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Abstract: Among N-rich heterocycle backbone compounds, the triazoles building block received
a lot of interest in several different academic and industrial studies and applications. This article
outlines the process of synthesizing three different 1,2,4-triazole-based systems, commencing with
1,3-diaminoguanidine hydrochloride monohydrate as the starting material. The five novel crystal
structures, Triaz1, Triaz2, Triaz3, Triaz4, and Triaz5, were characterized by NMR spectroscopy and
single-crystal X-ray diffraction analysis. Hirshfeld surface analysis was employed to explore the
intermolecular interactions that are responsible for quantitative crystal packing. The synthesized
compounds, with their elevated nitrogen content, serve as potential components for High-Energy-
Density material science applications.
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1. Introduction

Heterocyclic compounds and nitrogen-rich hetero compounds are widespread in na-
ture and play numerous roles in the physiology of living organisms. They are present
in vitamins, in amino acids (proline, histidine and tryptophan), in biologically active
compounds [1], such as chlorophyll and heme (structurally consisting of derivatives of
porphyrins rings), in medicines (including anti-inflammatory, antimalarial, antimicrobial,
antiviral and antidiabetic ones), in synthetic agrochemicals (herbicides and insecticides)
and in natural bioactive substances, such as alkaloids, caffeine, etc. Undoubtedly, it is
crucial to highlight their significance as fundamental biological molecules that constitute
DNA and RNA. Moreover, the growing utilization of N-rich aromatics as foundational
components for crafting conjugated active molecules with applications across a range of
advanced materials fields, including semiconducting polymers [2,3], organic field-effect
transistors [4,5], fluorescent sensors [6,7], organic solar cells [8,9] and high-energy-density
compounds [10–13], merits attention. An intriguing and peculiar feature of many hete-
rocyclic systems with a high nitrogen content is tautomerism [14–18]. Tautomerization
reactions typically entail the shifting of a lone hydrogen atom, which is why they are
commonly linked to molecules that have acidic functional groups. This holds particular
relevance in the context of crystal engineering because the precise location of a hydrogen
atom within the molecule significantly influences its potential to establish hydrogen bonds.
Consequently, this has implications for synthon formation and, consequently, the overall
packing arrangement. Quasi-degenerate tautomers are a fascinating occurrence. In this
case, in fact, the equilibrium mixture contains appreciable amounts of all tautomers. Crys-
tallization represents one of the limited methods available for the separation of distinct
tautomers, primarily because it is unlikely to detect various tautomeric forms within the
same crystal structure [19]. For quasi-degenerate tautomeric systems, the co-crystallization
of two tautomers in the same lattice is a possibility but still a rare phenomenon; another
possibility is the precipitation of different crystal forms, each with its own tautomer. These
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two occurrences account for no more than 0.5% of molecules in the Cambridge Structural
Database, which is another reason why quasi-degenerate tautomeric systems are partic-
ularly interesting. In recent years, our focus has been directed toward the synthesis and
examination of benzimidazole [20–22] and N-rich triazole derivatives [7,12,16,17,23] in
order to investigate their chemico-physical properties and tautomerism. Here, we report
the synthesis and crystallization of five novel N-rich triazole systems with a nitrogen con-
tent between 55 and 70% w/w, which are potentially of interest for HEDMs applications
(Scheme 1). In this context, energetic heterocyclic compounds with a high nitrogen content
have emerged as a viable alternative to traditional HEDMs because of their higher stability
and environmental friendliness [24]. Energetic materials typically release energy through
oxidation processes when they decompose, and nitrogen-rich heterocyclic compounds are
no exception. These compounds contain nitrogen atoms that are often involved in single
or double bonds, and when the molecule decomposes, it generates N2. The production of
nitrogen gas as the primary byproduct makes the entire process environmentally friendly.
This effect becomes more pronounced as the nitrogen content of the molecule increases,
as it leads to reduced quantities of other byproducts. Furthermore, an increased nitrogen-
to-carbon and hydrogen ratio enhances density, which is also desirable. Another valuable
aspect of nitrogen-rich heterocyclic compounds is the presence of acidic or basic functional
groups, often in the form of basic nitrogen atoms or acidic N-H groups. These features can
be harnessed to form salts, where the nitrogen-rich heterocycle serves as a cation or anion.
Such salts typically exhibit a high stability and can possess diverse properties, depending
on the choice of counterion.
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2. Experimental Section
2.1. Materials and Methods

Caution! The title complexes possess the potential to function as high-energy materials
that may detonate under specific circumstances. Despite our incident-free experience in
the preparation and handling of these complexes, it is crucial to recognize their energetic
nature. Therefore, it is advisable to implement proper safety precautions, including wearing
protective gear, such as leather coats, safety glasses, face shields, and ear plugs, particularly
when working with these compounds on a larger scale.

Starting materials were purchased from Sigma Aldrich (Italy), AlfaAesar (Italy) and
Fluorochem (UK) and used without further purification. All solvents were used with analyt-
ical grade. 3,4-diamino-1,24-triazolium chloride (DATr-HCl) was synthesized according
to a literature procedure [25]. Triaz1 and Triaz2 were synthetized by following a slightly
modified version of a literature procedure [26]. The synthetic procedures are reported in
detail below.

2.1.1. NMR Spectroscopy

The compounds’ identity was confirmed by Bruker Avance 400 MHz, Varian Inova
500 MHz NMR spectrometers (Netherlands). 1H-NMR and 13C-NMR spectra were recorded
by using d6-DMSO solvent.

2.1.2. Melting Point Determination

The melting points of compounds were determined by temperature ramp measure-
ments with a Mettler FP90 heating stage (Netherlands), heating rate of 10 ◦C/min, equipped
with a polarizing Zeiss Axioskop (Germany).

2.1.3. X-ray Single Crystal Analysis

All data for crystal structure determinations were measured on a Bruker-Nonius
KappaCCD diffractometer (Netherlands) equipped with an Oxford Cryostream 700 appa-
ratus, using graphite monochromated MoKα radiation (0.71073 Å). Data were collected
at room temperature and at −100 ◦C. Reduction of data and semiempirical absorption
correction were done using SADABS program [27]. The structures were solved by direct
methods (SIR97 program) [28] and refined by the full-matrix least-squares method on
F2 using SHELXL-2016 program [29] with the aid of the program WinGX 2021.3 [30]. H
atoms bonded to C were generated stereochemically and refined by the riding model; those
bonded to O and N were found in difference Fourier maps, and their coordinates were
refined. To all H atoms, Uiso equal to 1.2 times Ueq of the carrier atom was given. The
analysis of the crystal packing was performed using the program Mercury 2023.3.0 [31].

2.1.4. Hirshfeld Analysis

The Hirshfeld surface and potential energy surface were calculated using the program
CrystalExplorer21.5 [32]. Crystallographic data for each X-ray single crystal were extracted
from their crystallographic information files (.cif) and then imported into Crystal Explorer
to produce the Hirshfeld surfaces. The settings used were as follows: property: none;
resolution: high (standard). For fingerprint generation (di vs. de plot), we employed the
following parameters: range-standard; filter-by elements; fingerprint-filter options are both
inside–outside elements, including reciprocal contacts. Interactions in crystal structures
with normalized contact distances shorter than the sum of the respective van der Waals
radii of the atoms are depicted as red spots, while those with longer contacts exhibiting a
positive dnorm value are represented in blue.

2.2. Syntheses and Crystallization of Compounds Triaz1-Triaz5

Heterocycles such as triazoles and tetrazole are directly obtained from aminoguani-
dine [33]. Hereby, diaminoguanidine hydrochloride salt was used for the synthesis of
1,2,4-triazole compounds.
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Triaz1: Commercial 2-pyrazinic acid (5.00 g, 40.3 mmol) and diaminoguanidine mono-
hydrochloride (6.58 g, 52.4 mmol, 30% excess by mol) were finely ground in a mortar. The
mixture was introduced incrementally with mechanical stirring into a beaker containing
40 g of polyphosphoric acid (PPA) at 100 ◦C. Whitin a short period, the reaction mixture
began releasing gaseous HCl. The temperature of the resulting viscous mixture was raised
to 150 ◦C, and the mixture underwent a 12 h reaction period while being continuously
stirred. Subsequently, the mixture was transferred into 100 mL of cold water, and the pH of
the resultant solution was adjusted to 5 by introducing a concentrated NaOH solution. The
solid was isolated by vacuum filtration on paper filter, washed with cold water and dried
in an oven at 100 ◦C overnight. A pale orange solid was obtained. Yield: 5.84 g (83%). M.p.:
277 ◦C. 1H NMR (400 MHz, d6-DMSO) δ 5.94 (s, 2H), 6.04 (s, 2H), 7,50 (t, 1H), 8.91 (d, 1H).
13C NMR (100 MHz, D6-DMSO) δ 143.2, 143.9, 144.0, 144.15, 145.2, 157.3. NMR spectra of
Triaz1 in Figures S1 and S2 (Supplementary Information).

Plate colorless crystals were obtained from the slow evaporation of an ethanolic
solution at room temperature in 24 h.

Triaz2: Commercial 2-picolinic acid (5.00, 40.6 mmol) and diaminoguanidine monohy-
drochloride (7.36 g, 58.6 mmol, 30% excess by mol) were finely ground in a mortar. The
mixture was introduced incrementally with mechanical stirring into a beaker containing
40 g of polyphosphoric acid (PPA) at 100 ◦C. Within a short period, the reaction mixture
began releasing gaseous HCl. The temperature of the resulting viscous mixture was raised
to 150 ◦C, and the mixture underwent a 12 h reaction period while being continuously
stirred. Subsequently, the mixture was transferred into 100 mL of cold water, and the pH of
the resultant solution was adjusted to 5 by introducing a concentrated NaOH solution. The
solid was isolated by vacuum filtration on paper filter, washed with cold ethanol and dried
in an oven at 100 ◦C overnight. A pale-yellow solid was obtained. Yield: 5.76 g (80.5%).
M.p.: 239 ◦C. 1H NMR (400 MHz, d6-DMSO) δ 5.85 (s, 2H), 6.11 (s, 2H), 6.93 (m, 4H), 7.25 (t,
3H), 7.86 (d, 2H), 8.36 (d, 2H), 11.88 (s, 1H). 13C NMR (100 MHz, D6-DMSO) δ 114.7, 116.9,
118.5, 128.5, 129.9, 148.6, 155.6. NMR spectra of Triaz2 in Figures S3 and S4 (Supplementary
Information).

Plate colorless crystals were obtained from the slow evaporation of an ethanolic
solution at room temperature in 24 h.

Triaz3-Triaz5: Diaminoguanidine monohydrochloride (5.00 g, 40 mmol, 15% excess
by mol) was finely ground in a mortar and mixed with 1.65 mL of formic acid (94% m/V,
34.5 mmol). The mixture was heated at reflux for 2 h. The product was filtered under
vacuum and washed with cold ethanol. A total of 2.730 g of DATr-HCl in the form of a
white solid was obtained (80% Yield). M.p.: 250 ◦C. 1H NMR (400 MHz, d6-DMSO) δ 6.26
(s, 2H), 8.32 (s, 2H), 8.42 (s, 1H). 13C NMR (100 MHz, D6-DMSO) δ 142.2, 151.2. NMR
spectra of Triaz3 in Figures S5 and S6 (Supplementary Information).

A total of 40 mg (0.3 mmol) of DATr-HCl was dissolved in 10 mL of hot water, and
10 drops of HBr concentrated solution (48% v/v) were added. Prismatic colourless crystals
of Triaz3 were obtained by slow evaporation at room temperature in 2 days. The crystals
were filtered off by vacuum filtration on paper filter, washed with cold ethanol and dried
at room temperature under a fume hood overnight.

A total of 40 mg (0.3 mmol) of DATr-HCl was dissolved in 10 mL of hot water together
with 34 mg (0.15 mmol) of ZnBr2 (again, 2:1 molar ratio) and five drops of concentrated
hydrobromic acid (48% v/v). Prismatic colourless crystals of Triaz4 were obtained in a
week by slow evaporation of the solvent at room temperature. The crystals were filtered
off by vacuum filtration on paper filter, washed with cold ethanol and dried at RT under a
fume hood overnight.

A total of 40 mg (0.3 mmol) of DATr-HCl was dissolved in 10 mL of hot water together
with 21 mg (0.15 mmol) of ZnCl2 (2:1 ratio by mol) and five drops of hydrochloric acid
(37% v/v). The solution was left at room temperature for a week. The slow evaporation
of the solvent led to the formation of prismatic colourless crystals of Triaz5. The crystals
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were filtered off by vacuum filtration on paper filter, washed with cold ethanol and dried
at room temperature under a fume hood overnight.

3. Results and Discussion

The crystal data of all studied triazoles are summarized in Table 1.

Table 1. Crystallographic information of the discussed compounds.

Triaz1 Triaz2 Triaz3 Triaz4 Triaz5

Chemical
Formula C6H7N7 C7H9N6·H2O4P C2H6N5·Br 2(C2H6N5)·Br4Zn 2(C2H6N5)·Cl4Zn

Mr 177.19 274.19 180.03 585.25 407.41
Crystal system

space group Monoclinic, P21/c Monoclinic, C2/c Monoclinic, Cc Monoclinic, Pc Orthorhombic,
Pbca

Temperature (K) 293 293 293 173 173

a, b, c (Å)
7.435(3), 9.067(3),

11.465(4)
26.400(7), 6.244(3),

18.701(6)
5.0140(17),

15.288(3), 7.937(2)
7.539(3), 12.059(4),

11.144(3)
16.9130(17),

8.348(4), 21.356(8)
α, β, γ (◦) 90, 106.98(2), 90 90, 133.01(2), 90 90, 99.33, 90 90, 129.48(2), 90 90, 90, 90

V (Å3) 739.2(5) 2254.3(15) 600.4(3) 782.0(5) 3015.2(18)
Z 4 8 4 2 8

Radiation type Mo Kα
µ (mm−1) 0.11 0.26 6.75 11.79 2.34

Crystal size (mm) 0.40 × 0.10 × 0.03 0.40 × 0.30 × 0.20 0.35 × 0.20 × 0.20 0.35 × 0.20 × 0.15 0.45 × 0.30 × 0.30
Diffractometer Bruker-Nonius Kappa CCD

Absorption
correction

Multi-scan
SADABS

Tmin, Tmax 0.940, 0.980 0.890, 0.936 0.190, 0.327 0.112, 0.259 0.410, 0.528
I > 2σ(I)] 4695, 1677, 1203 10,432, 2582, 2015 1562, 1112, 1070 4720, 3082, 2918 11,619, 3392, 2787

Rint 0.042 0.038 0.022 0.050 0.031
sin (θ/λ)max (Å−1) 0.650

R[F2 > 2σ(F2)],
wR(F2), S

0.043, 0.110, 1.03 0.042, 0.102, 1.07 0.024, 0.061, 1.03 0.044, 0.119, 1.06 0.025, 0.054, 1.08

No. of reflections 1677 2582 1112 3082 3392
No. of parameters 130 184 92 168 202
No. of restraints 0 0 6 2 10

∆ρmax, ∆ρmin
(e Å−3) 0.18, −0.24 0.27, −0.31 0.50, −0.49 1.27, −1.36 0.32, −0.38

Absolute
structure

Flack x determined
using 397

quotients [(I+) −
(I−)]/[(I+) + (I−)]

Refined as an
inversion twin.

Absolute
structure

parameter
0.065(18) 0.05(3)

The X-ray molecular structure of Triaz1 is shown in Figure 1.
Both amino N atoms have a pyramidal geometry. In the case of CNH2, the pyramidal

geometry is more flat (sum of valence angles at N3 is 350(5)◦) than for NNH2 (sum of
valence angles at N5 is 327(4)◦). This is indicative of a partial π-conjugation of the CNH2
amino group with the aromatic system of the triazole ring.

The molecular conformation of Triaz1 is determined by the little twist around the
C1-C5 bond, which produces a dihedral angle of 19.32(2)◦ between the average planes of
the pyrazinyl and triazole moieties. The twist could account for the formation of suitable
angles for the H-bond interactions of both N6 and N7 acceptor atoms. In fact, as shown in
Figure 2a, the pyrazyl ring is involved in two strong hydrogen bond interactions between
two layers of Triaz1 with a distance of 2.438(3) and 2.269(2) Å. Diamminotriazole molecules
in the layer are held by a strong homomeric NCNH2 R2

2(8) motif [34–36], with a distance
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of 2.305(2) Å. The 21 axis and the c glide plane build alternate layers of diaminotriazole
molecules with a stacking distance of 3.288(5) (Figure 2b).
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For a more in-depth examination of intermolecular interactions, we utilized the Crys-
talExplorer 21.5 program to calculate two-dimensional (2D) fingerprints and the corre-
sponding Hirshfeld Surfaces (HS) for all the compounds. As depicted in Figure 3, the
red areas on the HS signify close contacts in the shape of intermolecular hydrogen bonds,
encompassing N···H and H···N interactions, which contribute to 46% of the crystal packing
and confirm the significant role of homomeric synthons in the structure. The directional
C· · ·H close contacts are associated with the π· · ·H interaction of the aromatic rings with
the surrounding molecules and contribute in all five compounds to less than 10%. The
high value of H···H close contacts in this crystal structure could be associated with a close
distance of the molecules in the crystal packing.

The X-ray molecular structure of Triaz2 is shown in Figure 4.
Protonation of the triazole is at the N ring atom adjacent to the CNH2 carbon, i.e., at

N2. This feature, which holds unchanged for all singly protonated triazoles reported in
this paper (vide ultra), is related to the stabilization of the positive charge on N2 by the
electron donor NH2 group on the adjacent carbon atom. As a result of this stabilization, the
geometry around CNH2 amino nitrogen is planar trigonal (the sum of valence angles at N3
is 358(7)◦). On the other hand, the geometry around NNH2 amino nitrogen is pyramidal,
as in the neutral triazole (the sum of valence angles at N5 is 326(7)◦).

The conformation of Triaz2, as for Triaz1, is characterized by a little twist of the
pyridine ring with respect to the triazole ring, with the formation of a dihedral angle of
18.82(4)◦. Differently from Triaz1, in this case the twist can be related to the ability of the
triazole amino group close to the N6 to establish a strong H-bond interaction with the O2
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atom of the dihydrogen phosphate counter ion (Figure 5b). The cationic diaminotriazole
molecules interact with the inorganic contour anion by establishing a strong heteromeric
NH2NCH POO R2

2(8) ring pattern, with distance values of 1.861(3), 2.014(3) and 2.171(3)
Å (Figure 5a) [37–39]. Molecules in the crystal are arranged in a stair motif in which each
diaminotriazole layer is linked to the other through the interaction with the counterion
(Figure 5b). The tautomer that is isolated for this compound has a H atom bonded to N2
rather than N6, which is sterically hindered for this molecular conformation.
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The HS surface analysis, as shown in Figure 6, confirms that the packing is strongly
influenced by the hydrogen bond interaction between the charged molecules, while differently
from Triaz1, the N···H and H···N interactions are less relevant. For Triaz2, the highest value
of H···H close contacts in the set of crystal structures studied in this paper is calculated.
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Figure 7 shows the crystal structures of Triaz3, Triaz4 and Triaz5.
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All three crystalline structures share the same diamminotriazole cation (DATr), but
with three different counterions: bromide (Figure 7a), tretrachlobromide (Figure 7b) and
tetrachlorozincate (Figure 7b), respectively. The counterions were chosen so as to obtain
hybrid organic–inorganic molecular structures in which intermolecular interactions could
favor crystalline packings with increasing densities, as these are desirable for High-Energy-
Density materials. In fact, Triaz3 and Triaz4 have the highest crystallographic density
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among the reported compounds, with values of ρ of 1.992 and 2.486 g/cm3, respectively
(ρtriaz1 = 1.592 g/cm3, ρtriaz2 = 1.616 g/cm3, ρtriaz5 = 1.795 g/cm3). Therefore, the presence
of bromide ion promotes a denser crystalline packing with a better angle and distance
geometry. As previously stated, in all triazole cations, protonation is on the N ring atom
adjacent to the CNH2 carbon. As a result, the amino CNH2 atom is planar trigonal (the
sum of valence angles at N is always 360◦), while NNH2 keeps a pyramidal geometry, as in
the neutral triazole Triaz1 and protonated triazole of Triaz2.

The crystal packings are strongly influenced by hydrogen bond interactions between
the DATr cation and the halogen of the counter ion (Figure 8), with the distances and angles
reported in Table 2 confirmed by the HS fingerplot, which highlights a high contribution
of these interactions with a maximum of 49% for Triaz4 (Figure 9, center). On the other
hand, Triaz3 and Triaz5 (Figure 9 left and right) show a major contribution of the N···H
interaction, with 25% and 22%, respectively.
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Table 2. Hydrogen bond geometry of Triaz3, Triaz4 and Triaz5.

D—H···A H···A (Å) D—H···A (◦)

Triaz3

N2—H2N···Br1 2.47(8) 155(7)
N4—H4A···Br1 2.75(4) 147(6)
N4—H4B···Br1 2.63(4) 157(5)
N5—H5A···Br1 2.84(5) 138(6)
N5—H5A···Br1 2.91(6) 123(6)
N5—H5B···N1 2.12(4) 159(7)

Triaz4

C1—H1···Br1 2.65 166.6
N2—H2···N4 2.18 165.5

N4—H4A···Br2 2.65 166.0
N4—H4B···Br1 2.44 162.8
N5—H5A···Br4 2.68 145.9
N5—H5B···N7 2.18 162.8
N9—H9B···Br4 2.94 157.6

N10—H10A···Br4 2.80 165.8
N10—H10B···Br3 2.73 166.3

N6—H6···N1 2.06 150.6

Triaz5

N1—H1N···Cl1 2.775(19) 132.5(2)
N1—H1N···Cl3 2.584(18) 143.2(2)
N4—H4A···Cl2 2.880(18) 142.8(2)
N4—H4B···Cl3 2.782(19) 135.4(2)
N5—H5A···Cl1 2.507(18) 149(2)
N5—H5B···N7 2.113(16) 167(2)
N6—H6N···Cl2 2.370(18) 150(2)
N9—H9B···Cl3 2.654(18) 141.8(2)

N10—H10A···Cl3 2.404(17) 176(2)
N10—H10B···N2 2.63(3) 113(2)
N10—H10B···Cl4 2.586(18) 158(2)
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The crystal packings of Triaz3, Triaz4 and Triaz5 show a scaffold of inorganic counter
anions spaced out by a scaffold of organic cations (Figure 10).
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4. Conclusions

In conclusion, a novel series of N-Rich triazole derivatives, using the diaminoguani-
dine hydrochloride as a building block compound, were synthesized and crystallized.
The purity of the synthetized compounds was determined by 1H-NMR and 13C-NMR
spectroscopy. Altogether, five novel crystal structures were obtained and characterized by
single X-ray diffraction measurements. The supramolecular features of the compounds
were analyzed with a Hirshfeld topology that highlights a high presence of strong H-bonds
driven by the amino group of the diaminotriazole moieties. Triaz1 crystal packing is
strongly driven by the homomeric NCNH2 R2

2(8) supramolecular synthon, with a very
high contribution (46%). Similarly, Triaz2 crystal packing is influenced by the presence
of the heteromeric NH2NCH POO R2

2(8) ring pattern, with a contribution of 29%. The
crystal packings of Triaz3, Triaz4, and Triaz5 highlight the strong presence of strong H-
bond interactions between the donor amino group of the triazole block and the halogen
acceptor atoms of the counterions. These new systems, thanks to a high nitrogen content
in the molecular backbone, could pave the way for a new series of materials that could be
potentially relevant to industries involving high-energy-density materials, as an application
in the field of explosives or propellant gases with low toxicity.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst13121651/s1. 1H NMR and 13C NMR spectra of Triaz1
(Figures S1 and S2), Triaz2 (Figures S3 and S4), DATr-HCl (Figures S5 and S6) CCDC number of
the deposited Crystal structure: 2304297, 2304298, 2304299, 2304303, 2304304.
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