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Abstract: The development of automated segmentation and quantitative characterization of micro-
textured regions (MTRs) from the complex heterogeneous microstructures is urgently needed, since
MTRs have been proven to be the critical issue that dominates the dwell-fatigue performance of
aerospace components. In addition, MTRs in Ti alloys have similarities to microstructures encoun-
tered in other materials, including minerals and biomaterials. Meanwhile, machine learning (ML)
offers new opportunities. This paper addresses segmentation and quantitative characterization of
MTRs, where an ML approach, the Gaussian mixture models (GMMs) coupled with density-based
spatial clustering of applications with noise (DBSCAN) clustering algorithms, was employed in order
to process the orientation data acquired via EBSD in the Matlab environment. Pixels with orientation
information acquired through electron backscatter diffraction (EBSD) are divided and colored into
several “classes” (MTRs) within the defined c-axis misorientations (i.e., 25°, 20°, 15°, 10°, and 5°),
the precision and efficacy of which are verified by the morphology and pole figure of the segmented
MTR. An appropriate range of c-axis misorientations for MTR segmentation was derived, i.e., 15~20°.
The contribution of this innovative technique is compared with previous studies. At the same time,
the MTRs were statistically characterized in the global region.
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1. Introduction

A heterogeneous microstructure that consists of microtextured regions (MTRs) in near-
o titanium alloys is hard to characterize, but microtextured regions are believed to be the
prominent issue determining the dwell-fatigue performance of aerospace components [1-3].
MTRs are characterized as regions where the majority of « particles share similar crys-
tallographic orientations, facilitating the nucleation and propagation of dwell-fatigue
cracks [4-6]. Accordingly, it is essential to correlate the MTRs’ factors (i.e., size, mor-
phology, orientation, etc.) with the dwell-fatigue performance [7]. Therefore, the precise
quantitative characterization of MTRs should be developed urgently and has been the
primary focus of existing research.

A general and global method for the characterization of microstructures containing
MTRs was a rough approach to analyzing MTRs which was applied in the early decades
of this area of research [8,9]. This process yields statistical results on the crystallographic
orientation for the « phase over the global region, which, however, cannot effectively
feature the local MTRs. Therefore, the method of rectangulating the regions with MTRs
on the global region was developed to describe and analyze MTRs more precisely [10-12].
Germain et al. investigated the formation mechanism of macrozones (i.e., MTRs framed
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by rectangles) in near-« titanium alloys during the manufacturing process, and various
band-like macrozones with different orientations were observed [11]. The developed
method was able to characterize the orientation of MTRs, but it cannot identify information
about the morphology and size of MTRs. Then, a more precise and detailed solution to
segmenting MTRs from the obtained electron backscatter diffraction (EBSD) data was
devised, based on inverse pole figure maps [13-15]. These studies lacked a clear basis for
segmenting MTRs and relied on manual selection of MTRs, which cannot characterize MTRs
quantitatively, automatically, and precisely. Additionally, the latest studies have introduced
an essential criteria for defining MTRs, where the « particles in an MTR should have their
c-axis orientation alignment within a specific angle of ~25°, i.e., the c-axis misorientations
of the o particles in an MTR are less than ~25° [16,17]. However, the suitable range of
c-axis misorientations for MTR segmentation has not been derived. Machine learning
(ML) has demonstrated its capability for heterogeneous image segmentation, but it has
yet to make a breakthrough in materials science [18-21]. Unsupervised ML applied in
heterogeneous image segmentation is usually more scalable and adaptable, i.e., Gaussian
mixture models (GMMs) coupled with density-based spatial clustering of applications with
noise (DBSCAN) clustering algorithms are the common methods that can be adapted and
optimized according to defined materialogical criteria (i.e., c-axis misorientations in this
case) [22-24].

The present study addresses the segmentation and characterization of MTRs in a near-
o titanium alloy, where Ti6242 was employed as the object, based on the ML approach using
the updated crystallographic criteria cited above. The ML approach, the GMMs coupled
with DBSCAN, was employed to process the orientation data acquired by EBSD in a Matlab
environment. The effects of segmentation at different c-axis misorientations (i.e., 25°, 20°,
15°,10°, and 5°) were compared, and an appropriate range of c-axis misorientations for
MTR segmentation was determined. The precision of the segmentation technique using the
ML approach proposed here is compared with previous studies that segmented manually.
Finally, the MTRs were statistically characterized in the global region (i.e., 3 mm X 3 mm).

2. Experiments and Methods

The as-received Ti6242 (Ti-6.02A1-2.115n-4.14Zr-2.03Mo-0.120-0.08Si-0.02Fe) was sam-
pled at the center of a billet. The sampled region was mechanically polished and then
electro-polished in a solution (HClO4: C4H9OH: CH30OH = 3:15:32 in volume). EBSD
analysis was performed on a section parallel to the rolling direction using the EDAX-TSL,
USA, Oxford Nordlys X-max and Oxford Instruments HKL A /S 2007. The step size for
the EBSD scan was 2 pum, and the scan performed at a 20 kV accelerating voltage with an
inclination angle of 70 degrees.

Then, the data acquired through EBSD were processed for MTR segmentation in the
Matlab environment with Matlab software version R2020b, as shown in Figure 1, and the
details are described as follows: The crystallographic orientation of each pixel is specified
by three Euler Bunge angles [¢1, ®, ¢2]. The third Euler, ¢, relates only to orientation
about the hexagonal crystal c-axis, the direction of which is determined from Euler angles
@1 and @, and the corresponding rotation matrix g relates the crystal reference orientation
to the specimen coordinate system:

cosp; —singicos®  sin@qsin®
g=|sing; cospicos® —cosg@qsind 1)
0 sin ® cos P
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Figure 1. Workflow of the data processing for MTR segmentation.
Then, the input c-axis orientation x can be characterized as:
x=gCo 2)

where Cy is [0, 0, 1}T, which is parallel to the z-axis of the specimen coordinate system.
The x is a standard unit vector typically consistent with a Gaussian mixture distribution. In
MTR segmentation, x is employed as the observation vector. The segmented region can be
viewed as a single Gaussian model of the same form, with each model being independent
of the others. The entire global region is a GMM fused by multiple single Gaussian models
of varying weight.

K

P(x|wye, i } ) = Y wif(xlpe, ) y) ®)

k=1
where K denotes the number of GMM components and wy is the mixture weight, which
indicates the proportion of the single Gaussian model in the mixture model. f(x|py, Y1)
is the distribution of the Gaussian component k, whose function expression is shown in

Formula (4):
1

(277)%| x|

where py is the mean vector, Yy is the covariance matrix, and Y ~! is the inverse matrix of
Y k- Thus, the GMM is constructed. Thereafter, the DBSCAN clustering algorithm is used
for classification under the defined threshold (i.e., c-axis misorientation here), initializing
the GMM, and determining the value of K in the GMM as well. The Euclidean distance in
DBSCAN between any two neighboring vectors, x; and x;, is given by Formula (5). When
defining various c-axis misorientations 6 (i.e., 25°, 20°, 15°, 10°, and 5°) and the correspond-

o= 3 (=) T M (x - ) @)

fxlp ) ) =
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ing critical Euclidean distance Dy (shown in Formula (6)), the number of components in
the GMM (K, i.e., the number of “classes”) can be determined.

3 2 1/2
D(xi,xj) = <Z xi(”) —xj(”) ) (5)

n=1

Dy = 2sin g 6)

The expectation maximization (EM) algorithm is then used to maximize the likelihood
function L(wy, pk, Yk ) and estimate the other parameters (i.e., wy, pg, and ) ) in the GMM
to obtain the probability that each pixel belongs to each “class”. Eventually, the category
with the highest probability is chosen to be the “class” to which the pixel belongs. This
process is repeated until all pixels are classified into various “classes”. In other words,
pixels in a featured zone with c-axis misorientations within the defined 6 were classified as
an MTR. Each MTR was then colored and visualized to be distinguished from the others.
Consequently, the MTRs were segmented and characterized. The likelihood function is
shown in Formula (7).

L (wk/ Pk Zk) = 1nlf[l p <x|wk/.’"kr Zk) @)

3. Results and Discussion
3.1. MTR Segmentation

Figure 2 shows the colored and segmented MTRs of the Ti6242 sample according
to the defined c-axis misorientations using the ML approach, where Figure 2a shows the
IPF map of MTRs obtained via EBSD and Figure 2b—f depict the segmented MTRs based
on the GMMs coupled with DBSCAN within the defined c-axis misorientation, i.e., 25°,
20°, 15°, 10°, and 5°. Figure 2a displays the sampled region with significant band-like
MTRs along the RD direction, which are, however, difficult to differentiate and characterize.
Figure 2b—f show the segmentation and coloring results of Ti6242 MTRs according to the
defined c-axis misorientation. From the segmented results, the morphology of MTRs within
the c-axis misorientation of 25° is rough (i.e., Figure 2b); it is too refined within 10° and
5° (i.e., Figure 2e,f), however. The morphology of segmented MTRs within the c-axis
misorientations of 20° and 15° shown in Figure 2¢,d is appropriate compared with the
morphology in Figure 2a. To further compare and quantify the effect of segmentation, as
well as to get an effective range of c-axis misorientations for MTR segmentation, a small
featured zone, framed by the blue dotted line shown in Figure 3a, was measured in detail.

Figure 3 measures a representative MTR segmented under various c-axis misorien-
tations, where Figure 3a,b show the morphology of the segmented MTR, and Figure 3c
presents the pole figures. The results show that when the c-axis misorientation decreases
from 25° to 5°, the length (of the long axis) of the MTR decreases from ~1800 pm to ~400 pm.
The strength of the microtexture, on the other hand, increases from ~20.2 to ~53.7. As
one may have noticed, 15° is a threshold, beyond which (i.e., at 15° or 20°) the length
of the MTR and microtexture strength start to vary gently with c-axis misorientations.
Therefore, 15~20° could be employed as an appropriate range of c-axis misorientations for
MTR segmentation.
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Figure 2. IPF map of EBSD zone (a), segmentation and coloring results of Ti6242 MTRs according to
the defined c-axis misorientations: 25° (b), 20° (c), 15° (d), 10° (e), and 5° (f). The blue dotted frame
is a feature zone, shown in detail in Figure 3.

The contribution of the segmentation technique using the ML approach here is com-
pared with previous studies, which segmented manually [11,14]. In this study, MTRs
were segmented according to the c-axis misorientation (i.e., 15° in Figure 4), where the ML
approach, the GMMs coupled with DBSCAN, was employed to process the orientation
data acquired via EBSD in the Matlab environment. In terms of the segmentation effect, the
MTRs segmented using the ML approach (this work) has a more precise morphology and a
clearer boundary. As reflected in the pole figure, a single, strong texture peak of the MTR is
obtained in this work, compared with the multiple peaks of various intensities obtained in
previous studies [11,14], which conducted the segmentation manually. In summary, the
segmentation technique using the ML approach here is more effective.

3.2. Characterization of MTRs

After segmenting the MTRs, statistical characterization of the MTRs’ features (i.e.,
length, high aspect ratio, and orientation) in Ti6242 was conducted, which will provide
essential data when investigating dwell-fatigue [4-7]. Figure 5a depicts the segmentation of
MTRs from the global region, and Figure 5¢ depicts MTRs with long-axis lengths exceeding
200 um (approximately 10 average alpha particles) being separated. Figure 5d,e show the
statistical results of the length and high aspect ratio of the MTRs presented in Figure 5c,
where the mean value of length is 581.9 pm and the mean value of the high aspect ratio is 2.8.
Furthermore, the c-axis orientation of each MTR is determined by solving the mean vector
#x in the GMM of the ML approach, as shown in Figure 5c. Additionally, the statistical
distribution of angles of the MTRs’ c-axis to RD is described (Figure 5f).
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Figure 3. A representative MTR segmented under different c-axis misorientations: segmented MTR
(a), the MTR in IPF (b), and pole figures (c).
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Figure 4. Comparison of the effectiveness and precision of MTR characterization between previous
studies and this work [11,14]. The macrozone IV is an MTR framed with rectangles.
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Figure 5. Statistical characterization of MTRs: segmentation and coloring of “classes” (a), non-MTR
regions (b), schematic of orientation in each MTR (c), statistics and fitting of length (d) and high
aspect ratio (e) of MTRs, and distribution of angles of MTRs’ c-axis to RD (f). The grey hexagonal
prism in (c) represents the orientation of each MTR, and W1 and L1 represent the width and length of
the MTR, respectively.

4. Conclusions

This work proposes a novel automatic approach for segmenting MTRs in a Ti6242
billet based on c-axis misorientation, where an ML approach, the GMMs coupled with
DBSCAN, was employed to process the orientation data acquired via EBSD in the Matlab
environment. Millions of pixels with orientation information are divided and colored into
several “classes” within the defined c-axis misorientation (i.e., 25°, 20°, 15°, 10°, and 5°),
the precision and efficacy of which are verified by the morphology and pole figure of the
segmented MTR. An appropriate range of c-axis misorientations for MTR segmentation
was derived, i.e., 15~20°. Compared with the approaches employed in previous studies, the
segmentation technique using the ML approach proposed here is more effective. In terms
of segmentation effect, the MTR segmented using this ML approach has a more precise
morphology and a clearer boundary. As shown in the pole figure, a single, strong texture
peak of an MTR is obtained in this work, compared with the multiple peaks of various
intensities obtained in previous studies. At the same time, the MTRs were statistically
characterized in the global region to provide essential data for investigating dwell-fatigue.
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