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Abstract: In the Kesterite family, the Cu2ZnSn(S,Se)4 (CZTSSe) thin-film solar cells (TFSCs) have
demonstrated the highest device efficiency with non-stoichiometric cation composition ratios. These
composition ratios have a strong influence on the structural, optical, and electrical properties of the
CZTSSe absorber layer. So, in this work, a machine learning (ML) approach is employed to evaluate
effect composition ratio on the device parameters of CZTSSe TFSCs. In particular, the bi-metallic
ratios like Cu/Sn, Zn/Sn, Cu/Zn, and overall Cu/(Zn+Sn) cation composition ratio are investigated.
To achieve this, different machine learning algorithms, such as decision trees (DTs) and classification
and regression trees (CARTs), are used. In addition, the output performance parameters of CZTSSe
TFSCs are predicted by both continuous and categorical approaches. Artificial neural networks
(ANN) and XGBoost (XGB) algorithms are employed for the continuous approach. On the other
hand, support vector machine and k-nearest neighbor’s algorithms are also used for the categorical
approach. Through the analysis, it is observed that the DT and CART algorithms provided a critical
composition range well suited for the fabrication of highly efficient CZTSSe TFSCs, while the XGB
and ANN showed better prediction accuracy among the tested algorithms. The present work offers
valuable guidance towards the integration of the ML approach with experimental studies in the field
of TFSCs.

Keywords: CZTSSe; thin-film solar cells; machine learning; compositional ratio; prediction

1. Introduction

The earth-abundant element-based kesterite materials Cu2ZnSn(S,Se)4 (CZTSSe) are
gaining attention in chalcogenide-based thin-film solar cells (TFSCs) [1–4]. The recent
developments in the device fabrication process offered a record power conversion effi-
ciency (PCE) of 14.9% [5], though it is still lower than the other chalcogenide-based TFSCs.
The higher open circuit voltage (Voc) loss in the kesterite is one of the prime reasons for
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it [6,7]. This high Voc loss originates from potential and bandgap fluctuations, and these
fluctuations occur due to the presence of a high density of defects [8–11]. More commonly,
the highly efficient CZTSSe devices exhibit non-stoichiometric Zn-rich and Cu-poor condi-
tions [12]. According to the first principle calculations, it is now well established that the
precursor composition plays a vital role in the formation of these detrimental antisite de-
fects, their defect clusters, and secondary phases [13–16]. Therefore, to control the intrinsic
defect density in the CZTSSe absorber layer, diverse sets of experiments and deep insight
analyses need to be performed. However, it requires extensive human effort and can lead to
the consumption of large amounts of resources. Consequently, controlling intrinsic defect
density without external element doping and the formation of secondary phases with a
suitable composition ratio remained a challenge.

Machine learning (ML) has found promising applications in photovoltaic (PV) technol-
ogy, offering opportunities to enhance PCE, reduce costs, and optimize performance [17,18].
ML algorithms can analyze large datasets of solar cells, such as device parameters, ma-
terials properties, and diverse device fabrication conditions, and can identify key factors
that affect device performance [17,19]. By uncovering complex patterns and relationships,
ML can guide the design and selection of materials in each layer of highly efficient solar
cells. Moreover, ML can accelerate the discovery of new materials with desirable properties
required for solar cells [20]. By predicting material properties and performance through ML
models, researchers can narrow the search for optimal materials, saving time and resources.
Similarly, in kesterite-based TFSCs, a large amount of composition data can be analyzed,
and a suitable compositional window can be established via the ML technique, saving
energy and resources.

In the literature, various ML algorithms have been used for solar cell-based studies [21–23].
Among different ML algorithms, decision trees (DTs), Random Forest (RF), Artificial Neural
Networks (ANN), classification and regression trees (CARTs), XGBoost (XGB), k-nearest
neighbors (KNN), and support vector machines are the most popular algorithms. They
have been widely studied due to their lower complexity, lower computational cost, and
good model accuracy. Kumar et al. [24] predicted the bandgap of TiO2 photoanode in
dye-sensitized solar cells using DT, KNN, and RF techniques. Zhu et al. [25] predicted the
key governing factors that influence the device performance of CIGS solar cells using RF,
GB, and ANN algorithms, and correlation studies. Moreover, different interface passivation
materials suitable for perovskite [26], structures/composition analysis of perovskite thin
films determining electrical properties [27], and the design of new perovskite materials [28]
were also achieved with these ML techniques.

In this work, to understand the effect of cation composition ratios related to Cu,
Zn, and Sn on the device parameters of CZTSSe TFSCs, different ML algorithms were
used. To predict the device performance, ANN and XGB algorithms were used for the
continuous prediction approach. At the same time, the KNN and SVM algorithms were
also used to predict the performance with the help of a confusion matrix for the categorical
prediction approach. For the present study, we examined data points from 1300 devices.
DT and CART approaches provided the best suitable composition windows for the device
parameters in highly efficient CZTSSe devices. Moreover, various ANN, XGB, SVM, and
KNN algorithms showed their suitability through prediction accuracy during predicting
CZTSSe device parameters.

2. Materials and Methods
2.1. Fabrication of CZTSSe TFSCs and Construction of Database

The detailed fabrication workflow of the CZTSSe TFSCs and precursor fabrication
process is described in our previous work [19]. The diverse sets of precursor composition
ratios were prepared through the deposition of Zn, Sn, and Cu metal precursors sequentially
via a DC sputtering system on Mo-coated soda lime glass substrates. Each metal target with
high purity produced by Taewon Science Co., Ltd. (i-TASCO), Seoul, Republic of Korea,
was used. During the sputtering process, the 30 W power was applied to each target size of
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3 inches. Further, based on the preoptimized deposition rate, the deposition time varied
from 0.5 h to 1.0 h. For example, to obtain the precursor with different Zn composition
ratios, Zn deposition time was achieved while keeping the Cu and Sn deposition time
constant. In one batch, a maximum of 9 samples having size 2.5 × 2.5 cm2 were coated,
which shows less than 1% composition deviation. During the deposition, substrates were
constantly rotated at 5 rpm, and base pressure was maintained at around 8 mTorr. The
overall precursor thickness of Cu/Sn/Zn layers over the Mo substrate was maintained at
nearly 700 nm. Further, the thin films were soft-annealed in an inert (Ar) atmosphere for
0.5 h in the tube furnace and then sulfo-selenized in the rapid thermal annealing system
to get the CZTSSe absorber layer. After the successful fabrication of the CZTSSe absorber
layer, the n-type CdS buffer layer was deposited via a chemical bath deposition method.
Subsequently, a window layer (i-ZnO and Al-ZnO(AZO)) was also deposited through RF
sputtering. Finally, the Al top grid having an active device area of 0.30 cm2 was deposited
via DC sputtering to complete the device. The final device structure was maintained to
SLG/Mo/CZTSSe/CdS/i-ZnO/AZO/Al via a device fabrication process established in
the laboratory.

2.2. Characterizations

The formation of the CZTSSe phase in fabricated absorber thin films was confirmed
through high-resolution X-ray diffraction (XRD, Philips, Amsterdam, The Netherlands).
The diffraction measurements were performed from a 2theta value of 5–80◦ with a step
size of 0.5◦. The surface morphologies and cross-sectional view of CZTSSe thin films were
analyzed via a field emission scanning electron microscope having a resolution of 0.6 nm
(FE-SEM, ZEISS Gemini 500 + EDS (Oxford), Jena, Germany). The J-V curves for TFSCs
were measured with a solar simulator (Wacom, WXS-155S-L2, Yamaguchi, Japan) at air
mass 1.5 G conditions. The external quantum efficiency (EQE) spectra for the device were
obtained from 300–1300 nm with a sept size of 10 nm with CEP-25BX (Bunkou Keiki Co.,
Ltd., CEP-25BX, Tokyo, Japan). An X-ray fluorescence (XRF) (Axios Minerals, Almelo, The
Netherlands) was used to determine the composition ratios of the Cu/Sn/Zn precursor
thin films operated at 4 KW and calibrated with Internal standard.

2.3. Computational Details

The device parameters like short circuit current (JSC), VOC, fill factor, (FF), PCE, series
resistance (RS), and shunt resistance (RSh) are considered as target/output data, while
cation composition ratio was considered input data. Before the DT algorithm use, the
target property data were divided into four classes, namely low, medium, high, and very
high (Table S1 in Supplementary Materials). On the other hand, the CARTs can handle
continuous data; therefore classification of the data was not performed. With DT and CART
algorithms, the best possible decision rules were created. Meanwhile, the prediction was
performed with ANN, XGB, SVM, and KNN algorithms. The R studio (R version 3.6.2) was
used to develop the source code for all ML procedures.

3. Results and Discussion

The CZTSSe absorber material fabricated in this work is a compound semiconductor
material, i.e., Cu2ZnSn(S,Se)4 consisting of metallic elements Cu, Zn, and Sn as cations,
while S and Se are in an anionic form. It is well established that S and Se and their
corresponding anions ratio (S/(S+Se) or Se/(S+Se)) determine the band gap of the prepared
CZTSSe absorber layer. Whereas the relative metal cation composition ratio of Cu, Zn,
and Sn determines the material’s stoichiometry, phase purity, secondary phase formation,
and defect density. It eventually affects the material’s optical and electronic properties.
Here, the S/(S+Se) ratio in the CZTSSe absorber layer was fixed to ~1% throughout our
device fabrication process as it provides high efficiency, so we performed the targeted study
on metal cation composition ratio optimization and its effect. The ML-guided fabrication
strategy of high-performance CZTSSe TFSCs involves identifying potential rules and
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heuristics based on compositional ratios viz Cu/(Zn+Sn), Cu/Sn, Cu/Zn, and Zn/Sn [19].
Thus, the DT and CART algorithms were used to determine the optimal compositional
ratios. Since DTs come under a supervised ML algorithm category, they require information
about different classes [29]. Accordingly, for PCE, four classes: low PCE (5.01 to 6.53%),
medium PCE (6.53 to 7.34%), high PCE (7.34 to 8.16%), and very high PCE (8.16 to 10.24%)
were made. The classes for the other device parameters are specified in supporting Table
S1. Figure 1 shows the DT model obtained after executing the algorithm for the target PCE
property of CZTSSe TFSCs. It is important to note that this DT model is specific to PCE,
and similar DT models for other properties like JSC, VOC, FF, RS, and RSh are shown in the
supporting information file (Figures S1–S5 in Supplementary Materials).
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Figure 1. The DT output model aimed with PCE as a target property for CZTSSe TFSCs. Each node
in the DT model contains specific details, such as the decision rule associated with that node, the
class of the node, the number of observations used, and probabilities of classes. The light saffron,
gray, dark saffron, and Green colors shows low, medium, high and very high PCE, respectively.

The sets of rules are generated through DTs (Figure 1) and can be understood as
follows. The DT output obtained for PCE as a target property gets divided into two sub-
nodes and establishes the first decision rule. (i) If the Cu/Sn ratio is ≥1.3, the PCE of
the CZTSSe TFSCs tends to be low, while if it is less than 1.3, then it can show a very
high PCE [1,30]. The probability of observing low and very high PCE is 0.39 and 0.35,
respectively. The subsequent step involves the second rule: (ii) if the Cu/Zn composition
ratio is ≥1.4, it corresponds to a low PCE with a probability of 1; otherwise, a medium PCE
can be expected with a probability of 0.40. The third rule in the decision-making process
involves the Cu/Zn composition ratio. (iii) If the Cu/Zn ratio is ≥1.2, then the DT predicts
a high PCE with a probability of 0.35; otherwise, it anticipates achieving a very high PCE
with a probability of 0.60. Further fourth subrule suggests, (iv) if the Cu/(Zn+Sn) ratio is
<0.66, a high PCE can be observed with a probability of 0.36. On the other hand, if it is >0.66,
a very high PCE can be obtained for the CZTSSe TFSCs with a probability of 0.92. Finally,
the fifth subrule suggests, that (v) if the Zn/Sn ratio is <1, a high PCE may be achieved
with 0.48 of probability. Otherwise, a lower PCE can be obtained with 0.34 of probability.
The light saffron (low), gray (medium), dark saffron (high), and Green (very high) colors
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shows PCE trend in DT. Similar rules can be evaluated using the same methodology for the
other DT models (FF, JSC, VOC, RS, and RSh: Figures S1–S5, respectively).

In the subsequent phase of our work, a decision model for CZTSSe TFSCs using the
CART algorithm was constructed as shown in Figure 2. The CART is a supervised ML
algorithm, primarily utilized for both classification and regression tasks. So, the CART
algorithm is used to predict and classify the values of continuous properties based on
input features. At each node, the algorithm selects the best feature and corresponding
threshold to partition the data into homogeneous subgroups with respect to the target
properties. Following the execution of the CART model it shows a division of the root
node into two segments. The corresponding CART rules can be interpreted as: (i) when
the Cu/Sn ratio is ≥1.3 (Yes), an average PCE of 6.7 can be achieved, otherwise, 7.6% PCE
can be achieved. (ii) If the Cu/Zn ratio is ≥1.2 (given that Cu/Sn ≥ 1.3), 6.5% of average
PCE may achieved or a relatively higher PCE of 7.0% may achieved. Other than the Cu/Sn
and Cu/Zn ratio, further critical composition ratio can be determined with other subrules:
(iii) if the Cu/Sn is not ≥1.3 (No), then 7.4% and 8.2% PCE can be achieved with Cu/Zn
≥ 1.2 and Cu/Zn < 1.2, respectively. (iv) If the Zn/Sn is ≥1 and Cu/Zn is <1.2, then a
maximum PCE of ~7% can be achieved, while 7.8% can be achieved with Cu/Sn > 1.3.
This subrule-iv has a very low-node probability (<10%), thus this class of nodes can be
ignored while making critical decisions. Similarly, it can be applied to other nodes too.
(v) If the Zn/Sn < 1, Cu/(Zn+Sn) < 0.66, and Cu/Sn > 1.2 then 7.6% PCE can be obtained.
(vi) If the Cu/Zn < 1.2, Zn/Sn > 1.1, and Zn/Sn ≥ 1.1 then 7.5% of PCE can be achieved
or 8.8% can be obtained. Briefly, more than 8% of PCE can be reached in the CZTSSe
TFSCs with the following composition ratios: Cu/Zn < 1.2, Zn/Sn ~1.0–1.1. From the
light to dark blue color shows increasseing PCE trend in CART. Similar procedures can
be employed to understand subsequent rules. The CART models for other properties like
FF, JSC, VOC, RS, and RSh are shown in the supporting information file (Figures S6–S10 in
Supplementary Materials). Overall, both the DT and CART output models for PCE as a
tragert property suggest that the Cu/Sn raio higher than 1.3 and Cu/Zn higher than 1.2 are
not helpful in breaking the saturated PCE of CZTSSe TFSCs. At the same time, slightly
poor ratio conditions provide high PCE. Similar ratios also determine the other device
parameters. The Zn/Sn ratio of about ~1.0 was optimal in all scenarios with high PCE
and RSh. Interestingly, the overall metal composition ratio, i.e., Cu/(Zn+Sn), has minimal
impact on PCE, while the binary intermetallic composition ratios such as Cu/Zn, Cu/Sn,
and Zn/Sn are more sensitive to the PCE and other device parameters.

In the next stage, ANN, XGB, KNN, and SVM algorithms were used to predict the
device parameters of CZTSSe TFSCs depending on compositional ratios. In particular,
the ANN and XGB ML algorithms were used to predict the continuous output properties.
On the other hand, the SVM and KNN algorithms were used to predict the categorical
output properties. At first, we applied the ANN algorithm to the relevant data and
determined the predicted values. The adjusted R2 (Adj. R2) values for each ANN model
were obtained through linear fitting to the experimental and predicted data. The predicted
and experimental values of CZTSSe TFSCs based on the ANN model are shown in Figure 3.
The detailed ANN structure of the various device parameters is shown in Figure S11.
The linear fitting to the scatter plots exhibited adjusted R2 values below 0.27. It indicates
that the performance of the ANN models in prediction was unsatisfactory. The ANN
model’s inadequate predictive performance can be ascribed to the extremely heterogeneous
dataset. In response, the XGB algorithm was employed to enhance predictions and rectify
the unsatisfactory performance exhibited by the ANN algorithm. The prediction results
of the PCE, FF, JSC, VOC, RS, and RSh obtained using the XGB algorithm are depicted in
Figure 4. The adj. R2 values for each XGB model were better than the ANN models. It can
be observed that the XGB predicts the device parameters better than the ANN.
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Figure 3. ANN prediction of (a) PCE, (b) FF, (c) JSC, (d) VOC, (e) RS, and (f) RSh of the CZTSSe TFSCs
for compositional ratios.

The predictions of output performance parameters during the continuous approach are
not satisfactory. Thus, we grouped the PCE, FF, JSC, VOC, RS, and RSh of CZTSSe TFSCs into
four classes (1 to 4) and tried to predict these properties using SVM and KNN algorithms
based on a categorical approach. The SVM and KNN are supervised ML algorithms, and
they are generally used for classification tasks [31]. Figure 5 represents the SVM-based
confusion matrix of CZTSSe TFSCs. For this, compositional ratios were taken as input
parameters. In this case, the accuracy of the PCE, FF, JSC, VOC, RS, and RSh confusion matrix
is found to be 37.44%, 33.42%, 32.91%, 42.21%, 33.17%, and 21.36%, respectively. Figure 6
represents the KNN confusion matrix of CZTSSe TFSCs. For KNN, the accuracy of the PCE,
FF, JSC, VOC, RS, and RSh-based confusion matrix was found to be 46.79%, 45.28%, 47.92%,
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54.15%, 43.58%, and 34.90%, respectively. These results suggested that the prediction results
of the KNN algorithm are better than the SVM algorithm. Overall, the KNN outperforms
the SVM in predicting the categorical output properties of CZTSSe TFSCs. Alternatively,
the XGB predicts the device parameters better than the ANN.
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the CZTSSe TFSCs. Classes: 1—Low, 2—Medium, 3—High, 4—Very High.

Based on the DT and CART rule, the CZTSSe device was fabricated with an opti-
mal composition ratio of Cu/Zn = 1.15–1.20, Cu/Sn = 1.25–1.30, Zn/Sn = 0.95–1.0, and
Cu/(Zn+Sn) = 0.57–0.62. The crystal structure and morphology of corresponding repre-
sentative CZTSSe thin films were analyzed via XRD and FESEM, respectively (Figure S12
in Supplementary Materials). The CZTSSe thin film showed the formation of crystalline
thin films with characteristic CZTSSe peaks around 2θ value of 27.27◦, 45.31◦, and 53.69◦

corresponding to the (112), (204), and (312) planes, respectively (Figure S12a). The FE-SEM
analysis showed the formation of compact and large grains with an absorber thickness
of ~1.65 µm (Figure S12b). Figure 7a shows the current-voltage (J-V) characteristics mea-
sured under standard AM 1.5 G illumination test conditions. The device fabricated with
a ML-optimized composition range exhibited the average device PCE of 8.61% with JSC,
VOC, and FF, ~33.61 mA/cm2, ~479 mV, and ~53.51%, respectively (Table S2), while the
best sample exhibited 8.89% of PCE. The external quantum efficiency measured for the best
device exhibited nearly 80% photoresponse in the visible region, as shown in Figure 7b.
In addition, the bandgap values estimated for a similar device were ~1.09 eV. The present
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investigation showed DT and CART rules determined from ML well matched with the
practical investigation.
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Overall, it can be realized that the integration of the ML approach with experimental
studies can provide critical composition windows that could assist the fabrication of
high-efficiency solar cells. Moreover, it also revealed the composition windows where
the device performance could decrease. Yet, the ML algorithm has its strengths and
weaknesses, such as continuity in input data which limits the algorithm selection, the
number of observations that decides the model reliability, and prediction accuracy counts
for output result validation. Therefore, it is necessary to cautiously analyze the specific
data requirements for a specific algorithm to fully explore the strength of ML in TFSCs.

4. Conclusions

In summary, various ML algorithms were utilized to understand the effect of com-
positional ratios (Cu/Zn, Cu/Sn, Cu/Zn+Sn, and Zn/Sn) on the CZTSSe TFSCs output
device parameters (PCE, FF, JSC, VOC, RS, and RSh). The DT and CART algorithms provided
hidden sets of rules for the fabrication of highly efficient CZTSSe TFSCs. It was observed
that the bi-metallic composition ratios, such as Cu/Zn, Cu/Sn, and Zn/Sn, are more sensi-
tive towards device properties, while overall Cu/(Zn+Sn) is less. The Cu/Zn and Cu/Sn
ratios > 1.2 (i.e., Cu-rich conditions) were found to be unfavorable during achieving high
PCE. In contrast, the Zn/Sn ratio ~1 was optimal. Further, the output performance of the
CZTSSe TFSCs was predicted using continuous and categorical prediction approaches.
In the case of the continuous approach, the XGB algorithm shows a better prediction of
the device parameters than the ANN algorithm; on the other hand, the KNN predicts
the categorical output properties better than the SVM. Among all tested prediction-based
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algorithms, the KNN provides better results than other algorithms. The present work pro-
vides guidelines for the possible application of different algorithms in the ML-integrated
fabrication of TFSCs and insights to improve the PCE of devices.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst13111581/s1, Table S1. Categories of the different device
parameters from the Cu2ZnSn(S,Se)4 (CZTSSe) TFSCs; Figure S1: DT model for the FF of the CZTSSe
TFSCs; Figure S2: DT model for the JSC of the CZTSSe TFSCs; Figure S3: DT model for the VOC of
the CZTSSe TFSCs; Figure S4: DT model for the RS of the CZTSSe TFSCs; Figure S5: DT model for
the RSh of the CZTSSe TFSCs; Figure S6: CART model for the FF of the CZTSSe TFSCs; Figure S7:
CART model for the JSC of the CZTSSe TFSCs; Figure S8: CART model for the VOC of the CZTSSe
TFSCs; Figure S9: CART model for the RS of the CZTSSe TFSCs; Figure S10: CART model of the RSh
of the CZTSSe TFSCs; Figure S11: ANN structure related to (a) PCE, (b) FF, (c) JSC, (d) VOC, (e) RS,
and (f) RSh of the CZTSSe TFSCs; Figure S12: (a) XRD of CZTSSe absorber thin film, (b) FESEM
surface morphology, inset cross-sectional view; Table S2: Experimental photovoltaic parameters of
the CZTSSe TFSCs under standard test conditions.
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