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Abstract: The effect of quenching and partitioning (Q&P) processing on strength, ductility and
fracture toughness is considered in a 0.33% C-1.8% Si-1.44 Mn-0.58% Cr steel. The steel was fully
austenitized at 900 ◦C and quenched to 210 ◦C for 30 s. Partitioning at 350 ◦C for 600 s produces a
martensitic matrix with transition carbides, bainitic ferrite and film-like retained austenite (RA) that
is stable against transformation to strain-induced martensite under tension. This processing provided
the highest strength and fracture toughness but the lowest ductility and product of strength and
elongation (PSE), σB·δ (MPa·%). Partitioning at 500 ◦C produced RA with a relatively low carbon
content and low volume fraction of carbides. The steel after this Q&P processing exhibits the highest
ductility and PSE but low YS and Charpy V-notch (CVN) impact toughness. High ductility and PSE
correlate with the ability of RA to transform into strain-induced martensite, while high strength and
impact toughness are associated with the high-volume fraction of transition carbides in the carbon-
depleted martensitic matrix and a lack of transformation of RA to strain-induced martensite. The
highest CVN impact energy was attained in the steel exhibiting transgranular quasi-cleavage fracture
with the lowest effective grain size for brittle fracture. No correlation between strength, ductility and
fracture toughness is observed in Q&P steels if these materials have distinct structural constituents.

Keywords: quenching and partitioning; martensite; low-alloy steel; impact toughness; tensile proper-
ties; microstructure; phase transformation; carbides

1. Introduction

Low-alloy steels processed by quenching and partitioning (Q&P) are considered a third
generation of advanced high-strength steel (AHSS) due to a unique combination of yield
strength (YS), ultimate tensile strength (UTS), ductility and fracture toughness [1–3]. Q&P
steels are subjected to complex heat treatment involving austenitizing followed by rapid
cooling to a temperature, Tq, between the martensite-start (MS) and martensite-finish (MF)
temperatures [1–3]. This step of the Q&P process produces martensite and a considerable
amount of retained austenite (RA) [1–3]. The second step is carried out at a temperature,
Tp, to provide the carbon partitioning from the martensite to retained austenite (RA).
Usually, the temperature of partitioning, Tp, is higher than Ms, and, therefore, Tp > Tq [1–3].
Two accompanying processes usually occur during Q&P processing. The first process is
the precipitation of the η(Fe2C)- or ε(Fe2.4C)- transition carbides in a martensitic matrix
that leads to additional carbon depletion from supersaturated martensite [2–5]. This low-
temperature tempered martensite is often termed primary martensite [2]. The second
process is the decomposition of untransformed austenite to bainitic ferrite. Q&P steels are
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usually alloyed with ≥1.5 wt.% Si, which suppresses the formation of cementite during
Q&P processing if the Tp and Tq temperatures are below 400 ◦C [3,4,6,7]. The partitioning
step is followed by air cooling or water quenching, which may result in the formation of
secondary untempered martensite with a higher carbon content compared to the primary
martensite [2,4,5,8,9]. Thus, the Q&P process produces a multiphase structure consisting of
carbon-depleted martensite with transition carbides, carbon-enriched martensite, carbon-
depleted bainitic ferrite and carbon-enriched RA [1–5,8–10]. For low- and medium-carbon
steels, both the primary and the secondary martensite usually hold the Kurdjumov–Sachs
(K-S) orientation relationship with the austenite matrix, which can be determined by
electron backscatter diffraction (EBSD) analysis [5,11–13].

Two types of RA distinguished by morphology and carbon content may evolve in
Q&P steels [2,3,5,8,11,14]. Blocky-type RA is usually located in the triple junctions of prior
austenite grains (PAGs) and martensite packets [4,11,15]. Q&P steels with blocky-type RA
have a carbon content of above 0.3 wt.% and exhibit elongation-to-failure, δ, ≥15% with
a product of strength and elongation (PSE), UTS × δ (MPa × %), ranging from 2 × 104

to 4 × 104 MPa·% due to transformation of blocky-type RA to strain-induced martensite
under tension [1,8,11,16–18]. The relatively high YS of above 1 GPa of these Q&P steels is
attributed to the combination of the solid solution strengthening of blocky-type RA associ-
ated with carbon enrichment of this phase of C ≥ 1.14 wt.% and dislocation strengthening
associated with the high dislocation density in RA [11]. The high values of the PSE correlate
with the high absorbed impact energy ranging from 30 to 110 J [8,14,19–21]. These data
support the general statement that a high PSE indicates a high fracture resistance [1]. Addi-
tionally, the correlation between the PSE and fracture toughness for automotive steel sheets
was recently argued [22,23]. Conversely, no clear relationship between fracture toughness
and the PSE was found in a 0.3C-2.5Mn-1.5Si-0.8Cr steel processed by Q&P [23]. Chong
Gao et al. [22] assume that there exist some exceptions from the basic rule that a high PSE
means better fracture toughness since crack initiation in Q&P steels is mainly controlled by
the parameters of the martensitic phase, while ductility is controlled by the volume fraction,
morphology of RA and its susceptibility to transformation to strain-induced martensite
under tension [11,23,24].

The lack of the proportional dependence between the PSE and CVN impact en-
ergy was observed in Q&P steels with C ≤ 0.3 wt.% that exhibit PSE values ranging
from 1.0 × 104 to 2.7 × 104 MPa·% with YS ranging from 1050 to 1250 MPa and CVN im-
pact energy ranging from 60 to 110 J [21,25–28]. Film-like RA dominates in these Q&P
steels [5,27–29]. Kai Yang et al. [28] showed that the combination of the ductility, PSE and
Charpy V-notch (CVN) impact absorbed energy mainly depends on the stability of the
film-like RA during tensile or impact tests [30]. S. Takaki et al. [30] showed that film-like
RA is characterized by increased stability to transformation to strain-induced martensite
compared to blocky-type RA. The relationship between the PSE and fracture toughness
depends on RA morphology, volume fraction and stability as well as characteristics of
the martensitic matrix and other constituent phases [24]. Unfortunately, the effect of the
precipitation of carbide particles and characteristics of RA on the combinations of strength,
ductility and impact toughness is scarcely reported for Q&P steels.

The aim of the present work is to examine the relationships between strength, ductility,
PSE and CVN impact absorbed energy in a low-alloy steel with 0.33 wt.% C processed by
Q&P. The effects of the tempering of the primary martensite and the stability of RA on the
mechanical properties are discussed. For this purpose, three different Q&P routes were
followed to obtain microstructures containing various volume fractions of bainitic ferrite
and secondary martensite, as well as the different morphology and carbon content of RA.
This study is a part of a complex work and data on the structure and mechanical properties
of this steel subjected to quenching and tempering (Q&T) processing are available [4] for
comparison.
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2. Material and Methods

The chemical composition of the studied low-alloy medium-carbon steel is presented
in Table 1.

Table 1. Chemical composition of the steel in wt.%.

Fe C Si Mn Cr N P S

Balance 0.33 1.85 1.44 0.58 0.0084 ≤0.01 ≤0.007

The steel was produced by air induction melting followed by electro-slag remelting [4].
Then the solution treatment was performed at 1150 ◦C for 4 h followed by hot forging at
temperatures of 1150–950 ◦C into billets with dimensions of 60 × 150 × 450 mm3. Samples
with 12 mm thickness were machined from the billets and austenitized at 900 ◦C for 10 min
followed by quenching in a salt bath at Tq = 210 ◦C for 30 s (Figure 1). Next, the samples
were subjected to isothermal holding at Tp = 350 ◦C for 600 s and at Tp = 500 ◦C for 20 s
and 100 s in a second salt bath followed by water quenching (WQ) (Figure 1).
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Figure 1. Schematic diagram of Q&P routes.

The Rockwell hardness was measured using a Wolpert Wilson hardness tester 600 MRD
(Illinois ToolWorks Inc., Norwood, MA, USA) following the ASTM E18 standard. Ten inden-
tations were performed for each sample. Uniaxial tension tests were carried out using an
Instron 5882 testing machine (Illinois ToolWorks Inc., Norwood, MA, USA) at a loading rate
of 1 mm/min and ambient temperature in accordance with the ASTM E08M-04 standard.
Two tensile specimens with a gauge length of 35 mm and a cross-section of 7 mm × 3 mm
were tested for each material condition. The elongation-to-failure was measured by the
non-contact digital image correlation (DIC) method. CVN specimens with dimensions of
10 × 10 × 55 mm3 and a 2 mm V-notch were tested using an Instron IMP460 impact testing
machine (Illinois ToolWorks Inc., Norwood, MA, USA) equipped with an Instron Dynatup
Impulse data acquisition system in accordance with the ASTM E-23 standard.

Structural characterization was carried out by scanning electron microscopy (SEM)
and transmission electron microscopy (TEM). Samples for SEM and thin foils for TEM
observations were prepared by electrolytic polishing and the twin-jet polishing technique,
respectively, using 10% HClO4 and 90% CH3COOH solution. A Quanta 600 FEG (FEI
Corporation, Hillsboro, OR, USA) SEM operating at 20 kV and equipped with an electron
backscatter diffraction (EBSD) pattern analyzer and EDAX Velocity™ camera was used for
orientation imaging microscopy (OIM) and observations of etched surfaces and fracture
surfaces. The OIM images were subjected to a clean-up procedure, setting the minimal
confidence index to 0.1. The high-angle boundaries (HAB) were defined with a misorienta-
tion ≥ 15◦ and depicted on the inverse pole figure maps as black lines. Dislocation density
characterizing the elastic bending of the crystal lattice was calculated from EBSD maps
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using the Kernel misorientation function with the presumption that all dislocations have
the same Burgers vector as [31]:

ρKAM =
2·θKAM

b·h , (1)

where b is the Burgers vector and h is the scanning step size. Reconstructruction of PAGs
and martensite packets was carried out using the method proposed by Niessen et al. [32]
and assuming the formation of a lath martensite structure in accordance with the K-S
orientation relationship (OR) between the austenite, γ, and martensite, α′ [15]:

{111}γ‖{011}α,
〈
101
〉

γ
‖
〈
111
〉

α
(2)

A Jeol JEM-2100 (Jeol Ltd., Tokyo, Japan) operating at 200 kV and equipped with an
INCA energy dispersive X-ray spectrometer (EDS) was used for TEM studies.

Volume fraction of RA was determined by the magnetic saturation method using
a Fischer Feritscope FMP30 (Helmut Fischer Gmbh, Sindelfingen, Germany) and X-ray
analysis using a Rigaku Ultima IV diffractometer (Rigaku Co., Tokyo, Japan) using Cu Kα

radiation with a step size of 0.02 deg, at 40 kV and 40 mA. The austenite (111)γ and (200)γ
diffraction peaks and the martensite (110)α′ , (200)α′ and (220)α′ diffraction peaks were
analyzed by comparing their integrated intensities [33].

The carbon content in RA was calculated using the following equation [11,34,35]:

aγ(A) = 3.578 + 0.033CRA + 0.00095MnRA + 0.0031MoRA (3)

where CRA, MnRA and MoRA are the concentrations of the three solutes in RA in wt.%.
Carbon concentration was derived from X-ray data and Mn and Mo concentrations were
taken as content of these elements in the steel since no substitutional atom partitioning
occurs under Q&P [3,4]. The effect of Si on the lattice parameter of RA was discarded since
the influence of Si on aγ values is negligible [34,36].

Dilatation experiments were performed using a Bähr DIL 805 A/D dilatometer (TA
Instruments Inc., New Castle, DE, USA) on cylindrical samples with a 10 mm length and
a 3 mm diameter. Other details of experimental techniques were reported in previous
works [4,5,11,37].

3. Results
3.1. Phase Transformations

Phase transformations during Q&T processing are considered in the previous work [4]
in detail. The AC3 and AC1 critical temperatures are 758 and 817 ◦C, respectively, [4] and,
therefore, austenitizing at 900 ◦C provides a fully austenitic structure. The Ms and Mf
temperatures were determined by dilatometry as 325 and 104 ◦C, respectively, and the
volume fraction of primary martensite at the selected quenching temperature of 210 ◦C is
0.78 (Figure 2a). Several empirical relationships were developed to estimate the Ms from
chemical composition [38–40]. Two equations suggested by K. W. Andrews [40] and C.
Capdevila et al. [41] are used for the prediction of Ms temperatures in the low-alloy steels:

Ms(◦C) = 539 − 423% C − 30.4% Mn − 12.1% Cr − 7.5 Si (4)

Ms(K) = 764.2 − 302.6% C − 30.6% Mn − 8.9% Cr − 14.5% Si (5)

where the concentrations of carbon, manganese, chromium and silicon are in wt.%. The Ms
temperatures calculated from Equations (4) and (5) are Ms(◦C) = 334 ◦C and Ms(K) = 588 K
(315 ◦C), respectively. Therefore, the two empirical formulas predict Ms with high accuracy
in the present steel and could be used to calculate the Ms for carbon-enriched RA. It is worth
noting that Formula (4) overestimates the Ms by ∆T = 9 K, and Formula (5) underestimates
the Ms by ∆T = 10 K. The η-Fe2C transition carbides precipitate in the martensitic matrix at
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temperatures of 200–400 ◦C and cementite precipitates along HABs and LABs at T≥ 474 ◦C
during conventional tempering [4]. The decomposition of RA to bainitic ferrite and the
transition carbides occurs at tempering temperatures ranging from 200 to 400 ◦C [4]. This
agrees well with the dilatometric data obtained during Q&P processing (Figure 2b,c). The
observed length increase at the partitioning stage at 350 ◦C can be attributed to the bainitic
transformation, whereas the length contraction during partitioning at 500 ◦C is associated
with the carbide precipitation inside austenite [42]. Based on the dilatometric data and
X-ray analysis, the fractions of bainitic ferrite, secondary martensite, ferrite + carbides and
RA were calculated. The obtained volume fractions of the microstructure constituents are
summarized in Table 2. According to these results, the increase in the partitioning time at
500 ◦C leads to a noticeable increase in the volume fraction of the ferrite + carbides and
decrease in the volume fraction of secondary martensite. The precipitation of cementite at
this temperature is accompanied by the dissolution of the transition carbides, whereas no
overlap between the precipitation of these two types of carbides was observed at tempering
temperatures below 400 ◦C [4].
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Table 2. Volume fractions of the microstructure constituents after Q&P processing.

Q&P Processing Primary
Martensite RA Bainitic

Ferrite
Secondary
Martensite

Ferrite +
Carbides

MS for
Secondary
Martensite

Carbon Content in
Secondary Martensite

(Equation (4))

Q210-P350 (600 s)
0.78

0.10 0.07 0.05 - 201 ◦C 0.62 wt.%
Q210-P500 (20 s) 0.11 - 0.08 0.03 253 ◦C 0.50 wt.%
Q210-P500 (100 s) 0.08 - 0.04 0.10 174 ◦C 0.68 wt.%

The selected Tq temperature is significantly above the martensite-finish temperature
that provides a high volume fraction of untransformed austenite [2,3]. Volume fractions of
martensite, fα′ , and untransformed austenite prior to partitioning ( f in

γ = 1− fα′ ) could be
evaluated using the Koistinen–Marburger (K-M) equation [2,9,43]:
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fa′ = 1− exp
(
−1.1·10−2(Ms − Tq

))
, (6)

The calculated fα′ and f in
γ values are 72% and 28%, respectively.

3.2. Microstructure after Q&P Processing

Typical SEM microstructures are shown in Figure 3. Primary martensite is heavily
etched [11,26,44,45] and contains carbide particles readily distinguished by secondary
electron imaging, which is indicative of a carbon-depleted structural component. Areas of
secondary martensite and RA are distinctly revealed by slight etching due to the carbon
enrichment. The secondary martensite and RA are hardly distinguished in these areas,
which is indicative of the similar carbon content in these structural constituents (Figure 3d).
No carbide precipitation could be observed in carbon-enriched areas after partitioning at a
temperature of 350 ◦C (Figure 3a), while some carbides are present in the carbon-enriched
matrix after partitioning at 500 ◦C for 20 s (Figure 3b). The formation of carbide chains along
block boundaries and the boundaries between the primary martensite and carbon-enriched
areas is observed after partitioning at 500 ◦C for 100 s (Figure 3c).
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Figure 3. SEM microstructures of Q&P samples: (a) Q210-P350 (600 s), (b) Q210-P500 (20 s) and
(c) Q210-P500 (600 s). (d) Coarse RA/SM island in the Q210-P500 (20 s) sample. M/A is the
martensite/austenite constituent, CFB is the carbide-free bainite, SM is the secondary martensite and
F + Cs is the ferrite + carbides.

Q&P processing with partitioning at 350 ◦C leads to the subdivision of PAGs and
packets of primary lath martensite [15] to rectangular areas with a thickness of ~1.5 µm
by carbon-enriched areas (Figure 3a). Unitized packets of primary martensite with an
average size of 5 µm and irregular shape are rarely observed (Figure 3a). After partitioning
at 500 ◦C for 20 s, this subdivision remains (Figure 3b). After partitioning at 500 ◦C for
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100 s, the packets of primary martensite are largely subdivided into isolated areas by the
well-defined HABs with chains of boundary carbides (Figure 3c).

Typical misorientation maps are presented in Figure 4 and structural parameters
are summarized in Table 3. The lath martensite exhibits a three-level hierarchy in its
morphology, i.e., blocks, packets and PAG [15]. After partitioning at 350 ◦C, the ratio
between the average dimensions of martensite packets and PAGs is Dpacket ~0.16DPAG and
the ratio between the block width and the average size of packets is dblock ~0.25Dpacket
(Table 3). However, the distribution of PAG dimensions is non-uniform. Coarse PAGs
with dimensions of above 30 µm alternate with fine PAGs with sizes below 20 µm. The
EBSD analysis suggests that the small martensite packets of secondary martensite are often
located in the coarse primary martensite and surrounded by RA (Figure 4). Coarse packets
with an irregular shape are often observed in the PAGs (Figure 4(a2,a3)). These packets
consist of ≥4 blocks with different K-S OR, whereas the small packets consist of two blocks
or even one block. As a result, the average distance between HABs is 70% larger than the
block thickness (Table 3).
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Table 3. Effect of Q&P regime on the average size of PAGs, dPAG, packets, dp, spacing between HABs,
dHAB, thickness of laths, dl, and dislocation densities calculated from EBSD data, ρKAM.

Q&P Processing dPAG
(SEM), µm

dP (EBSD),
µm

db (EBSD),
µm

dHAB
(EBSD),

µm

dl
(TEM),

nm

ρKAM,
m−2× 1014

Q210-P350 (600 s)
26.4 ± 3.3

4.1 ± 0.5 1.0 ± 0.2 1.7 ± 0.2 220 ± 15 5.8
Q210-P500 (20 s) 4.7 ± 0.7 0.9 ± 0.2 1.4 ± 0.2 186 ± 15 6.1

Q210-P500 (100 s) 4.1 ± 0.5 1.0 ± 0.2 1.5 ± 0.2 262 ± 17 6.0

Galindo-Nava et al. assumed [46] that the relationships between the size of PAGs,
packets and blocks can be predicted using the following equations:

Dpacket =

√
3
√

3
8Np

DPAG (7)

dblock =
1

Nb
DPacket (8)

where Np is the number of packets in a PAG, and Nb is the number of blocks in a packet,
which provides the accommodation of lattice distortions associated with γ→ α′ transfor-
mation. Equation (8) is fulfilled for Nb = 4, which agrees with experimental observations.
However, four blocks per packet are rarely observed. Thus, Equation (7) could not be used
to describe the structural parameters of the lath martensite structure. The microstructures
after Q&P processing are characterized by a high degree of distortion associated with
ρKAM values (Table 3). This can be associated with long-range stress fields from the lath
boundaries of primary and secondary martensite (Table 3).

Three types of other phases are distinguished in the lath martensite structure after
Q&P. Film-like RA is revealed by TEM observations (Figure 5) and blocky-type RA could be
observed by the EBSD technique (Figure 4(b3)). The parameters of RA are summarized in
Table 4. The volume fraction of the blocky-type RA in the microstructure after partitioning
at 350 ◦C for 600 s and after partitioning at 500 ◦C for 100 s is negligible. After partitioning
at 350 ◦C, the films of RA are relatively thick and the carbon content in this phase is
high (Table 4). Partitioning at 500 ◦C decreases the carbon content in RA and increasing
the partitioning time from 20 s to 100 s decreases the average thickness of the RA films
(Table 4). The Ms values of RA were calculated with the presumption of a paraequilibrium
condition existing, i.e., no partitioning of substitutional solutes takes place between the
martensitic/ferritic matrix and RA during Q&P processing [3,47]. It can be seen (Table 4)
that the increasing carbon content in the austenite increases strongly the difference in values
calculated using the equations suggested by K. W. Andrews [40] and C. Capdevila et al. [41]
(Table 4). Partitioning at 350 ◦C decreases the Ms down to the ambient temperature or
below (Table 4) and, therefore, the transformation of RA to the martensite could not occur
during the final cooling to room temperature. After partitioning at 500 ◦C, the feasibility of
a martensitic transformation occurring during cooling is ambiguous (Table 4). It is apparent
that the transformation of RA to bainite may play an important role in decreasing the
volume fraction of RA during partitioning. The bainite-start temperature calculated by the
empirical formula

Bs(◦C) = 839 − 86% Mn − 67% Cr + 23% Si-271·(1 − exp(−1.33% C)) (9)

showed excellent agreement with the experimental data for steels with a carbon content
below 1 wt.% and Si additions [48].
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Figure 5. Bright-field images (a–c) and dark-field images (a1–c1) of RA and selected area electron
diffraction pattern (SAED) (a2–c2) after quenching and partitioning at 350 ◦C for 600 s (a–a2), 500 ◦C
for 20 s (b–b2) and 500 ◦C for 100 s (c–c2).

It can be seen (Table 4) that the bainitic transformation could occur during partitioning
at 350 ◦C. However, the bainitic transformation could not contribute significantly to a de-
crease in the volume fraction of RA at a temperature of 500 ◦C since the Bs and partitioning
temperatures are nearly the same (Table 4). Therefore, the martensitic transformation is the
most likely mechanism providing a decrease in the volume fraction of RA after partitioning
at 500 ◦C.

Table 4. Effect of Q&P processing on characteristics of RA.

Temperature and
Duration of

Partitioning Stage
Thickness of

Film-Like RA, nm
Volume Fraction of

RA 1, %
Carbon Content in
RA (X-ray), wt.%

MS (Dilatometry) 2,
◦C

BS (Equation (9)),
◦C

Volume Fraction of
RA after Tension

(X-ray) 1, %

350 ◦C for 600 s 125 ± 10 10/10 1.3 −74/21 495 9/7
500 ◦C for 20 s 175 ± 15 11/10 1.0 53/112 519 6/4
500 ◦C for 100 s 80 ± 10 8/5 1.1 11/82 509 2/2

1 Numerator and denominator are volume fractions obtained by X-ray and magnetic saturation measure-
ment techniques, respectively. 2 Numerator and denominator are martensite-start temperatures calculated
by Equations (4) and (5), respectively.

The second phase is transition η-Fe2C carbide particles precipitatated during Q&P
processing (Figure 6, Table 5). These carbides exhibit plate-like shape with a high diameter-
to-thickness aspect ratio (AR) of ~9, which is indicative of diffusion-controlled lengthen-
ing [49]. Transition carbides are observed after all Q&P processing conditions. The third
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phase is cementite particles, which were detected after partitioning at 500 ◦C for 100 s
(Figure 6c). The number density of cementite is insignificant and only separate particles
are observed, which is in contrast to conventional tempering at this temperature [4]. How-
ever, precipitation of cementite leads to almost full dissolution of the transition carbides.
Partitioning at 500 ◦C with a duration of up to 100 s could be considered rapid tempering
since no extensive precipitation of cementite occurs [50,51]. It should be noted that cemen-
tite particles were not observed in the microstructure after partitioning at 500 ◦C for 20 s
(Figure 6b).
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Figure 6. Typical TEM micrographs after Q&P processing (a) partitioning at 350 ◦C for 600 s,
bright-field image and SAED from transition η-Fe2C carbide; (b) partitioning at 500 ◦C for 20 s;
(c) partitioning at 500 ◦C for 100 s, dark-field image in cementite spot with SAED; (d) partitioning at
500 ◦C for 100 s, bright-field image and SAED from η-Fe2C carbide.
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Table 5. Effect of tempering on the dimensions of carbides.

Temperature and Duration
of Partitioning Stage

Dimensions of Transition
Carbides *, nm

Average Size of Cementite,
nm

350 ◦C for 600 s 90/11 -
500 ◦C for 20 s 126/13 -

500 ◦C for 100 s 95/11 19
* Numerator and denominator are the particle length and thickness, respectively.

3.3. Effect of Q&P Processing on Mechanical Properties

The engineering tensile stress–strain curves of the steel after Q&P processing are
shown in Figure 7a and the hardness, YS, UTS, ductility and PSE are summarized in
Table 6. The steel exhibits continuous yielding [38] followed by work hardening in all Q&P
conditions. After partitioning at 350 ◦C, the strain hardening stage is short, which leads to
relatively small uniform elongation. It is worth noting that the uniform elongation after
this processing (Table 6) and Q&T treatment with tempering at 280 and 400 ◦C [4] is nearly
the same. Increasing the partitioning temperature and duration of the partitioning stage
decreases YS and increases strain hardening rate, dσ/dε, (Figure 7b) at a true strain of
above 0.02. The onset of the Considère condition [38]

dσ

dε
= σ (10)

has no relation to the transition from stable plastic flow to unstable plastic flow for the steel
in this condition (Figure 7a,b). However, the onset of necking is observed at relatively high
strain (Figure 7a), which provides a ~50% increase in ductility and the PSE in comparison
with conventional tempering at 280 and 400 ◦C [4]. Thus, the Q&P processing increases
ductility at the expense of YS, UTS and hardness (Table 6) in comparison with Q&T
treatment if the partitioning and tempering temperatures are close [4].
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Table 6. Effect of Q&P processing on mechanical properties.

Temperature and
Duration of

Partitioning Stage

YS,
MPa

UTS,
MPa

Elongation-to-Failure,
% PSE, GPa·% Uniform

Elongation, % HRC

350 ◦C for 600 s 1310 ± 10 1530 ± 10 10 ± 1 15.6 3.4 46
500 ◦C for 20 s 1180 ± 10 1430 ± 10 19 ± 2 25.8 12.0 43
500 ◦C for 100 s 950 ± 20 1450 ± 10 14 ± 1 20.8 9.3 42
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At Tp = 500 ◦C, the onset of the Considère condition shifts to higher strain and
correlates with a transition to unstable plastic flow. This leads to an increase in uniform
elongation by a factor of 3 but decreases YS with increasing temperature and duration of
the partitioning stage (Table 6). UTS value and hardness decrease insignificantly. The ~30%
and ~60% increase in the PSE takes place after partitioning at 500 ◦C for 100 s and 20 s,
respectively (Table 6).

The highest CVN impact energy is observed in the steel sample after partitioning at
350 ◦C (Table 7). Q&P processing increases the impact energy by a factor of ~3 in com-
parison with Q&T treatment if the partitioning and tempering temperatures are close [4].
However, partitioning at 500 ◦C decreases the impact energy significantly (Table 7). After
partitioning at 500 ◦C for 20 s, the value of CVN impact energy is two times smaller than
that after tempering at 500 ◦C [4]. It is worth noting that after partitioning at 500 ◦C for 20 s,
the steel exhibits the highest PSE and lowest CVN impact energy, whereas the lowest PSE
and highest adsorbed energy were observed after partitioning at 350 ◦C (Tables 6 and 7).
Therefore, no correlation between these two characteristics of fracture resistance takes place
in Q&P steels. Increasing the duration of the partitioning stage at 500 ◦C increases the CVN
impact energy and decreases the PSE (Tables 6 and 7).

Table 7. The CVN impact energy, dynamic yield strength (DYS), dynamic ultimate tensile strength
(DUTS), the maximum load, PM, ductile fracture initiation energy, Ei, fracture propagation energy,
Ep, and total fracture energy, E, calculated from CVN load–deflection curves.

Temperature and Duration
of Partitioning Stage

CVN,
J

PGY,
kN

PM,
kN

PA,
kN

DYS,
MPa

DUTS,
MPa

Ei,
J

Ep,
J

E,
J

350 ◦C for 600 s 58 32 40 2.7 1400 1570 37 21 58
500 ◦C for 20 s 16 21 23 - 915 915 9 7 16

500 ◦C for 100 s 38 25 32 2.5 1110 1270 24 14 38

Two types of load–deflection curves can be distinguished in Figure 8. First, after
partitioning at 350 ◦C for 600 s and 500 ◦C for 100 s, the curves exhibit the general yield
load, PGY, associated with the onset of ductile crack growth, the maximum load, PM, and
the PA point associated with the final crack arrest before the formation of shear lips [52–55].
The PM values are significantly higher than the PGY values and the difference in the
deflection between these two points is about 0.7 mm. Therefore, ductile crack extension
occurs at a relatively large displacement between the PGY and PIF points [52,55] and the
highest portion of the impact energy is adsorbed due to the initiation of a crack with critical
dimension, Ei, (Table 7) followed by crack propagation. It is worth noting that at the crack
propagation stage, the high energy, Ep, is adsorbed (Table 7), and, therefore, no unstable
crack propagation takes place. This behavior can be interpreted in terms of fast crack
propagation and no characteristic point of the onset of unstable fracture, PF, [4,52–57] could
be distinguished. The arrest of crack propagation appears at very small loads and, therefore,
insignificant energy is adsorbed at this stage.

The second type of load–displacement curve is observed after partitioning at 500 ◦C
for 20 s (Figure 8). The general yield load is poorly distinguished from the PM point and the
highest energy is adsorbed at the crack propagation stage. The Ei value is relatively small
(Table 7). No crack arrest stage is observed (Figure 8). It is worth noting that the steel pro-
cessed by Q&P exhibits a specific dynamic impact behavior that is distinctly distinguished
from that observed in the low-alloy high-strength steels after Q&T treatment [52,57]. The Ep
energy is relatively high in the Q&P steels with Si ≥ 1.5 wt.% and no well-defined unstable
crack propagation stage is distinguished. The PM after tempering at 280 and 500 ◦C is
higher than the observed maximum load of this steel after partitioning at 500 ◦C for 20 s.
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In order to analyze the dynamic behavior of the steel in different conditions, the
stress dynamic yield strength (DYS) and dynamic ultimate tensile strength (DUTS) were
calculated. The results are summarized in Table 7. The DYS represents the yielding criterion
related to shear stress and was calculated using the following relation [54,55]:

DYS =
3.732PGYW

CGY(W − a)2B
(11)

where W = B = 10 mm are the specimen width and thickness, respectively, a = 2 mm is the
notch depth and CGY is the constraint factor = 1.336 for standard ASTM tup. The DUTS
was calculated using a relationship of the same form [4,11,54,55]:

DUTS =
ηPmPmW

(W − a)2B
(12)

where ηPm = 2.531 is the empirical factor associated with the ratio between shear and tensile
stress. It can be seen (Table 7) that the values of YS are slightly smaller than the DYS
values for the steel subjected to partitioning at 350 ◦C for 600 s and 500 ◦C for 100 s. The
crack nucleation is initiated after yielding and ductile crack growth occurs up to the PM
point [52]. In contrast, YS > DYS in the steel after partitioning at 500 ◦C for 20 s and the
crack initiation occurs due to plastic deformation at the notch-tip providing constraint
condition [52,56]. Since DYS and DUTS are essentially the same for this steel condition,
fast crack propagation occurs with a minor contribution from ductile fracture [4,11]. Fast
crack propagation occurs under stress for brittle fracture that could be expressed by the
following relationship [4,11,58,59]:

σF = 1.41

√
2Eγs

π(1− ν2)
d−1/2

e f f (13)

where E = 212 GPa is Young’s modulus, γs is the surface energy of the cleavage plane for the
martensite structure, υ = 0.293 is Poisson’s ratio and de f f is the effective grain size for the
fracture. In contrast, the samples after partitioning at 350 ◦C for 600 s and 500 ◦C for 100 s
exhibit DUTS significantly higher than YS in these conditions and fast crack propagation
occurs with a high contribution from ductile fracture.

Inspection of Figure 8 shows that an increase in the CVN impact adsorbed energy is
associated with increasing DYS and DUTS values and an expanded crack initiation stage.
Q&P processing with partitioning at 350 ◦C for 600 s and 500 ◦C for 100 s provides ductile
fracture behavior. Q&P processing with partitioning at 500 ◦C for 20 s leads to remarkable



Crystals 2023, 13, 1431 14 of 22

embrittlement. For this sample, crack initiation occurs below the onset of yielding, and the
fracture toughness is mainly controlled by σF value [11].

3.4. Fractography

Figure 9 shows the overall views of the fracture surfaces after tensioning. All tensioned
specimens show remarkable necking. An increase in partitioning temperature expands the
fibrous zone (FZ). After partitioning at 350 ◦C for 600 s, crack initiation occurs in a mixed
ductile–brittle manner (Figure 9(a2)) [60]. The main feature of the fracture surfaces is a
small de f f for brittle fracture. Packets and some blocks play a role in the effective grain
size [11]. Quasi-cleavage fracture takes place [4,37,38,53,54,60,61]. Areas of dimple fracture
are separated by the cleavage units. Ductile fracture results in a dimple pattern in the
shear-lip zone (SLZ) (Figure 9(a1)). Dimple dimensions decrease with increasing distance
from the center to the edges of the tensioned specimen. After partitioning at 500 ◦C for 20 s,
crack initiation in the FZ occurs through quasi-cleavage fracture (Figure 9(b2)), and crack
propagation in SLZ takes place in a ductile manner with very fine dimples [60] (Figure 9(b1)).
Intergranular fracture is observed in the FZ but its contribution to crack initiation is
insignificant. After partitioning at 500 ◦C for 100 s, the contribution of intergranular
fracture to crack initiation in the FZ increases while quasi-cleavage fracture plays the major
role (Figure 9(c2)). Crack propagation in the SLZ occurs in a ductile manner (Figure 9(c1)).
Weak evidence for decohesion [4,37,60] could also be found in the SLZ (Figure 9(c1)).
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fractographs of the shear-lip zone (a1–c1) and fibrous zone (a2–c2).
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The effect of Q&P processing on the area fractions of these zones is summarized
in Table 8 and the fractographs of the V-notch Charpy specimens after impact tests are
presented in Figure 10. The fracture surfaces of the CVN specimens consist of the ini-
tiation zone (IZ), fast crack propagation/fibrous zone (FCPZ) and shear-lip zone (SLZ)
(Figure 10a–c) [37,57,61,62]. A dimple fracture is observed in the IZ for all steel conditions,
indicating the occurrence of ductile fracture in this zone (Figure 10(a1–c1)). However, the
parameters of the Q&P processing strongly affect the mechanisms of the crack propaga-
tion. In the steel after partitioning at 350 ◦C for 600 s, stable crack propagation leads to
an increased size of dimples and mixed fracture takes place in the FCPZ (Figure 10(a2)).
Coarse dimples alternate with areas of quasi-cleavage fracture. The observed cleavage
coherent lengths are comparable with the size of martensite packets and block thickness.
Therefore, the martensite packets and blocks play a role in the effective grain size for
brittle fracture that provides small de f f and high σF values [4,37,63]. In the latter case,
crack propagation may occur in a ductile manner. The area fractions of dimples and quasi-
cleavage are nearly the same. In addition, crack propagation occurs in a ductile manner at
the lateral edges (Figure 10(a3)), which provides a high area fraction of SLZ (Table 8). F.
Zia-Ebrahimi et al. [56] interpreted crack propagation in this zone in terms of the arrest of
unstable crack propagation. However, the rectangular lateral surfaces (Figure 10a–c), the
shape of the load–displacement curves (Figure 8) and relatively high Ep values (Table 7) are
indicative of the concurrent formation of FCPZ and SLZ at the lateral edges. The onset of
crack arrest at small loads (Figure 8) and the very small area of the bottom SLZ (Figure 10a)
support this conclusion.

Table 8. Effect of Q&P processing on the area fractions of initiation zone (IZ), fast crack propaga-
tion/fibrous zone (FCPZ) and shear-lip zone (SLZ).

Temperature and Duration of
Partitioning Stage IZ, % FCPZ, % SLZ, %

350 ◦C for 600 s 4 71 25
500 ◦C for 20 s 2 89 9

500 ◦C for 100 s 2 81 17

The general view of the steel sample partitioned at 500 ◦C for 20 s (Figure 10b)
suggests that crack initiation occurs in the center of the V-notch tip and subsequent crack
propagation occurs in a ductile manner from the center of the V-notch tip to its edges.
This fractography observation is consistent with the onset of ductile crack growth at the
DYS < YS. The transition from ductile crack propagation in a transgranular manner to
quasi-brittle crack propagation in a mixed transgranular and intergranular manner is
observed in the FCPZ at a short distance from the V-notch flaw to the bottom of the CVN
specimen (Figure 10(b2)). However, crack propagation at the lateral edges occurs in a fully
ductile manner (Figure 10(b3)), which provides a remarkable Ep value (Table 7) correlated
with the significant fraction of SLZ (Table 8) located mainly at the lateral edges (Figure 10b).
It is worth noting that the bottom SLZ has negligible width (Figure 10b) and is characterized
by coarse and shallow dimples.

In the steel after partitioning at 500 ◦C for 100 s, stable crack propagation leads to
the appearance of quasi-cleavage fracture areas. In the FCPZ, mixed quasi-cleavage and
dimple fracture is observed (Figure 10(c2)). The coherent cleavage length is often restricted
by the block boundaries. At the lateral edges, dimple fracture takes place (Figure 10(c3)).
No difference between fracture surfaces at the bottom of the CVN specimen and in the
FCPZ could be clearly distinguished. The portions of SLZ (Table 8) and degree of ductile
fracture (Figure 10(c–c3)) increase with increasing duration of the partitioning stage at
500 ◦C.
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4. Discussion
4.1. Effect of Q&P Processing on the Microstructure

The partitioning at temperatures of 350 and 500 ◦C leads to two important distinct
features of the microstructure that strongly affect the mechanical properties and fracture
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behavior. First, the volume fraction of the transition carbides in the primary martensite
after partitioning at 350 ◦C is significantly higher than that after partitioning at 500 ◦C.
These data support the presumption of J.D.Speer et al. [3,64] that the precipitation of
transition carbides is facilitated at low temperatures, leading to strong carbon depletion
from the martensitic matrix. At relatively high partitioning temperatures, the transition
carbides precipitated at the quenching temperature tend to dissolve due to heating above
the transition carbide solvus [3,65]. In addition, cementite precipitation takes place at
T ≥ 474 ◦C in this steel [4] and transition carbides dissolve under tempering/partitioning
at 500 ◦C in accordance with the Gibbs–Thomson effect, providing a source of carbon for
the formation of the more stable cementite [49]. The volume fraction of the transition
carbides is small and the martensitic matrix remains carbon-enriched after partitioning at
500 ◦C for 20 s. After partitioning at 500 ◦C for 100 s, the volume fraction of cementite is
negligible in comparison with conventional tempering at this temperature [4]. However,
an increase in the partitioning time promotes the carbon depletion from the martensitic
matrix for cementite formation.

Second, the carbon content in RA after partitioning at 350 ◦C is higher than that
after partitioning at 500 ◦C and this difference is critical for the susceptibility of RA to
transformation to strain-induced martensite under static and dynamic test conditions.
J. D. Speer et al. showed [3,64] that carbon enrichment of RA during partitioning is
strongly dependent on the volume fraction of martensite/ferrite. The volume fraction of
martensite after quenching is similar for all partitioning conditions. However, the bainitic
transformation at the partitioning stage at 350 ◦C is accompanied by an increase in the
volume fraction of martensite/bainitic ferrite providing the enrichment of RA by carbon up
to 1.3 wt.%. This RA is relatively stable against the transformation to secondary martensite
under final cooling and strain-induced martensite under tension and impact tests. In
contrast, the bainitic transformation is avoided during partitioning at 500 ◦C and a high
portion of RA remains. The carbon enrichment is limited to ~1.0 wt.% and this RA is highly
susceptible to transformation to the secondary martensite and strain-induced martensite.

4.2. Structure and Mechanical Properties of Q&P Steels

Inspection of the experimental results shows that the relationship between key me-
chanical properties such as strength, ductility and fracture toughness is very complicated.
In contrast with other types of steels [38], the studied Q&P steel could be strong and tough,
concurrently, after partitioning at 350 ◦C and both highly ductile and highly brittle after
partitioning at 500 ◦C for 20 s. The unusual relationships between strength, ductility and
fracture toughness are associated with the complex microstructure that evolved after Q&P
processing and the fact that different structural constituents control different mechanical
properties. The highest YS is attained if Q&P processing provides the martensitic matrix
with a large amount of transition carbides and film-like RA with nanoscale thickness and
enriched by carbon. The YS of the martensitic matrix [54] and the YS of RA [11] have to be
essentially the same. After partitioning at 350 ◦C, this combination of structural constituents
evolved and the Q&P steel exhibits an unusual combination of a YS of 1310 MPa and a
CVN impact energy of 58 J.

YS is mainly controlled by the strength of the martensitic matrix. Dense precipitation
of transition carbides provides the highest strength of primary martensite [4,37,53]. Con-
currently, the depletion of carbon from the martensitic matrix highly increases the γs value
in Equation (13) and, therefore, the fracture stress, σF [37,65]. A three-fold increase in the
CVN impact energy of the present steel subjected to partitioning at 350 ◦C in comparison
with this steel tempered at 280 ◦C [4] could be attributed to the higher degree of carbon
depletion from the martensitic matrix to RA, which increases the γs value in Equation (13).
In addition, the volume fraction of RA after Q&P is more than 10 times higher than that
in the quenched and tempered steel [4]. Film-like RA is located at a major portion of the
block boundaries and these boundaries act as obstacles to cleavage propagation [37]. A
strong refinement of the effective grain size for the fracture, de f f , takes place due to the
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decrease in the coherent cleavage length from the de f f ≈ Dpacket in tempered steel [4] to the
de f f ≈ Dblock in the steel after partitioning at 350 ◦C. As a result, DYS becomes higher than
YS and ductile fracture provides a significant contribution to the fracture process. It is worth
noting that the observed increase in the elongation-to-failure and PSE in comparison with
this steel tempered at 280 ◦C [4] could be attributed to the transformation of blocky-type
RA to strain-induced martensite. The observed increment in ductility and the PSE of ~60%
in comparison with the tempered steel [4] is attributed to the extension of the uniform
elongation stage.

The transformation of RA to strain-induced martensite under tension in the steel
after partitioning at 500 ◦C unambiguously showed that film-like RA is not susceptible
to martensite transformation if carbon enrichment provides a low Ms temperature. This
is an important complement to the findings of a previous study [30]. The steel sample
after partitioning at 500 ◦C for 20 s exhibits the transformation-induced plasticity (TRIP)
effect, which increases both the strength and ductility [16,66]. The formation of strain-
induced martensite raises the strain-hardening rate under tension, which highly increases
the uniform elongation since a high value of dσ/dε leads to a sharp increase in the flow
stress within the necked region, providing resistance to further strain localization. As a
result, a high elongation-to-failure is achieved. Concurrently, a high UTS is attained due
to extensive strain-hardening despite a relatively low YS. The “composite” law based on
the linear additive strengthening contributions is commonly used to estimate the YS of the
steels with multiphase microstructures [11]:

YS = ∑n
i=1 σi

0.2 f i (14)

Thus, the decreased YS in the steel after partitioning at 500 ◦C can be attributed both
to the low precipitation hardening in the primary martensite due to a decreased fraction
of transition carbides and to the low strength of RA due to the relatively small content of
carbon, which is an effective element for solid solution strengthening [11]. Nevertheless,
high values of the PSE could be attained in Q&P steel if the TRIP effect takes place. It is
worth noting that the fracture mechanisms are similar in all tensioned specimens, and thus,
have no significant effect on the elongation-to-failure.

It is obvious that the fracture toughness is controlled by the carbon content of the
martensitic matrix. After partitioning at 500 ◦C for 20 s, the depletion of carbon from
martensite is insignificant in comparison with that after tempering at this temperature
and the CVN impact energy is smaller by a factor of ~2. A low fracture toughness is
observed despite the fact that YS is not high. Increasing the duration of the partitioning
stage promotes the depletion of carbon from the martensite, which increases the fracture
toughness. The CVN impact energy becomes even higher than that after conventional
tempering at this temperature due to the smaller effective grain size for fracture [37]. Thus,
no correlation between strength, ductility and fracture toughness is observed in Q&P steels
if these materials have distinct structural components.

5. Conclusions

A 0.33% C-1.85% Si-1.44% Mn-0.58 % Cr steel was processed by a two-step Q&P
treatment including quenching at 210 ◦C for 30 s followed by partitioning at 350 ◦C and
500 ◦C and quenching to room temperature.

1. Partitioning at a temperature of 350 ◦C for 600 s produces a martensitic matrix with a
large amount of η–Fe2C carbides, carbide-free bainitic ferrite and retained austenite
with a carbon content of ~1.3 wt.%. The volume fraction of secondary martensite in
the steel in this condition is negligible. A major portion of retained austenite exhibits
a film-like shape and is unsusceptible to transformation to strain-induced martensite.
The steel in this condition is strong (yield strength is 1310 MPa) and tough (the CVN
impact energy is 58 J), but ductility (10%) and the product of strength and elongation
(15.6 GPa·%) are not high.
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2. Partitioning at a temperature of 500 ◦C for 20 s produces a martensitic matrix with
a low density of η–Fe2C carbides, secondary untempered martensite and retained
austenite with a carbon content of ~1.0 wt.%. This retained austenite is susceptible to
partial transformation to strain-induced martensite during tensile testing. The steel in
this condition is highly ductile with an elongation-to-failure of 18% and the product
of strength and elongation of 25.8 GPa·%, but brittle (the CVN impact energy is 18 J)
despite a relatively low yield strength (1180 MPa).

3. Increasing the duration of the partitioning stage at 500 ◦C up to 100 s leads to the
precipitation of cementite, which decreases the yield strength (950 MPa), ductility
(14%) and product of strength and elongation (20.8 GPa·%) but increases the fracture
toughness (the CVN impact energy is 38 J).

4. There is no correlation between strength, ductility and fracture toughness in Q&P
steels if the processing produces structures distinct in their structural components.
The martensitic matrix and a dispersion of carbides control the strength and fracture
toughness, while ductility and the product of strength and elongation are dependent
on the volume fraction and morphology of the retained austenite and its susceptibility
to transformation to strain-induced martensite.

5. An enhanced balance between strength, ductility and impact toughness in 0.33 wt.%
C Q&P steel can be achieved by forming a microstructure containing a significant
fraction of RA with optimal stability and a low fraction of the brittle secondary
martensite. This balance could be tailored by increasing the partitioning temperature
to avoid the bainitic transformation and by controlling the isothermal holding time at
the partitioning stage to reduce the fraction of secondary martensite.
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