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Abstract: Kiwi is one of the best natural sources of vitamin C and has wide applications. During
October–November 2021, small brown spots were examined on the Kiwi leaves. The diseased leaf
samples were collected and placed on potato dextrose agar nutrient media for diagnosis. Morpho-
logical, anatomical, and molecular studies revealed this disease-causing agent to be Rhizopus oryzae.
Molecular characterizations of the isolated pathogen were performed by using actin translation elon-
gation factor (EF-1α) and ribosomal deoxyribose nucleotide inter transcribed sequence (rDNA ITS
ITS1/ITS4) and elongation factors (EFl-F/EFl-R) primers. A BLAST study of the resultant ITS1/ITS4
sequence showed > 99% resemblance with R. oryzae (MT603964.1), while the EF-1α sequence re-
vealed 100% similarity with translation elongation factor-1α gene of R. oryzae (MK510718.1). The
obtained ITS1/ITS4 sequence was submitted to NCBI (MW603842.1). Koch’s postulates established
the pathogenicity of isolated R. oryzae and proved it to be the brown spot pathogen of Kiwi. For
the environmentally-friendly management of Kiwi leaf spot, maize biochar-Zinc Oxide (MB-ZnO)
nanocomposite was used. The prepared nanocomposite was characterized by Fourier transform
infrared (FTIR) spectroscopy, thermo gravitational analysis (TGA), X-ray diffraction (XRD) analysis,
scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) analysis. After successful
preparation, MB-ZnO was assessed for its possible antifungal potential against R. oryzae. MB-ZnO
displayed substantial growth inhibition, and the highest growth inhibition (79%) was observed at a
19 mg/mL dose rate of nanoparticles. These excellent findings propose that Ball-milled synthesis is a
fast, economical, and environmentally friendly method for nanocomposite in the near future. The
nanocomposite is used as a nominal substitute for chemical fungicides.

Keywords: Rhizopus oryzae; Kiwi; ITS region; EF-1α gene; MB-ZnO

1. Introduction

Kiwi (Actinidia chinensis) is a perennial vine, and it is usually known by several other
names, such as Chinese gooseberry, monkey peach, and sheep peach. Kiwi contains more
“Vitamin C” than citrus and is delightful in taste. In the 1950s, Kiwi was first introduced
in New Zealand [1]. In recent times, Italy has been the leading Kiwi-producing country
(415,877 tons yield); second on the list is New Zealand (378,500 tons production) [2]. Other
countries, such as Japan, Iran, Canada, France, Chile, and the USA also produce Kiwis in a
great amount. Because of its distinct flavor and high nutritional value, efforts are being
made to increase Kiwi production and its utilization in various traditional medicines [3,4].
Its different plant parts, including the root, stem, and leaves contain different health-friendly
bioactive compounds [5]. More than 70 species of Kiwi have been grown in the world. Kiwi
is considered a tropical plant as it has no tolerance to lower than 10 ◦C temperature [5].
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Due to its potential role in human health, the biochemical properties of Kiwi have been
extensively studied [6]. Studies reveal that A. deliciosa contains polyphenols, triterpenoids,
polysaccharides, amino acids, vitamins, carotenoids, essential oils, and microelements [7]. It
also contains a wide range of biologically active compounds that have been reported to have
a curative part in tumors, inflammation, immunity, diabetes, and different heart diseases [8].
Additionally, the Kiwi can be used in the green synthesis of nanoparticles [9,10].

This study has characterized Rhizopus oryzae, which is a well-known plant pathogen.
Over several decades, the classification and evolutionary study of the genus Rhizopus
have been described. Based on the morphological features, Schipper and many others
classified Rhizopus in detail [11,12]. Few scientists have also classified them based on
their phylogenetic analyses [13]. The genus Rhizopus has been re-classified into 10 species
and 7 varieties [14]. Over time, the study of phylogenetic relationships got better, and
scientists started analyzing the phylogeny of other genes, such as actin (act1), translation
elongation factor 1 α (EF-1α), and rDNA ITS [15]. R. oryzae is cosmopolitan in nature, and
few studies have described it as a synonym of R. arrhizus [11]. R. oryzae belongs to the
phylum Zygomycetes and causes significant yield losses [16]. It has been reported to cause
infections in economically important crops, including Oryza sativa [17], Citrus medica [18],
Ipomoea batatas [19], Cascabela thevetia [20], and Brassica campestris [21]. R. oryzae exists
worldwide and appears in the form of white to gray mycelia, with several spores generating
sporangia [22].

Plants are the main source of food, medicines, fiber, fodder, and other useful products
for human beings. Plants are susceptible to various plant pathogens; among these, the
fungus is the most common and damaging pathogen. Different kinds of carbonates,
bicarbonates, sorbates, chelates, and silicates are used to treat fungal diseases [23]. These
chemical fungicides are expensive and dangerously cause soil and water environmental
pollution because of their toxic and non-biodegradable nature [24].

With the advancement in the field of nanotechnology, scientists have started the uti-
lization of various plant products to synthesize nanocomposites. Nanocomposites are
cost-effective, unharmful, and exhibit great antifungal properties. Plant-based nanocom-
posite has revealed better biocompatibility for biomedical applications in comparison to
conventional chemical approaches [25,26]. Nowadays, further emphasis is being strained
on raising efficient procedures to prepare nanocomposites [27]. Currently, the worth of
bio-polymer-combined with ZnO nanocomposites has gained interest in the departments
of biomedical, agriculture, and therapeutics due to their reliable and biodegradable proper-
ties [25,26]. For the synthesis of the nanocomposite, the ball-milling procedure is preferred
over other techniques due to its solvent-lacking and environment-friendly, excellent yield,
and economical [28]. The ball-milling procedure alters pure biochar by decreasing the
particle size, increasing the surface area, enhancing the biochar functions, and creating
reactive sites on the surface of biochar [29–31].

The present research has aimed to identify the pathogen of the leaf spot of Kiwi. For
environment-friendly control of this disease, MB-ZnO nanocomposite has been synthesized
through the ball-milled method and applied. Before antifungal activity analysis, synthesized
nanoparticles have been characterized using ultra visible (UV) spectroscopy, Fourier trans-
forms infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermo-gravitational analysis
(TGA), scanning electron microscopy (SEM), and energy dispersive X-Ray (EDX) examination.

2. Materials and Methods
2.1. Field Observation

During October–November 2021, small brown spots were examined on the Kiwi leaves
in the orchards of Islamabad’s capital territory (33.6844◦ N, 73.0479◦ E) and neighboring
areas (Figure 1). The samples of affected leaves were collected, labeled, and packed indi-
vidually in sterile polythene bags and carried to the Molecular Plant Pathology laboratory
for more assessment.



Crystals 2023, 13, 98 3 of 14

1 

 

 
Figure 1. Sample collection area.

2.2. Isolation of Disease-Causing Agent from Infected Leaves

Surfaces of collected diseased leaves were treated with 75% ethanol and rinsed three
times with autoclaved distilled H2O. From each sterilized leaf, minor diseased portions
(<1 cm2) were excised and located on petri plates possessing potato dextrose agar (PDA).
The petri plates were placed in an incubator at 28 ◦C for three days. After visible mycelial
growth, single spore cultures were produced on PDA and incubated again. After one week
of incubation, protrusive mycelial growth was examined and photographed from both the
front and back sides of the petri plates.

2.3. Microscopic Recognition

For light microscopy, 1 to 2 droplets of lactophenol blue were positioned on the slide
and from the edges of the fungus growth medium. Mycelial fragments were transferred to
the slide. Mycelia were torn apart swiftly, and a drop of lactic acid was positioned on the
slide. The coverslip was placed cautiously to evade bubbles, and the slide was examined
with a microscope with a magnification of 40X.

2.4. Molecular Identification

Since all the isolates exhibited identical morphology, only a single isolate was arbi-
trarily selected and utilized for further pathogenicity tests and molecular identification.
For genomic analysis, DNA was isolated using the standard CTAB method [32]. Concisely,
for DNA isolation, 100 mM Tris-HCl pH 8, 2% CTAB, 1.4 M NaCl, 20 mM EDTA, and
1% PVP was applied. Forward ITS1 primer (FTCCGTAGGTGAACCTGCGG) and reverse
ITS4 primer (TCCTCCGCTTATTGATATGC) were used to amplify partial ITS regions [33].
Briefly, the reactions were performed in 0.2-mL tubes in 100 µL reaction volume, comprising
the following constituents: 10 mM Tris-HCl, 200 µM dNTP, 2.5 mM MgCl2, 0.02 U/µL Taq
DNA polymerase, 1 pmol/µL of each oligonucleotide primer, and 1 ng/µL genomic DNA
template. Moreover, forward EF1 primer (GTTGTCATCGGTCACGTCGATTC) and reverse
EF2 primer (ATGACACCRACAGCGACGGTTTG) were used to amplify the elongation
factor 1-alpha (EF-1α) gene sequence. A polymerase chain reaction (PCR) was executed in a
volume of 25 µL comprised of 10 µL of master mix, 1 µL of DNA template, 10 mM of each
forward and reverse primer, and 13 µL of sterilized distilled water. The reaction was imple-
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mented at 94 ◦C for 3 min, with a total of 35 cycles of 94 ◦C for 30 s, 56 ◦C for 30 s, 72 ◦C
for 1 min, and a final step of 72 ◦C for 7 min. Amplified PCR resultant was sequenced and
subjected to a BLAST study in the NCBI database (https://blast.ncbi.nlm.nih.gov/Blast.cgi
accessed on 15 December 2022).

2.5. Phylogenetic Analysis through MEGA 7.0

For the construction of the phylogenetic tree, nucleotide sequences were aligned
using MEGA (version 7.0) [34]. The phylogenetic tree was constructed by the maximum
composite procedure using 1000 bootstrap replications.

2.6. Pathogenicity Test

Koch’s postulates were followed to validate the pathogenicity of the isolated pathogen.
Twenty healthy leaves of Kiwi were detached and surface sterilized. Ten leaves were in-
jected using 10 µL conidial suspension (106 conidia mL−1) of isolated fungus after wound-
ing. The other ten leaves were injected with autoclaved distilled water and designated as
the control treatment. All leaves were incubated at 25–28 ◦C and 75–80% relative humidity.
After the development of lesions, the pathogen was again isolated on PDA, the and fungal
morphology was studied.

2.7. Preparation of MB-ZnO Nanocomposite

The chemicals utilized in this study (ZnO, HCl, and NaOH) were bought commercially.
All the chemical solutions used in the experiment were prepared in distilled water. Maize
straw was obtained from the field, chopped to 1–1.5 mm size, and used for the synthesis of
biochar, following a standard protocol [35]. Briefly, chopped maize straw was shade dried,
pieced, sieved, and loaded into 10 g crucibles for its placement in a vacuum furnace. The
powder was heated up at 600 ◦C for 6 h in an anaerobic environment. The obtained biochar
was passed through a sieve and used to form the nanocomposite. Biochar nanocomposite
(MB-ZnO) was synthesized by mixing obtained biochar with ZnO in a ball-milling machine.
Precisely, 6 g of each ZnO and MB (50:50 by weight) was transferred to a container of
500 mL containing agate spheres of 180 g (diameter of 6 mm) and located in a ball-milling
machine. The ratio of balls to MB and ZnO was 15:1 (by weight). The mechanical milling
was done for 72 h in a moisture-free environment.

2.8. Characterization of Nanocomposite

A scanning electron microscope (SEM, JEOLJSM 25910) was used to investigate the
surface characteristics of the MB-ZnO. The elemental study was performed by dispersive
energy-dispersive X-ray spectroscopy (EDX, UKINCA 200). A spectrophotometer (SPEC-
TRUM, 65) was utilized to get the FT-IR spectra. The crystallinity of the nanocomposite
was studied at 0–80◦ with the help of X-ray diffraction (XRD, Bruker, D8, Billerica, Mas-
sachusetts, United States). The optical properties of the nanocomposite were examined
from 200 to 800 nm with the help of UV-Vis diffused reflectance spectroscopy.

2.9. In Vitro Antifungal Potential of MB-ZnO

Following the poisoned food method, the antifungal potential of the MB-ZnO nanocom-
posite was deceived. For the determination of the antifungal ability of MB-ZnO, PDA
culture media was amended with different concentrations 6 mg/mL, 12 mg/mL, and
19 mg/mL) of the biochar-ZnO nanocomposite. With the help of a Cork borer, a 4 mm
inoculum disc of R. oryzae was placed in the middle of the petri plates. PDA with no
nanocomposite worked as the control. The injected petri dishes were placed in an incubator
for one week at 26 ± 1 ◦C, and the growth inhibition was determined using the formula
mentioned below.

Growth Inhibition % = (C − T)/C × 100 (1)

https://blast.ncbi.nlm.nih.gov/Blast.cgi


Crystals 2023, 13, 98 5 of 14

where C shows the average mycelial growth in the control petri plates, and T indicates
the average mycelial growth in the MB-ZnO-treated petri plates. The experiment was
performed in triplicate.

3. Results and Discussion
3.1. Isolation and Identification of the Disease-Causing Pathogen

Brown spots were observed irregularly on the Kiwi leaves (Figure 2A). The size and
quantity of the irregular spots progressively increased and turned dark brown. The disease-
causing pathogen was successfully isolated from these leaves, with 84% isolation frequency.
After 5–6 days of incubation, whitish mycelia were observed, which turned grayish black
and appeared in net-like structures (Figure 2B). On the hind side of the petri dish, the
colonies were dark brown in appearance (Figure 2C). The appearance, color, and growth
configuration were identical to earlier reported characteristics of R. oryzae [36]. Microscopic
observations also provided deep insight into the identification of the isolated pathogen.
Sporangiophores were generally straight, and they were present in solitary as well as cluster
form. They were brownish in color; their lengths ranged between 220 and 1100 µm, and
the width range was between 7 and 12 µm (Figure 2D). The color of sporangia was dark
brown, and they were globose to sub-globose in shape with a diameter from 70 to 170 µm
(Figure 2D). Sporangiospores were brownish in color and were angular, un-septate, and/or
scarcely septate (Figure 2D). These microscopic features confirmed the studied pathogen as
R. oryzae [37].
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Figure 2. Leaf spots were observed on the leaves of Kiwi (A). The disease-causing fungus was grown
in petri dishes and examined from the front side (B) and back side (C). Microscopic examination
was done at 40× magnification (D). Healthy leaves were inoculated, and disease symptoms were
examined after 3 days (E) and 5 days (F) of inoculation. The fungus was re-isolated and examined
from the front (G) and back (H) sides of the petri dishes.
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3.2. Pathogenicity Test

Inoculated healthy fruit exhibited grayish lesions after 3 days of inoculation (Figure 2E),
which turned dark after 5 days (Figure 2F). On the control leaves, no lesion was developed,
and they remained healthy. From these lesions, the pathogen (R. oryzae) was re-isolated on
the PDA and showed similar mycelial morphology (Figure 2G,H). These findings confirmed
the association of this fungus in the leaf spot of Kiwi.

3.3. Molecular Identification and Phylogenetic Analysis

To confirm the identity of R. oryzae, phylogenetic analysis of the representative isolates
was carried out using genetic regions, ITS, and EF-1α. BLAST analysis of the resultant ITS1-
ITS4 sequence showed > 99% resemblance with R. oryzae strain RAA internal transcribed
spacer 1, partial sequence; 5.8S ribosomal RNA gene and internal transcribed spacer 2,
complete sequence; and large subunit ribosomal RNA gene, partial sequence (MT603964.1),
while EF-lα sequence revealed 100% similarity with R. oryzae translation elongation factor-
1α gene (MK510718.1). The obtained ITS1-ITS4 sequence of R. oryzae was submitted to
NCBI (MW603842.1). Phylogenetic analyses efficiently described the relationship between
the amplified ITS1/ITS4 sequence (Figure 3) and EF-1α sequence (Figure 4), with closely
related genes present in the NCBI database and verified BLAST analysis results.
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3.4. Depictions of MB-ZnO Nanocomposite
3.4.1. SEM and EDX Analyses

SEM assessments successfully studied the surface properties of pure, pristine biochar
(Figure 5A) and MB-ZnO (Figure 5B). SEM images showed a rough and porous config-
uration of pure biochar. During the pyrolysis, biochar′s rough and porous morphology
was achieved through the vaporization of unstable materials. These structural properties
of pristine biochar confirmed its proficiency to use as excellent support for nano-scale
substances. After ball-milling, a white powdery substance (ZnO) showed on the biochar
surface in a clustered form (Figure 5B). The SEM study revealed that the accumulation of
raw materials on the biochar surface affects their textural properties along with the altered
composition of products (Figure 5B). These observations confirm the successful formation
of nanocomposites [38].
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The elemental properties of MB-ZnO nanocomposite were found through EDX analy-
sis, confirming the presence of C, O, Zn, Ca, Si, Na, P, and K elements on the MB-ZnO [39].
SEM and EDX studies of MB-ZnO nanocomposite confirmed the presence of ZnO on the
biochar surface. These results are published by our team [39]. The EDX results are depicted
in Figure 6.
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3.4.2. XRD Analysis

The crystal structure of MB-ZnO was explored with a scanning rate of 1◦ per minute
in 0.013◦ steps, encompassing a 2-θ angle from 10◦ to 70◦. The XRD spectrum exposed nine
key peaks of biochar nanocomposite (Figure 6). The diffraction peaks at 2-θ = 31.78, 34.43,
36.26, 47.55, 56.6, 62.9, 66.8, 67.9, 68.9, and 72.7◦ corresponded to the (100), (002), (101),
(102), (110), (103), (200), (112), (201), (004), and (202) planes, individually [40]. MB-ZnO
displayed the diffraction peaks indexed to hexagonal structure following the JCPDS no.
(036-1451). The intense and short peak suggested no huge effect of the presence of carbon
on the crystalline structure of ZnO [41]. The average normal size of the prepared MB-ZnO
particle was calculated as 46 nm using an X-ray line broadening system [42].

3.4.3. FTIR Spectroscopy

FTIR analysis determined some characteristic functional groups on MB-ZnO (Figure 7).
For MB-ZnO, relatively intense bands at 1650 and 3440 cm−1 described the bending vi-
bration of H-O-H and O-H. Peaks at 2850 and 2940 cm−1 represented symmetric and
asymmetric vibration modes of the C-H bond correspondingly [43]. Bands at 1037, 1124,
1325, 1417, and 1452 attributed to the stretching of Si-O-Si, C-H, C-C, CH2 group, and
COO−, respectively [44,45]. Importantly, a durable peak at 524 cm−1 is credited to the
stretching of Zn-O [46]. A superfluous peak at 580 cm−1 depicted Zn vibration and con-
firmed the presence of ZnO on the surface of the MB-ZnO. The complete FTIR spectra is
shown in Figure 8.
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3.4.4. VU Analysis

UV-vis absorption spectra of the pristine ZnO nanoparticles and MB-ZnO displayed
sharp peaks ranging from 200 to 800 nm. Pure ZnO displayed strong absorption in the
ultraviolet region (200–250 nm), while no peak was observed in the visible spectra, which
is parallel with former studies [47]. The absorption peaks of MB-ZnO were assessed in
the wavelength range from 250 to 320 nm. The difference in the peaks is accredited to the
chemical interaction between the biochar and ZnO nanoparticles [48]. The UV spectra is
shown in the Figure 9.
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3.4.5. Thermo Gravitational Analysis

TGA was performed to estimate the thermal properties of MB-ZnO. The findings of this
exploration revealed good thermal properties of the ball-milled synthesized nanocomposite.
This helps nanocomposite to perform under variable environmental stress conditions, and
these results have been reported by our team previously [41].

3.5. Antifungal Activity Analysis

Variable mycelial inhibition was observed at different concentrations of the MB-ZnO
nanocomposite on PDA media (Figure 10). A similar kind of fungal inhibition has been ob-
served earlier [48]. The highest growth inhibition (79 ± 2.1%) was observed at 19 mg/mL
dose rate (Figure 11), next was (67 ± 1.7%) at 12 mg/mL dosage, and (57.77 ± 0.5) at
6 mg/mL application rate. Additional escalation in the application rate of the MB-ZnO
nanocomposite did not enhance growth inhibition, which might be due to rises in dosage
resulting in the clustering of the MB-ZnO. Nanocomposite has a minor size but greater
surface-to-volume ratios, making them greatly unstable and reactive [49]. The physio-
chemical aspects, such as size, Brownian movement, and surface properties may also
influence accumulation.
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A few years back, nanotechnologists effectually applied ZnO nanocomposite to inhibit
the growth of different fungi, such as Candida albicans, Botrytis cinerea, Pythium uttimum,
Aspergillus niger, and Fusarium graminearum [50–52]. Some researchers also propose that
during microbial activity, ZnO nanoparticles generate Zn2+, which damages the membrane
of the pathogen [10]. The latest antimicrobial potential of metal-oxide nanoparticles con-
sists of the production of poisonous ions to destroy cells [53]. It has been described that
nano-sized particles strongly interact with the microbial surface and show antimicrobial
activity [54]. Metals oxide nanocomposites create holes by breaking the cell wall and
disturbing morphological characteristics of the cell membrane (permeability and polarity
of the cell membranes and resulting in the cessation of the cell membrane and, therefore,
without difficulty passing in the cell and causing the cessation of DNA, RNA, and proteins
molecules in the cytoplasm of the cell [54]. This damage produces an outflow of various
constituents, such as proteins, enzymes, RNA, and DNA and results in the death of a cell.
Due to the large number of applications of Actinidia chinensis, different scientists used
different methods to control the pathogens attacking Kiwi. Some other scientists used
active ingredients of biological fungicides to control the Kiwi leaf spot [55].

From all these findings, it was concluded that this is the first study to report isolating
Rhizopus oryzae from the Kiwi plant in Pakistan. MB-ZnO is an effective fungicide to control
this novel pathogen.

4. Conclusions

In conclusion, it can be confirmed that R. oryzae is the disease-causing pathogen of the
leaf spots on Kiwi. This is a novel study of R. oryzae causing leaf spot disease in Kiwi in
Pakistan. In the present work, MB-ZnO was efficiently synthesized through an eco-friendly
and price-effective procedure systematically elucidated above. The physicochemical char-
acteristics were also investigated via different microscopic and spectroscopic techniques.
The small size and different functional groups of the MB-ZnO nanocomposite were con-
firmed through FTIR and XRD studies and declared as effective antimicrobial agents. The
XRD results showed that the ball-milled synthesized nanocomposite was in a crystalline
shape, such as chemically synthesized pure ZnO. SEM and EDX results also confirmed
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the agglutination of ZnO on the biochar surface. The current study also demonstrated the
successful application of the MB-ZnO nanocomposite to control this disease. Because of its
health-friendly composition, this nanocomposite can be sprayed on vegetables and fruits
as an antifungal agent to replace harmful chemical fungicides.
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