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Abstract: Supercapacitors play an important role in power systems since they are a key part of
electrochemical energy storage devices. To assemble high-performance supercapacitors, it is crucial
to discover and innovate high-capacitive electrode materials. Recently, metal–organic frameworks
(MOFs) and their derivatives have received wide concerns as electrode materials for supercapacitors,
not only because of their high pore volume and large surface area for ions and electrons insertion
and transportation, but also due to the intrinsic metal active sites that possibly offer extra faradaic
pseudocapacitance. Additionally, the abundant species of MOFs with various morphologies also
feature advantages in enriching the structural diversity of electrodes. In this paper, we first report
the latest research progress and demonstrate the feasibility of pure MOFs for directly constructing
supercapacitor electrodes. Furthermore, different MOF derivatives, including porous carbons, transi-
tion metal oxides, metal hydroxides and MOF composites for supercapacitors, are summarized, and
their electrochemical performances with corresponding energy storage mechanisms are presented in
detail. Finally, the perspectives for MOF-based materials applied in supercapacitors are discussed,
aiming to provide a guideline for further research based on these promising materials.

Keywords: metal–organic frameworks; derivatives; supercapacitors; energy devices; composites

1. Introduction

With the exploitation of nonrenewable resources like coal, natural gas, and oil, the
increasing consumption of traditional energy sources has unavoidably caused serious
environmental pollution. Therefore, developing renewable and clean energy is urgent [1–4].
Nowadays, there are numerous energy conversion and storage technologies, including bat-
teries, capacitors and nanogenerators, etc., created to hopefully replace traditional energy
systems [5–8]. Among them, supercapacitors (SCs) are one of the most promising power
units, because of the high-power density, quick charging and discharging ability, ease of
processing, high safety and low cost. However, ordinary SCs composed of carbon materials
with electrical double-layer capacitance (EDLC) deliver a relatively low energy density. This
may be due to the intrinsic nature of electrode materials, where electrochemical redox for
additional capacitance is normally limited [9–12]. To address this issue, many efforts have
been devoted to seeking new electrode materials over the past few decades. Nevertheless,
for some noncarbon materials, such as metal oxides or hydroxides, increasing the faradaic
pseudocapacitance compromises other properties, such as cyclicity or stability. Therefore,
the design of SC electrode materials that present excellent comprehensive performance is
still challenging [13,14].

Metal–organic frameworks (MOFs) with unique physicochemical properties built by
metal centers and organic ligands have recently attracted enormous attention for their
energy storage and conversion capabilities. Their regular topology, high pore volume,
large specific surface area, and adjustable pore size feature advantages in ion insertion and
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transportation [15–19]. More importantly, the metal sites in MOFs often assist the formation
of pseudocapacitance during redox reaction [17], where there is a protonation process
between metal ions and electrolytes. Additionally, in some cases, the MOFs with metal
nodes, such as Cu2+ (3d9), and redox active ligands, such as benzoquinonyl, are efficient for
increasing carriers’ mobility, which greatly benefits the promotion of conductivity for su-
percapacitors [18]. Of course, the stability of pure MOFs as electrodes is also controversial,
since the electrolyte anions chelating with metal ions may lead to the deconstruction of the
original coordinated framework. Hence, instead of Pure MOFs, their derivatives are pre-
ferred for energy electrochemical applications. For instance, MOF crystals with a polyhedra
shape are utilized as ideal precursors to construct various nanostructured carbon/metal
oxide hybrids [19]. Apart from pseudocapacitance supplied by metal oxide nanoparticles,
the carbonized architectures serving as EDLC further improve conductivity and stability.
Nevertheless, every coin has two sides. High-temperature thermal treatment of MOFs,
along with organic linkers breakage and metal cluster aggregation, sometimes gives rise to
pore vanish and structural collapse, probably reversing the capacitive performances [20].

Thus, this review systematically outlines and compares the latest research progress of
MOF-based materials involving pure MOFs, MOF derivatives and MOF composites for
SCs, aiming to seek the optimal cases as electrode materials (Figure 1). Meanwhile, the
behind energy storage mechanisms in SCs are discussed to inspire new ideas for the design
of novel MOFs and their derivatives in the domain of capacitors and other power systems.
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Figure 1. An illustration of several MOFs and materials for supercapacitors’ electrodes that are
derived from MOFs, (three types of electrode materials: Pure MOFs, MOF-derived materials, MOF
composite materials). (PC: porous carbon; TMO: transition metal oxide; TM-DH: transition metal
hydroxide; TMS: transition metal sulfide; CP: conductive polymer).

2. Classification of Supercapacitors

Based on their energy storage mechanisms, SCs can be divided into three categories
(Figure 2): electric double-layer capacitors (EDLCs), pseudocapacitors (PCs), and hybrid
capacitors (HCs) [20]. The EDLC is a Helmholtz bilayer structure formed by adsorbing
ions on the surface of materials to store electric charges. EDLCs have excellent cyclic
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stability while their energy density is low [21,22]. The PC generates greater capacitance
through Faraday redox reaction. However, its cycle stability and energy density are both
low [23,24]. HCs are generally composed of EDLCs and PCs, which can simultaneously
achieve high energy density and high power density. For the selection of several types
of SC electrode material, EDLCs prefer carbon-based materials such as carbon nanotubes
(CNTs), graphene, and activated carbon (AC). PCs generally adapt to conductive polymers,
transition metal hydroxides, and transition metal oxides (TMOs) [25–27]. Also, based on
the various materials used for the positive and negative electrodes, SCs can be further
categorized into symmetric SCs and asymmetric SCs [4]. Unlike symmetric SCs, asymmetric
SCs feature different positive electrode and negative electrode materials, which express
higher energy density and specific capacitance [28].
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Figure 2. Schematic illustration of three categories of supercapacitors: EDLC, PC, and HC. Repro-
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MOFs are regarded as potential materials for novel energy storage devices because of
their exceptional performance and structure. However, the low conductivity and relatively
low chemical/structural stability of most original MOFs sometimes limit their application
in the field of energy storage. Now, MOFs applied for SCs include pure MOFs, MOF
derivatives, and MOF-based composites or hybrids.

3. Pure MOF Materials

So far, there have been many pure M-MOFs (M = Co, Ni, Zn, Mo, Fe) for SCs. The
electrochemical performance of pure MOFs is highly dependent on their composition and
structure. Additionally, the ions and electrons are affected by their pore channels. Among
all the pure MOFs, Co- and Ni-based MOFs are the most-reported.

The exploration of Co-MOF for SCs was first reported by Díaz et al. [29] In 2012, they
synthesized Co8-MOF-5, modified from MOF-5, where some Zn node was replaced by Co
node (Figure 3a). Although Co-O redox was introduced, it still behaved like EDLCs, owing
to the low conductivity. Then, in 2016, Liu et al. [30] investigated Co-based multilayer MOF
(Co-LMOF) as an electrode material for SCs (Figure 3b). It delivered a high specific capaci-
tance of 2474 F g−1 at a current density of 1 A g−1 (Figure 3c). The high capacity is attributed
to the PCs. Also, it was stable even after 2000 cycles with 94.3 % capacity retaining (Fig-
ure 3d). Subsequently, Yang et al. [31] synthesized a thin nanosheet with a layered structure
of Co-MOF (Figure 3e). The specific capacitance of the Co-MOF nanosheet was 2564 F g−1

at 1 A g−1 and could preserve 95.8% of its initial value after 3000 cycles (Figure 3g). This
exceptional electrochemical performance is mainly ascribed to the two-dimensional (2D)
layered structure with reduced dimensionality. Moreover, Ramachandran et al. [32] studied
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the capacitance of the same crystal-structured Co-BTC synthesized by different conditions
(Figure 3h). They found that the capacitance of as-obtained Co-MOFs differed, even under
the metal/ligand connection yet different synthesis conditions. Among them, the specific
capacitance of Co-MOF/D-E synthesized in DMF/EtOH delivered the maximum specific
capacitance 958.1 F g−1 at 2 A g−1, mainly ascribed to the highest deprotonation rate in that
solvent system, where the rapid grown crystal showed fewer defects. Furthermore, Zhang
et al. [33] continually developed Co-BTC (CBNWM) nanowire microspheres (Figure 3i).
For one thing, the hierarchical superstructure enabled the enhancement of capacitance. For
another, the mechanical and chemical stability of Co-MOFs were improved, thus being
beneficial as electrodes for SCs. Inspired by that, Wang et al. [34] prepared a series of
Co-MOF-74 microflowers through a solvent regulation strategy (Figure 3j). They found
that regular and uniform Co-MOF microflowers can offer additional sites and pathways
for ion and electron transfer at the interface, hence accelerating reversible redox kinetics
and achieving high PCs.
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Figure 3. (a) Structural Chart of Co8-MOF-5. Zn: green, Co: blue, C: gray, O: red. Reproduced
with permission from ref. [29]. Copyright 2011 Elsevier. (b) SEM image of Co-LMOF after grinding.
(c) The charge–discharge curves of the Co-LMOF electrode at different current densities. (d) Cycling
performance of the Co-LMOF electrode in the potential range of 0–0.5 V at 2 A g−1. The inset is
a galvanostatic charge–discharge process. Reproduced with permission from ref. [30]. Copyright
2016 American Chemical Society. (e) SEM and HRTEM images of the Co-MOF material. (f) Charge–
discharge profiles of the Co-MOF electrode. (g) Charge–discharge profile (black line) and specific
capacitance (red line) at a current density of 2 A g−1 of the Co-MOF electrode. Reproduced with
permission from ref. [31]. Copyright 2017 Wiley-VCH. (h) Formation mechanism of Co-MOFs in
different solvents. Reproduced with permission from ref. [32]. Copyright 2018 Elsevier. (i) SEM
image of CBNWN. Reproduced with permission from ref. [33]. Copyright 2021 Elsevier. (j) SEM
images of Co-MOF-74 microflower. Reproduced with permission from ref. [34]. Copyright 2021
Published by Elsevier.
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In addition to Co-MOFs, Ni-MOFs are also extensively reported for SC electrodes,
since their specific capacitance is normally higher than CO-MOFs (Table A1). For ex-
ample, Jiao et al. [35] developed a Ni-based metal–organic skeleton to improve the elec-
trochemical performance of alkaline battery supercapacitor hybrid devices (ABSHDs)
(Figure 4a). It disclosed a synergistic effect between Ni-MOF and Fe(CN)4−

6 /Fe(CN)3−
6 ,

where Fe(CN)4−
6 /Fe(CN)3−

6 functioned as an electronic relay during the charging and
discharging process of Ni-MOF via Ni(II)/Ni(III) transition. Meanwhile, the 2D-layered
structure of Ni-MOF provided a large area for efficient charge transfer and storage. More-
over, they also fabricated asymmetric SCs: Ni-MOF/CNTs-COOH ABSHD with a power
density of up to 7000 W/Kg and an energy density of 55.8 Wh/Kg. Likewise, Yan et al. [36]
reported an accordion-like Ni-MOF (Figure 4b), which presented a specific capacitance
of 988 F g−1 at 1.4 Ag−1. It thus highlighted the advantages of a layered structure for SC
electrodes. Furthermore, Du et al. [37] adopted trimethyl acid as an organic ligand and
nickel salts as metal nodes to generate a 2D Ni-MOF hierarchical structure. (Figure 4c,d).
Similar to a Co-MOF superstructure, it also revealed a high specific capacitance: 1057 F g−1

at 1 A g−1, in contrast with single-layered Ni-MOF. The architecture enabled better sta-
bility with 63.4% capacitance attained at a large current density of 30 A g−1 and good
cyclicity after 2500 cycles at 10 A g−1. Shen and colleagues then investigated the impact of
solvothermal temperature on the morphology and electrochemical properties of Ni-MOF
superstructures [38]. They suggested 80 ◦C-synthesized Ni-MOFs can form hexagonal
superstructures with Ni-MOF nanofibers crossing (Figure 4e). The morphology expressed
a higher surface area, thus contributing to maximum capacitance with 30.89 mAh g−1

at 1 A g−1.
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Figure 4. (a) Schematic illustration of the ABSHD cell containing Ni-MOF and CNTs-COOH as
positive and negative electrodes, respectively. Reproduced with permission from ref. [35]. Copyright
2016 The Royal Society of Chemistry. (b) SEM image of the accordion-like Ni-MOF. Reproduced with
permission from ref. [36]. Copyright 2016 The Royal Society of Chemistry. (c) SEM images of Ni-MOF.
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(d) A schematic illustration of the fabrication process of hierarchical porous Ni-MOF. Reproduced
with permission from ref. [37]. Copyright 2018 Elsevier. (e) SEM image of Ni-MOF-80. Reproduced
with permission from ref. [38]. Copyright 2022 MDPI. (f) SEM images of Ni/Co-MOF. (g) Cycling
performance of Ni-MOF and Ni/Co-MOF. Reproduced with permission from ref. [39]. Copyright
2018 Elsevier. (h) SEM images of MN. (i) SEM images of MC. (j) Cycling performances of MN and MC
at 20 mV/s. Reproduced with permission from ref. [40]. Copyright 2022 American Chemical Society.

Except for single-metal component MOFs, multimetal MOFs are also investigated
for SC electrodes. For example, Gao et al. [39] prepared Ni/Co-MOF by using Ni2+ and
Co2+ (mole ration Ni:Co = 1:1) and pyromellitic acid as an organic ligand (Figure 4f).
Interestingly, compared with Ni-MOF, binary Ni/Co-MOF attained 75% of its original
specific capacitance i.e., up to 758 F g−1 after 5000 cycles (Figure 4g), which confirmed
the stability by introducing another metal component. Moreover, due to the dandelion-
like morphology of the synthesized Ni/Co-MOF, it has a very rich pore structure and
chemical reaction active sites. Then, to further investigate how the morphology and
composition affected the electrochemical efficiency of Ni/Co-MOFs, Xu et al. [40] chose
nitrate (MN) and chloride (MC) as regulators, respectively, to induce the growth of Ni/Co-
MOF. Obviously, MN-regulated Ni/Co-MOF exhibited a thinner layered structure in
contrast with the MC-regulated case (Figure 4h,i). As a result, the electrochemical behavior
differed where Ni/Co-MOFs (MN) displayed larger capacitance and were more stable after
2000 cycles (Figure 4j). Therefore, it reflected that, for Ni, Co-constituting MOFs, the effect
of morphology dominates more than ligands, where lower dimensionality brings about
both improved capacitance capacity and stability.

4. MOF-Derived Materials

In addition to being directly used for SC electrode materials, MOFs can also be served
as templates or precursors to evolve different electrode materials, such as porous carbon
materials, transition metal oxides, metal hydroxides, and other materials. They allow for
tailoring fascinating structures, enhancing intrinsic conductance, and enriching active sites
to boost the capacitance to a large extent [41–43].

4.1. Porous Carbon Materials

Porous carbon materials are promising for SC electrodes because of their high con-
ductance, hierarchical structure, large surface area and rich porosity [44,45]. So far, many
methods have been employed to design porous carbon materials. Among them, high-
temperature pyrolysis or carbonization from an organic precursor is the most widely
utilized. Especially, to fabricate carbon materials by setting MOFs as precursors feature
many profits, including ease of fabrication, polyhedron shape-inheriting, porous structure-
formation, and self-doping heteroatoms (N, O and metal atoms), etc. For example, Ya-
mauchi’s team has recently reported a series of ZIF-8-derived nanoporous carbons (NPCs)
for SCs [46]. They found that 900 ◦C-derived NPC was optimal to deliver the maximum
capacitance. First, higher temperatures assisted the carbonization that increased the con-
ductivity. Additionally, extra high temperatures (1000 ◦C) caused the loss of heteroatom
such as N, thus, decreasing the PC and, therefore total capacitance. In addition, creat-
ing a mesoporous shell or hollow structure in ZIF-8 can largely benefit the capacitance
enhancement after pyrolysis. This is also demonstrated by Zhang et al.’s work by using
macroporous ZIF-8 [47], since the hierarchically porous carbons can adsorb more ions. The
synthesis strategy of NPC from MOFs is far more than simple carbonization. To diversify
the NPC with various structures or compositions, some precursor-control protocols, such
as heteroatom doping, shape/orientation control, and hybridization with other functional
materials were reported (Figure 5a) [48].

Nevertheless, during this process, the intrinsic pore channels of MOFs are inevitably
destroyed, leaving the carbonized structures with decreased surface area [49–51]. To
address this issue, Khan and coworkers [52] added activated carbon (AC) into the skeleton
of MOF-5 for cocarbonization. The results indicated an increased specific surface area
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and pore volume: 677 m2/g and 0.412 cm3/g, respectively. As expected, it delivered a
larger specific capacitance of 300 F g−1 at 1.5 A g−1 and retained 91.5% of this capacity
after 3000 cycles. Likewise, Li et al. [53] synthesized single crystal-ordered macroporous
MOF (SIM-HKUST-1) using polystyrene as a hard template, followed by pyrolysis into
macroporous carbon (IM-HPC) (Figure 5b). The hierarchically porous structure (Figure 5c)
displayed excellent cyclic stability when used as an SC electrode (Figure 5d). To further
enhance the electrochemical performance, researchers doped heteroatoms in the carbon
skeleton. For example, Huang et al. [54] employed ZnO nanorods as templates to produce
ZIF-8@ZnO hybrid. When the hybrid was subjected to high-temperature carbonization
under KOH activation, it achieved N-doped porous carbon nanosheet (Figure 5e) with a
large specific surface area of 1190 m2/g and a specific capacitance of 290 F g−1 at a current
density of 1 A g−1. In addition, after 10,000 consecutive cycles, it retained 94% of its original
capacity (Figure 5f). In fact, many MOF ligands naturally possess N atoms that satisfy in
situ doping during pyrolysis. For instance, Gu et al. [55] prepared NPMOF with ligands
containing pentabasic N atoms (Figure 5g). In contrast with imidazole-based ZIFs, more N
contents doping resulted in an enhanced specific capacitance up to 220 F g−1, highlighting
the pseudocapacitive effect of heteroatoms.
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4.2. Transition Metal Oxide

Metal (Co, Ni, Mn, and Zn et al.) oxides derived from MOFs have been widely
studied for SCs, since they usually deliver ultra-high PCs. For instance, Meng et al. [56]
obtained porous Co3O4 particles through a two-step calcination of Co-MOF, which exhib-
ited a high specific capacitance of 150 F g−1 at a current density of 1 A g−1 (Figure 6a).
Similarly, Zheng et al. [57] fabricated Co3O4/Co-MOF heterojunction in a highly alkaline
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environment, where Co ions in MOFs tended to partially form Co oxides (Figure 6a). The
Co3O4@Co-MOF with a leaf-like nanosheet morphology thus exhibited excellent stability
under alkaline electrolytes (Figure 6b). Moreover, Co3O4 nanoparticles on the surface of
Co-MOF significantly expanded the redox active sites, leaving capacitance of 1020 F g−1

at 0.5 A g−1 (Figure 6c), and great cycle stability over 5000 cycles, with a capacitance
retention rate of almost 96.7% at 5 A g−1 (Figure 6d). Furthermore, Wu et al. [58] created
nickel cobalt (Ni-Co) oxide nanocages from binary MOFs, which presented greater elec-
trochemical performance than single cobalt oxide-based electrodes. Babu et al. [59] also
synthesized a bimetal MOF-derived nickel–manganese oxide for supercapacitor electrodes
by solvothermal reaction and subsequent calcination. The resulting NiMn2O4 exhibited a
spinel structure (Figure 6e) with a high specific capacitance of 1387 F g−1 (Figure 6f) and
significant cycle life at a current density of 1 A g−1 (80% capacity retention after 6500 cycles).
However, metal-oxide particles are easy to aggregate and deform during charging and
discharging. To solve this problem, some substrates were utilized to grow MOF precursors
in situ. For instance, Lim et al. [60] directly synthesized 2D bimetallic cobalt-based MOF
on a carbon substrate and converted it into porous leaf-like metal oxides ((Figure 6g,h). It
suggested that bimetal ZnCo2O4 prepared from Co/Zn-MOF conveyed maximum conduc-
tivity, electrochemical properties and specific capacity than other cases. Also, outstanding
mechanical stability and flexibility were guaranteed. Additionally, the growing MOFs
in situ on flexible substrates can used as freestanding electrodes. For instance, Acharya
et al. [61] uniformly grew bimetal and monometal MOF arrays on carbon fibers and con-
verted them into Ni-Fe-O/NPC@PCNFs-400 and Fe2O3/NPC@PCNFs (Figure 6i,j). They
then assembled them into asymmetrical SCs where 88.5% of its original exceptional specific
capacitance (1419 F g−1 at 1 A g−1) can be maintained (Figure 6k).
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Figure 6. (a) Schematic illustration of one-pot hydrothermal synthesis of Co3O4@Co-MOF composite.
(b) SEM images of Co3O4@Co-MOF. (c) GCD curves at a current density of 0.5 A g−1 (d) Cycling
performance at 5 A g−1 for 5000 cycles. Reproduced with permission from ref. [57]. Copyright
2020 National Science Review. (e) TEM image of NiMn2O4. (f) Chronopotentiometry at various
current densities Reproduced with permission from ref. [59]. Copyright 2022 Elsevier. (g) Schematic
illustration of fabrication process, where 2D nanosheets of metallic oxides derived from MOFs are
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obtained from the metallic MOF precursor. (h) SEM images of oxide derived from Co/Zn-MOF.
Reproduced with permission from ref. [60]. Copyright 2018 Elsevier. (i) Schematic representation of
fabrication of electrode materials synthesis for ASC device. (j) FE-SEM image of Ni-Fe-MOFs@PCNFs.
(k) GCD graphs at various current densities. Reproduced with permission from ref. [61]. Copyright
2022 Elsevier.

4.3. Metal Hydroxides

Similar to metal oxide, metal hydroxides, especially layered double hydroxides (LDH)
with a spinal layered structure generated from MOFs, are also ideal electrodes for SCs due to
the large theoretical PCs [62,63]. For example, Cao et al. [64] used Co-Ni-MOF as a sacrificial
template to prepare Ni-Co LDH through alkaline hydrolysis. After electrochemical tests, the
Ni-Co LDH showed good cycle stability, low resistance, and a specific capacity of 1265 F g−1

at a current density of 1 A g−1. Huang et al. [65] also synthesized Co/Ni LDH under mild
conditions (50 ◦C) through a simple solvothermal method. The as-obtained Co/Ni-LDH
presented a unique 2D nanosheet array alignment with a high specific capacity and a
92.3% capacitive retention after 10,000 cycles. Also, hollow Ni-Co LDH can be synthesized
through ZnO templated Co/Ni MOF etching. In Liu et al.’s work [66], they first prepared
a ZnO nanorod array in carbon fiber cloth (CFC). Afterwards, a Ni-Co MOFs shell was
grown on a ZnO nanorod core. Then, Ni-Co MOFs were etched to be LDH, followed by
removing the ZnO template. Finally, hollow LDH/CFC superstructures were successfully
obtained (Figure 7a). It is interesting that fungus-like Ni-Co@Ni-Co-LDH grew uniformly
along the axis of CFC (Figure 7b,c). The LDH structure also exhibited a huge top and a
small bottom (Figure 7d), where the top was composed of LDH (Figure 7e). Thus, the
architecture increased the surface area and showed ultrahigh capacitance of 2200 F g−1

at 5 A g−1.
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Moreover, there are metal sulfides [67,68], metal phosphides [69], and metal se-
lenides [70] derived from MOFs as well for SCs. However, their power density and
cycle stability remain to be improved.

5. MOF Composite Materials

In order to directly enhance the electrochemical performance, MOFs can be mixed with
highly conductive materials as SC electrodes [71,72]. Generally, conductive nonmetallic
materials include carbon materials, and conductive polymers, etc. While metallic materials
involve metal oxides, metal hydroxides, and pure metals, etc. The exploitation of MOF
composites for SCs further enriches the species of MOFs in the energy storage field.
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5.1. MOFs and NonMetallic Materials

Currently, nonmetallic materials used in MOF composites are generally graphene
oxide, carbon fibers, carbon nanotubes, polyaniline, polypyrrole, etc. There are three basic
fabrication strategies for MOF composites: (1) direct mixing by H-bonding, conjugation
or ionic interaction, (2) in situ growing MOFs on nonmetallic materials and (3) epitaxial
growing MOF-derived metal oxides on MOFs to form the heterojunction.

For instance, Hosseinian et al. [73] fabricated a rGO/ZIF-67 composite by growing
ZIF-67 nanocrystals on rGO. At a current density of 1 A g−1, the specific capacitance
of rGO/ZIF-67 was 210 F g−1, which is more than double that of ZIF-67 (103.6 F g−1).
Ramachandran et al. [74] adopted a wet technique to create the cerium (Ce) metal organic
matrix composites Ce-MOF/GO and Ce-MOF/CNT (Figure 8a,b). Compared with Ce-
MOF/CNT, Ce-MOF/GO revealed larger specific capacitance with 2221.2 F g−1 at a current
density of 1A g−1. More contact with Ce-MOF is attributed to the layered structure of
GO. Additionally, the oxygen-containing groups in GO can promote ion migration at the
electrode/electrolyte interface. Furthermore, Xu et al. [75] directly grew rolled a CoNi-MOF
nanosheet array on carbon cloth (CC) (Figure 8c,d), which exhibited good conductance and
outstanding cycle stability (Figure 8e). Likewise, Ibrahim et al. [76] introduced Ni-MOF
on graphene through a simple mixing method. Compared with growing MOF crystals in
situ in graphene, the Ni-MOF was scattered and intensively attached on both sides of GO
layer (Figure 8f), therefore delivering a high specific capacitance of 70.41 F g−1 at 1 A g−1.
Different from mixing, sometimes the in situ hydrothermal method can generate MOF
polyhedra crystal composites (Ni-BTC@GO) (Figure 8g,h) [77]. The maximum capacitance
of Ni-BTC@GO reached up to 1199 F g−1 at 1 A g−1, larger than the mixing case. Conductive
polymers (CPS) are common components for MOF composites as well. Among CPS,
polyaniline (PANI) is the most widely reported for SCs. For example, Shao et al. [78]
polymerized PANI on the lattice of UIO-66 with an interpenetrating network through
interactions to enhance carrier conduction (Figure 8i). To make the electrode flexible, Xu
et al. [79] prepared ZIF-L/PANI on CFC by alternative soaking (Figure 8j). The as-fabricated
electrodes can be used for wearable devices. Moreover, Sara et al. [80] deposited ZIF-67 on
the PANI nanotube, wrapped by graphene (Figure 8l). The composites exhibited increased
conductivity and greater capacitive capacity than a single ZIF-67 crystal.

5.2. MOFs and Metallic Materials

The redox centers of MOFs can be extended when combining MOFs with metal species
(such as pure metals, metal oxide nanoparticles, metal sulfides, etc.). For example, Hussain
et al. [81] fabricated a flexible electrode by solvothermal treatment of Zn-Co-MOF@CuO
on CuO skeleton (Figure 9a). The prepared electrode showed excellent flexibility even
after being subjected to various bending. The introduction of CuO gifted the MOF com-
posite metallic properties. At 1 A g−1, the energy density of the supercapacitor can reach
41 Wh kg−1. Even after 20,000 constant charge and discharge cycles, the supercapacitor still
maintained 97% of its initial capacity (Figure 9b). Likewise, Wang et al. [82] constructed
a new vertically arranged Co-MOF@CoNiO2 core shell composite material by chemical
vapor depositing Co-MOF shell layers on the CoNiO2 core (Figure 9c). The as-synthesized
Co-MOF@CoNiO2 electrode displayed a specific capacitance of ~571 F g−1. Similarly, Shi
et al. [83] built a vertically oriented Ni-MOF@Co(OH)2 array by using Ni foam as both
substrate and precursor (Figure 9d). The MOF/metal composites delivered ultra-high
capacitance of 1448 F g−1 at 2 A g−1. In addition, Lu et al. [84] synthesized an order of Ni-
HHTP@Ni(OH)2 nanoarrays by employing Ni(OH)2 nanosheets as a template (Figure 9e).
As a positive electrode for asymmetric SCs, the stability of Ni-HHTP@Ni(OH)2 was im-
proved with 98% retention rate after 5000 cycles even at 3 A g−1, superior to prinstine
Ni(OH)2.
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Reproduced with permission from ref. [76]. Copyright 2021 Elsevier. (g) Preparation process of
the Ni-BTC@GO composites. (h) SEM image of Ni-BTC@GO. Reproduced with permission from
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with permission from ref. [80]. Copyright 2022 Elsevier.
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6. Conclusions and Perspectives

The research advancements of MOF-based materials in the field of SCs are comprehen-
sively discussed in this review. It can be concluded that pure MOFs and their derivative
materials exhibit great potential in SCs. To enhance the electrochemical efficiency and
structural stability of MOFs, researchers have devoted effort to MOF hybrids or creating
MOF derivatives. For example, by using MOF as a template or serving as the precursor to
prepare metal–carbon materials, it not only retains the intrinsic feature of MOFs, such as a
polyhedron shape for nanoreactors and high metal loading, but also improves its structural
stability and electrochemical performance. In addition, MOFs can be hybridized with other
conductive materials (carbon materials, conductive polymers, metal materials, etc.), thus,
further enhancing electron transfer and expanding active sites. Here, we also listed some
issues required to be addressed at this stage and in future research:

(1) Materials preparation of MOF. Currently, the majority of MOFs are produced in labora-
tories using techniques like hydrothermal, solvothermal synthesis, etc. However, these
techniques may have some limitations including low yield, high energy consumption
and time consuming. It prevents them from large-scale industrial production and
practical applications. Moreover, some organic compounds and solvents for MOF
preparation are toxic while the postprocessing is sometimes expensive. Therefore,
to develop a green and effective organic ligand with recycling technology to reduce
costs is significant.

(2) High conductance and high capacitance. Most pure MOFs have large resistance and
poor conductivity, which is disadvantageous for SCs, although some newly reported
conductive MOFs such as Ni3(HITP)2 showcase potential practicability. However, the
performance also relies on the electrodes, e.g., ionic liquid rather than being highly
stable in aqueous acid or alkaline. The conjugated system can facilitate fast electron
transport, yet the energy storage behavior is sometimes complicated and independent



Crystals 2023, 13, 1593 13 of 18

of pore sizes. Hence, to explore new types of MOFs with both excellent properties is
still challenging.

(3) The design of MOF-based SC devices. The device design can maximize the electro-
chemical performance of SCs and broaden the application scenarios. For example,
similar to graphene-based devices, flexible microcapacitors with 2D MOFs grown
in situ on the intercalation electrode can simultaneously satisfy powering unit and
wearable requirements. In the future, there will be more integrated units based on
MOFs. For instance, the pore nature of MOFs can be expanded to fabricate MOF gas
sensors but being self-powered by MOF-based SCs.

(4) Mechanism. Currently, the accurate mechanisms of electrochemical storage of MOFs
are still ambiguous. The capacitive capacity and whether it belongs to faradaic
pseudocapacitive or EDLC are depending on the electrolytes. Moreover, for binary
and multimetallic MOFs, the mechanism of how different components influence
electrochemical performance has not yet been figured out. Therefore, there is a long
way to go to fully explore it.

(5) Advanced characterizations. Cs-corrected TEM and in situ spectrum now can ascer-
tain the specific atomic structural changes of metal oxide electrodes, especially in the
research of catalysts and batteries. For MOFs applied in SCs, due to the stability and
organic/inorganic features, the advanced characterizations are still lacking. Moreover,
for highly crystalline MOFs, during charging and discharging, there may be lattice
strain to induce capacitance attenuation. Nevertheless, it has seldom been reported,
due to the limitations of advanced characterizations.

Finally, the advantages and disadvantages of MOFs for SCs discussed above may
provide a broad understanding of the structure–function relationship of these materials
in the energy storage field. For pure MOFs, first, the optimization of the framework
dimensionality, ligand functionalization, metal constitution and pore size can assist in the
improvement of the capacitance [85,86]. In addition, the rising trend of conductive MOFs
can further boost the opportunities of extending pure MOFs for SCs [87]. However, the
stability of pure MOFs for SCs is still challenging; additionally, the behind degradation
mechanisms have seldom been explored. For MOF-derived carbon materials, although they
feature advantages of high conductance and stable EDLCs, the optimal pyrolysis conditions
such as carbonization temperatures, gases atmosphere are difficult to make a uniform
standard [88,89]. Moreover, the carbonization process requiring high-temperature heating
is also energy-consuming. For MOF-based composites, the second or third component is
indeed helpful to not only expand the capacitance but also enhance stability. Nevertheless,
in most cases, MOFs have a weakening influence on the structure activity, against the
deep understanding of charge–discharge mechanisms from the perspective of MOFs [90].
Additionally, different from porous carbons with amorphous structures that are difficult
to model, computational studies such as molecular dynamic simulation make it easy to
predict the charge–discharge behavior of MOFs with crystalline structures. It can provide
guidelines for pure MOFs design for SCs in the future. We also envision that there would
be more miniaturized energy devices by directly growing MOF layers for flexible and
wearable electronics.
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Appendix A

Table A1. The comparison of MOF-based electrode materials for SCs.

Samples Metal
Sites Electrolyte

Maximum
Capacitance

(F g−1)

Measured
Current Density

(A g−1)
Cycle Life Ref

Co-LMOF Co 1 M KOH 2474 1 94.3% after 2000 cycles [30]
Co-MOF Co 5 M KOH 2564 1 95.8% after 3000 cycles [31]
Co-MOFs Co 3 M KOH 958.1 2 92.3% after 3000 cycles [32]
Co-BTC Co 1M NaOH 657 0.5 81.4% after 3000 cycles [33]

Co-MOF-74 Co 3 M KOH 164.2 0.5 75% after 1500 cycles [34]
Ni-MOF Ni 3 M KOH 988 1.4 96.5% after 5000 cycles [36]
Ni-MOF Ni 3 M KOH 1057 1 70% after 2500 cycles [37]

Ni/Co-MOF Ni/Co 2 M KOH 758 1 75% after 5000 cycles [39]
Ni/Co-MOF Ni/Co 2 M KOH 2860 1 90% after 2000 cycles [40]

MOF-5 Zn 6 M KOH 300 1.5 91% after 3000 cycles [52]
ZIF-8@ZnO Zn 1M H2SO4 290 1 94% after 10,000 cycles [54]

NPMOF Zn 6 M KOH 220 1 99.1% after 10,000 cycles [55]
Co3O4@Co-MOF Co 3 M KOH 1020 0.5 96.7% after 5000 cycles [57]

Ni/Mn-MOF Ni/Mn 1 M KOH 1387 1 80% after 6500 cycles [59]
PCNFs Ni 3 M KOH 1419 1 88.5% after 10,000 cycles [61]

Ni-Co LDH Ni/Co 1 M NaOH 2200 5 98.6% after 3000 cycles [66]
Ce-MOF/GO Ce 3 M KOH 2221.2 1 87% after 5000 cycles [74]

CC/CoNi-MOF Ni/Co 1 M KOH 846 1 96.5% after 10,000 cycles [75]
Ni-BTC@GO Ni 3 M KOH 1199 1 84.5% after 5000 cycles [77]

Co-MOF@CoNiO2 Co 6 M KOH 757.2 1 80.6% after 5000 cycles [82]
Ni-MOF@Co(OH)2 Ni 1 M KOH 1448 2 87.3% after 8000 cycles [83]
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