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Abstract: Due to their lower cost and good mechanical and corrosion properties, ferrous materials
such as stainless steel (SS) are commonly used as bio-materials, mainly as surgical instruments and
implants. Surface treatments such as plasma electrolytic oxidation (PEO) can be a valuable tool to
increase corrosion resistance and enhance the bio-compatibility of metallic materials. In this scenario,
the current study evaluated the effect of electrolyte composition on the surface of SS304 submitted
to PEO treatment. The variation in the amount of KOH and Ta(OH)5 promoted significant changes
in the surface characteristics, forming Fe-rich oxide plates, Ta-rich agglomerate particles, and an
exposed substrate. The PEO-treated substrates were depleted of some alloying elements (Cr, Ni,
and Mn), which, allied to the Ta-enrichment, affected the roughness, wettability, phase stability,
micro-hardness, and corrosion resistance. All the PEO treatments presented a phase composition
of single γ-Fe instead of a dual α + γ phase from the untreated substrate, which was understood in
terms of the Nieq-Creq diagram. The corrosion tests indicated that the PEO treatment significantly
affected the corrosion parameters, having the presence of a non-uniform oxide layer. The findings
show that it is possible to control the chemical and phase composition of SS304 material employing
PEO treatment.

Keywords: plasma electrolytic oxidation; stainless steel; tantalum oxide; corrosion

1. Introduction

Among austenitic stainless steel (SS) materials, SS304 has been constantly employed
in medicine and dentistry, especially as surgical devices and medical instruments, due to
the favored combination of mechanical and corrosion properties [1]. The amount of Ni,
Cr, and Mn are alloyed to stabilize the austenitic phase (γ-Fe) and enhance its corrosion
resistance [2]. However, as a bio-tolerated metal, further surface modification is required to
fulfill the requirements for use in contact with the human body. This coating on stainless
steel becomes attractive due to the cost-effectiveness of the material in comparison with
other metals and alloys [3]. Some earlier attempts have been made using magnetron
sputtering [4], electron beam [5], mechanical attrition [6], and cold spray [7], but they still
require further research regarding their feasibility for industrial applications.

Ceramic oxide coatings have often been used to protect metallic surfaces against
corrosion and wear. In this sense, plasma electrolytic oxidation (PEO) applied in valve
metals (e.g., Ti, Al, and Mg) can produce porous and thick oxide coatings strongly bound
to the surface [8–10]. Studies have shown that PEO coating protects against corrosion,
especially against body fluids. Furthermore, incorporating chemical species such as Ta2O5
particles has added bio-compatibility and bio-activity abilities to the surface [11]. Ear-
lier studies have demonstrated the applicability of the PEO technique to coat Ti and
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Mg surfaces, including bio-active and osseointegrative properties useful for bio-medical
applications [12,13]. However, as Fe is not a valve metal, its oxide layer is unstable, limiting
its usage in PEO treatment [14,15].

Besides this, some recent reports have achieved interesting surface properties on Fe-
based materials after applying PEO treatment. Heo et al. [15] investigated the corrosion
resistance of SS316L samples after cathodic plasma electrolytic oxidation (CPEO) in phos-
phoric and sulfuric acids. The authors found a double-layer structure, an outer porous
Fe-rich oxide layer, and an inner dense Cr-rich oxide layer, which significantly improved
the corrosion behavior of the surface. Chellappandian et al. [16] used the CPEO technique
to produce N-rich coatings with multi-functional properties on ferritic steel (2.25Cr-1Mo),
obtaining interesting anti-corrosion and wear properties in a 3.5% NaCl solution and Al2O3
counter-body, respectively. Jin et al. [17] used CPEO in a borax-rich electrolyte to produce a
hard coating on SS304 samples. The authors also found a double layer, composed of an
outer Fe3O4 layer and a compact inner multi-component layer (Cr, Ni, FeCr2O4, NiCr2O4,
Fe3O4, and FeO), which provided superior wear resistance in the pin-on-disk tests against
a ZrO2 ball. Ma et al. [18] used PEO in a SiO2-rich electrolyte on Q235 low-carbon steel to
form a uniform Fe3O4 coating, which guaranteed enhanced corrosion resistance for use as
ship pipes when compared to bare steel. Gui et al. [1] tuned the surface properties of 304 SS
samples by applying electrolytic plasma processing (EPP) in a ZnSO4-rich electrolyte at dis-
tinct voltages and times. Domínguez-Jaimes et al. [19] used the same PEO configuration to
produce anodic organic layers on 304 SS samples using an electrolyte composed of NaAlO2,
Na2SiO3, and glycerol. The authors obtained superior corrosion properties compared to the
bare material, which could positively impact its applications. And finally, Marcuz et al. [20]
applied the PEO technique under a Ta-rich electrolyte on the low-carbon steel Q235 at
distinct voltages. They obtained a significant improvement in corrosion resistance against
0.9% NaCl solution, which mimics the physiological environment of the human body.

Considering the great usage of metallic bio-materials and the necessity to improve their
surface properties, this paper evaluated the effect of the proportion of KOH and Ta(OH)5
on the surface of SS304 after PEO treatment. Then, the surface topography, chemical and
phase composition, roughness, wettability, micro-hardness, and corrosion resistance were
evaluated in terms of the chemical composition of the electrolyte.

2. Materials and Methods

Round-shaped samples (Ø19.05 mm) of SS304 (Chemical composition (wt%): 0.00–0.03 S;
0.00–0.05 P; 0.00–0.07 C; 0.00–0.11 N; 0.00–0.10 Si; 0.00–2.00 Mn; 8.00–10.50 Ni; 17.50–19.50 Cr;
Fe balance) were previously ground with SiC waterproof paper and ultrasonically cleaned
in water and acetone for 5 min each. PEO treatments were performed in a pulsed power
source (MAO-30, Plasma Technology Ltd., Hong Kong, China), at 200 V, 1 kHz, 60%, for
10 min. The electrolyte comprised two groups: (2.0, 2.5, and 3.0) g·L−1 KOH + 10 g·L−1

Ta(OH)5, and 2.0 g·L−1 KOH + (10, 30, and 50) g·L−1 Ta(OH)5. The samples’ terminology
and the respective electrolyte composition are described in Table 1. The KOH and Ta(OH)5
powders were purchased from Dinâmica Química Contemporânea Ltd. (Indaiatuba, SP,
Brazil) and AMG Brazil Ltd. (São João del Rei, MG, Brazil), respectively, with a purity of
99.0% and a powder size of around a dozen micrometers.

Table 1. Samples’ nomenclature.

Sample Electrolyte

2.0 KOH 2.0 g·L−1 KOH + 10 g·L−1 Ta(OH)5
2.5 KOH 2.5 g·L−1 KOH + 10 g·L−1 Ta(OH)5
3.0 KOH 3.0 g·L−1 KOH + 10 g·L−1 Ta(OH)5
10 TaOH 2.0 g·L−1 KOH + 10 g·L−1 Ta(OH)5
30 TaOH 2.0 g·L−1 KOH + 30 g·L−1 Ta(OH)5
50 TaOH 2.0 g·L−1 KOH + 50 g·L−1 Ta(OH)5



Crystals 2023, 13, 1480 3 of 12

Surface topography was evaluated using scanning electron microscopy (SEM; JSM-
6010LA, Jeol Ltd., Peabody, MA, USA) in secondary electron beam mode (SE). Chemical
analysis was carried out using energy dispersive X-ray spectroscopy (EDS; Oxford Instru-
ments Inc., Peabody, MA, USA) at 15 kV. Further chemical details were acquired using
Fourier transform infrared spectroscopy (FTIR; Jasco Corp., Tokyo, Japan), in transmittance
mode, with 120 scans, and a resolution of 2 cm−1, and also using X-ray photoelectron
spectroscopy (XPS; K-alpha instrument, Thermo Scientific Inc., Waltham, MA, USA), using
AlKα radiation source (1486.6 eV), a spot size of 400 µm, step size of 200 eV and 50 eV, with
resolution of 1 eV and 0.01 eV, for the survey and high-resolution scans, respectively. The
quantitative results of the XPS data were collected from CasaXPS® software (version 2.3.24)
from three distinct points of the sample. Structural analysis was performed using X-ray
diffraction measurements (XRD; Panalytical X’Pert PRO, Westborough, MA, USA) using
monochromatic CuKα radiation (λ = 0.1544 nm), in the Bragg–Brentano configuration,
fixed-time mode, step size of 0.02◦, and collecting time of 1.6 sec. The phase composition
and cell parameters were determined using the Rietveld method using GSAS/EXPGUI®

software (version I) [21,22], Y2O3 sample for instrumental contribution, and ICSD crystallo-
graphic datasheets from metallic Fe and Fe oxide phases. Wettability was evaluated using
water contact angle measurements (Ramé-Hart Instrument Corp., Succasunna, NJ, USA)
using 30 µL droplets at room temperature, while average roughness (Ra) was collected
using optical profilometry (Veeco Metrology, Tucson, AZ, USA) operating with a stylus
radius of 12.5 µm, scan length of 2000 µm, resolution of 0.16 µm, for 20 s, and applied a
load of 3 mg.

A preliminary mechanical test was carried out using Vickers micro-hardness (Shi-
madzu Ltd., model HMV-G, Carlsbad, CA, USA) using a load of 0.100 kgf (9.807 N)
and a dwell time of 15 s. Average values were taken from ten measurements collected
along the surface. Corrosion tests were performed in an Autolab PGSTAT128N potentio-
stat/galvanostat (Metrohm Ltd., Riverview, FL, USA) using the three-electrode configu-
ration at room temperature with the sample set up as a working electrode, a Pt wire as
a counter electrode, and an Ag/AgCl wire as a reference electrode. The electrodes were
immersed in physiological 0.9% NaCl solution with a contact area limited by an O-ring
(Ø1.0 cm). The open-circuit potential (OCP) was previously measured for 1 h. Then, the po-
tentiodynamic polarization (PDP) test was performed from −1 to 2 V vs. OCP, with a scan
rate of 1 mV·s−1 and step size of 1 mV. The obtained results were analyzed using NOVA
2.0® software (version 2.1.5), which evaluated the corrosion potential (Ecorr), corrosion
current density (icorr), and polarization resistance (Rp) using Tafel’s extrapolation method
and the Butler–Volmer equation [20]. Finally, the electrochemical impedance spectroscopy
(EIS) test was performed in the frequency range of 100 kHz to 100 mHz with ten points per
decade and a signal amplitude of Vrms = 10 mV. The corresponding Bode and Nyquist plots
were fitted in the corresponding electrochemical equivalent circuit (EEC) using Zview®

software (version 3.3).

3. Results

The current vs. time plot collected during the PEO treatment of the samples is shown
in Figure 1, where a typical step decay caused by the oxidative reactions and micro-arc
discharges can be noted [8]. This phenomenon originates from the formation of a dense
oxide film together with water hydrolysis that generates gas bubbles containing ions
arising from the aqueous solution used in the PEO treatment, and the base material, which
loses metal ions in according to the following reactions [8,23]: H2O ↔ 2H + O2− and
xMe + yH2O→ MexOy + yH2. As a result, the applied voltage along the oxide coating
and the ionic environment promotes dielectric breakdown and the generation of plasma
micro-discharges along the oxide layer and substrate interface, with local high temperature
and pressure [24,25]. In Figure 1, it is also possible to note the maximum current values
possessed a direct dependence on the electrolyte’s composition, resulting from the distinct
electrical conductivity provided by the number of dissolved OH− ions [26]. Figure 2a
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displays the topography of a representative PEO-treated sample, where three distinct
regions can be seen: oxide plates (red), agglomerated oxide particles (green), and exposed
substrate (blue). The punctual EDS analysis (Figure 2b) and elemental EDS mapping
(Figure 2c) indicated that the agglomerates were mainly composed of Ta-enriched oxides
originating from the electrolyte, while the oxide plates were Fe-enriched. Similar results
were obtained for the other samples of each PEO treatment condition (see Figures S1–S5 in
Supplementary Material). Marcuz et al. [20] found similar curves during PEO treatment on
low-carbon steel, which was related to the oxidative reaction and plasma discharges that
occurred on the surface.
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Details about the chemical composition of the oxide coating in a selected PEO-treated
sample compared with the non-treated substrate are depicted in Figure 3. The 30 TaOH
sample was selected due to its high amount of incorporated Ta on the surface. The XPS
survey spectrum (Figure 3a) indicated a pronounced O1s peak with prominent peaks from
the alloying elements of the substrate (Fe, Cr, Ni, and Mn) and the reagents from the
electrolyte (Ta and K). The corresponding semi-quantitative chemical analysis (Figure 3b)
indicated an extensive incorporation of C and O atoms and an atypical enrichment of
the outer region of the oxide coating with some alloying elements (Cr, Ni, and Mn). The
high-resolution XPS spectrum for Fe2p (Figure 3c) indicated the presence of Fe3+ peaks
located at around 712 and 726 eV (Fe2O3; 66%), Fe2+ peaks located at around 710 and
724 eV (FeO; 32%), and Fe0 peak located at around 707 eV (metal; 2%), while for Ta4f
(Figure 3d), the depicted Ta5+ peaks were located at around 26 and 28 eV (Ta2O5; 45%)
and the Ta0 peaks were located at around 22 and 23 eV (metal; 55%). The results indicated
that the micro-arc discharges that occurred during the PEO treatment possibly promoted a
depletion of alloying elements from the substrate in the interface with the oxide coating,
while the applied voltage induced metal oxidation and Ta enrichment [27]. FTIR results
(Figure 4) also showed that some organic molecules, such as water and carbon-based ones,
were also absorbed into the surfaces, which naturally originated from the electrolyte.
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The XRD profiles of the PEO-treated samples are depicted in Figure 5a,b, which
indicate that the non-treated substrate exhibits a biphasic composition (α-Fe and γ-Fe). In
contrast, the PEO-treated samples displayed a single γ-Fe phase, without evident peaks
from Ta- or Fe-based oxide phases. Thus, it can be concluded that the micro-arc discharges
in fact promoted some phase transition on the substrate and produced a thin oxide layer,
which is undetectable in the XRD experiment. The phase transformation can be directly
linked to the Cr, Ni, and Mn depletion of the substrate once they play a role in phase
stabilization, as depicted in Figure 5c, corroborating the EDS and XPS chemical results. The
Rietveld method successfully refined the XRD profiles (see Figure S6 and Table S1) and
confirmed the presence of a single γ-Fe phase in the PEO-treated samples. The respective
aγ cell parameter (Figure 5d) changed randomly due to the depletion of alloying elements
that have distinct atomic radius. It is well known that the α→ γ phase transition in SS304
can be induced by chemical composition [2], temperature [28], and pressure [29]; thus, the
micro-arc discharges generated during the PEO treatment can provide an aggressive local
environment and induce proper phase transition along the surface.

The PEO-treated samples exhibited micro-roughened surfaces (see Figure S9) with
Ra values in the order of 0.2–0.6 µm, and highly hydrophilic behavior (see Table S2)
with contact angles far below 90◦ due to the irregular topography formed after micro-arc
discharges and the incorporation of Ta, respectively [20]. The Vickers micro-hardness
values (Figure 6) exhibited some dependence on the electrolyte’s composition, besides
the similar values indicated by the standard deviation. The tendency for decay of the
micro-hardness in the PEO-treated samples with high amounts of KOH and Ta(OH)5 can
be indicative of the α→ γ phase transition once the α phase possesses greater hardness
than the γ phase [30].

The OCP values (Figure S8) depicted a step decay, most likely due to the non-uniform
oxide coating and the alloying elements depletion. The PDP results (Figure 7a,b) exhibited
that the PEO treatment also affected the Tafel’s curves, with the increase in KOH provoking
a weakening of the corrosion potential. At the same time, the amount of Ta(OH)5 enhanced
it compared to the non-treated substrate. The Ecorr, icorr, and Rp values plot (Figure 7c)
showed that low amounts of KOH and intermediary Ta(OH)5 quantities provided the best
chemical proportion for promoting the corrosion resistance of SS304 in saline 0.9% NaCl
solution. Marcuz et al. [20] found similar results on the surface of PEO-treated low-carbon
steels enriched by Ta oxide.
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of PEO-treated low-carbon steels enriched by Ta oxide. 

Figure 6. Vickers micro-hardness values as a function of KOH and Ta(OH)5.
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parameters, and (d) schematic diagram of micro-arc discharges during PEO treatment.

The obtained results can be understood considering the mechanism of micro-arc
discharges during the PEO treatment, as illustrated in Figure 7d. The applied voltage
promotes the formation of the Fe oxide layer through oxidative reactions. However,
contrary to the valve metals (e.g., Ti, Al, and Mg), the Fe oxide is not firmly adhered to
the surface and can be removed during the discharges. In addition, the alloying elements
(Cr, Ni, and Mn) could also be depleted in the substrate by the eruption of molten metal
particles, as discussed by Nie et al. [14]. This assumption could explain the non-uniform
coating and the phase transition noted in the PEO-treated samples. The amount of KOH
raises the electrolyte’s conductivity, facilitating the appearance of micro-arc discharges and
reinforcing the alloying elements depletion, while the Ta(OH)5 increases the Ta enrichment
into the coatings, contributing to the enhancement of corrosion resistance [20].

The OCP and PDP electrochemical results can be corroborated by the EIS results shown
in Figure 8. To further evaluate the influence of the distinct oxide layers in the surface,
the EIS results for the 10 TaOH sample condition compared to the untreated substrate are
depicted. The Bode diagrams (Figure 8a,b) present an initial high impedance modulus and
phase angles at low frequencies, which decreased gradually with the frequency increase.
The initial impedance modulus of the PEO-treated sample remained higher than the
substrate, indicating that the oxide layer successfully protected the samples against the
corrosion mechanism [31]. As a result, the phase angle of the PEO-treated sample remained
below the substrate, indicating a successful blocking of charged species from the electrolyte
and also assuring it better corrosion resistance. The Nyquist plot (Figure 8c) indicated a
large semi-circle curve for the PEO-treated sample compared to the substrate, indicating the
presence of a constant phase element (CPE) in the surfaces. The zoomed plot also indicated
the presence of a small semi-circle in the PEO-treated sample, which is related to the non-
uniform and porous coating of the surface, as indicated by the SEM images. These results
match with the EECs shown in Figure 8d, which indicated a double layer on the surface of
the samples, composed of a double CPE and corrosion resistance (R) for the non-uniform
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PEO-treated sample, and a CPE and R linked with a pure capacitor (C) related to the dense
oxide layer for the substrate. As already seen in other studies involving similar materials
with porous coatings [15], the Nyquist diagrams had an imperfect capacitor response with
phase constants smaller than 1, different from the untreated substrate, which had purely
capacitive responses at the interface between metal and passive film. Table 2 shows the
quantitative results for the EEC fitting of all samples, where the successful adjustment
of the curves in the low χ2 value can be seen. The R values of the PEO-treated samples
remained in the same order for R2 and superior in R1 when compared to the untreated
substrate, indicating a superior corrosion resistance. The CPE values of the PEO-treated
sample were below the substrate, expressing a minor tendency to accumulate charges,
polarize the surface, and start possible degradation processes. Thus, it can be concluded
that the PEO treatment promoted the formation of a double layer on the metallic surface,
probably related to the Fe-rich plate and Ta-rich agglomerates as indicated in the SEM
images. This double layer favored the corrosion resistance of the sample against saline
0.9% NaCl solution. This result follows some earlier studies involving the PEO treatment
of non-valve metals [14,32].
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Table 2. EIS quantitative results of the samples.

Sample Rs (Ω) R1 (Ω) CPE1
(Ω−1 cm−2 s−α) α1 R2 (Ω) C1 (C) CPE2

(Ω−1 cm−2 s−α) α2 χ2

Substrate 171 1.7 × 105 1.9 × 10−5 0.9 13.5 × 105 2.8 × 10−5 - - 2.0 × 10−4

2.0 KOH 2 × 103 6 × 106 4.1 × 10−6 0.8 3.1 × 105 - 1.9 × 10−6 0.5 3.4 × 10−4

2.5 KOH 8.3 × 104 6.7 × 107 2.8 × 10−7 0.4 5.2 × 105 1.2 × 10−6 - - 9.1 × 10−5

3 KOH 160 6.7 × 105 2 × 10−5 0.8 2.4 × 104 - 4.3 × 10−5 0.8 1.8 × 10−4

10 TaOH 2 × 103 6 × 106 4.1 × 10−6 0.8 3.1 × 105 - 1.9 × 10−6 0.5 3.4 × 10−4

30 TaOH 5 × 103 2 × 105 1.4 × 10−6 0.7 1 × 1020 - 1.8 × 10−6 0.4 5.8 × 10−5

50 TaOH 4.4 × 104 2 × 107 2.9 × 10−7 0.5 6.2 × 104 - 5.2 × 10−7 0.5 7.6 × 10−5

4. Conclusions

SS304 samples were submitted to PEO treatments employing several KOH and
Ta(OH)5 concentrations. Subsequent analysis revealed that PEO-treated specimens dis-
played a heterogeneous coating comprising Ta-rich agglomerates, iron oxide plates, and
an exposed substrate. Chemical analyses confirmed successful Ta enrichment within the
iron oxide coatings, resulting in the depletion of certain alloying elements (Cr, Ni, and Mn)
from the substrate. Consequently, the phase composition of the samples changed from
a biphasic (α + γ) structure to a single γ-iron phase. The quantity of KOH and Ta(OH)5
had impacts on surface roughness, wettability, micro-hardness, and induced varied cor-
rosion behaviors in a saline environment. EIS results revealed the presence of a double
layer associated with Ta- and Fe-rich regions within the oxide layer, effectively enhancing
the corrosion resistance of the samples. Thus, this study demonstrates the feasibility of
inducing chemical and phase composition alterations in SS304 by precisely controlling the
electrolyte’s composition during PEO treatment, offering potential applications across a
broad spectrum of industries.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst13101480/s1, Figure S1: SEM imaging of the PEO-treated
samples as function of KOH; Figure S2: SEM imaging of the PEO-treated samples as function
of TaOH; Figure S3: Elemental EDS mapping of the PEO-treated samples as function of KOH;
Figure S4: Elemental EDS mapping of the PEO-treated samples as function of TaOH; Figure S5:
Semi-quantitative EDS chemical composition acquired in area mode from the region illustrated in
Figures S3 and S4; Figure S6: Refined XRD profiles; Figure S7: Roughness values of the PEO-treated
samples; Figure S8: OCP curves of the PEO-treated samples; Table S1: Merit parameters of the
Rietveld refinements; Table S2: Wettability of the PEO-treated samples.
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