
MSE. Therefore, the Equation (27) model is superior to the Equation (25) model. Then, we
solved the vector X expression according to Equation (1), as shown in Equation (28).

X = exp
[(

AT A
)−1

ATY
]

(28)

Table 5. Table of results of fitting the parameter matrix A of Equation (27).

Fitting Parameters Numerical Value

a11 −0.27107862
a12 0.19938481
a21 0.65879599
a22 −0.18525355

Four groups of data were selected to test the accuracy of the fit, and the results of the
predicted solidification parameters were derived from the results of the fitted-parameter
matrix A in Table 5, as shown in Table 6. The maximum error in the predicted maximum
kernel density of the solidification parameters was 45.55%, the minimum error was 3.2%,
and the average error was 16.5%. The maximum error in the predicted average nucleation
undercooling of the solidification parameters was 33.3%, the minimum error was 3.33%,
and the average error was 17.5%. The standard deviation was set to 1.5, and the predicted
maximum nucleation density and the average nucleation undercooling in Table 6 were
used to fit the low-magnification image to calculate its equiaxed crystal ratio and the
equiaxed crystal ratio of the low-magnification image fitted with the real parameter for the
comparison of the results, as shown in Table 7, which shows that the maximal error of the
equiaxed crystal ratio fitted with the estimated parameter is 3% with the real value, while
the minimal error is only 1%, which shows that the model is correct.

Table 6. Table of predicted solidification parameters.

nmax ∆Tn Predicted nmax Predicted ∆Tn

1000 30 1032 32
2000 30 1089 20
4000 30 4364 29
8000 30 8653 22
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Table 7. The result of predicting the equiaxed crystal ratio.

True Equiaxed Crystal Ratio Predicted Equiaxed Crystal Ratio Errors

0.33 0.31 0.01
0.45 0.43 0.02
0.56 0.52 0.03
0.67 0.64 0.03

3. Analysing the Effect of Solidification Structure Feature-Recognition Errors on the
Fitted Parameters

The recognition error was simulated by adding random Gaussian noise to the equiaxed
crystal ratio and length–width ratio data. We added 1000 groups of random noise within
20% error to the equiaxed crystal ratio and length–width ratio data, respectively, and the
noise distribution is shown in Figure 4. The average of the mean square error of the fitting
results of the 1000 groups of data was calculated, and the variation of the mean square error
is shown in Figure 5. It can be seen from Figure 5 that in a Gaussian noise environment, the
recognition error effect on the uncertain parameter fitting increases with increasing variance
when the recognition error is less than 20%. Both length–width ratio and equiaxed crystal
ratio recognition errors increase linearly, and the recognition error of the length–width
ratio has a greater effect on fitting uncertain parameters than the recognition error of the
equiaxed crystal ratio.
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4. Conclusions

An automated method for estimating the uncertain parameters of solidification mod-
els is herein proposed. By analysing the relationship between the solidification structure
characteristics and the uncertain parameters, we found that the variation of the standard
deviation has a small effect on the equiaxed crystal ratio. A model for parameter estimation
was established using the estimated uncertain parameters of the solidification model to
simulate the low-magnification image, thus obtaining the equiaxed crystal ratio. The maxi-
mum error with the real value is 3%, and the minimum error is only 1%. The experiment
shows that this method can improve the accuracy of estimating the parameters of the solid-
ification model. By simulating the identification errors of the solidification tissue features,
it was found that as the identification errors of the features such as the equiaxed crystal
ratio and the dendrite aspect ratio increased, the effect on the fitting parameters increased
roughly linearly. This work provides valuable information for estimating solidification
model parameters.
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