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Abstract: Side-chain liquid crystal elastomers (SC-LCEs) have been designed by using a new smectic
crosslinker. Two types of monodomain films were prepared based on polysiloxane chains, with a
different relative concentration of both crosslinker and mesogenic comonomers. The mesomorphic
behavior of the two SC-LCE systems was investigated by differential scanning calorimetry and
polarized optical microscopy showing a different mesomorphic behavior: in one case, we obtained a
nematic SC-LCE film, in the other case, a Smectic A SC-LCE film. In both systems, the mesophases
were stable in a wide temperature range. Moreover, the SC-LCE films possess a relatively high
orientation at room temperature. The physical-chemical properties, such as the local orientational
ordering, structural organization, and dynamics of SC-LCEs’ constituents were studied by means of
static and dynamic 2H NMR experiments, small-angle X-ray, and wide-angle X-ray diffractions. The
relevant physical properties, such as the thermo-elastic and thermo-mechanic behaviors, are reported
and discussed in view of the practical applications.

Keywords: liquid crystal elastomers; nematic; smectic A; thermo-mechanic; thermos-elastic; 2H NMR;
X-ray diffraction; orientational order; dynamic properties

1. Introduction

Liquid crystalline elastomers (LCEs) [1–4] represent an exciting class of soft materials
with specific chemical and physical properties suitable for applications as artificial mus-
cles, actuator systems, and sensors [5–7]. The soft and super-soft elasticity of LCEs [8] is
related, on one side, to the presence of polymer networks, and, on the other side, to liquid
crystalline molecules, which can be inserted as comonomers in side-chain liquid crystalline
elastomers (SC-LCEs) or directly in the polymer main chain, in main-chain liquid crystalline
elastomers (MC-LCEs) [9]. In addition to the deeply investigated structural and physical
properties of a thermally induced actuator based on LCEs [10–20], an increasing number
of papers concerns the application of external stimuli, such as UV–vis light, microwaves
and infrared waves, and electric and magnetic fields, to obtain controlled and reversible
shape deformations in LCE-based systems. For instance, UV–visible light can be used to
induce reversible local geometric deformations in LCEs containing azo-mesogens or other
photosensitive molecules, as crosslinkers, comonomers, or dopants [21–25], which are at
the basis of several applications in the field of optical tunable gratings and light-driven
motors. LCE-based materials responsive to infrared radiations were prepared by inserting
carbon nanotubes or graphene sheets into the LCE matrix [26–28]. On the contrary, mi-
crowave irradiation was demonstrated to be effective in reaching macroscopic reversible
deformations in pristine LCEs [29]. The synthesis and preparation of polymer composites
based on LCEs, as a polymeric soft matrix [30–35], and electro-active or magneto-active
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nanostructured objects is another field under great development due to the potential ap-
plications in micro-robotics. Moreover, in recent years, research efforts have been focused
on the processing of LCE three-dimensional actuators [36], highly orientable soft–soft
composites with the capability to obtain different geometric actuations [37], LCE-based
systems with high resolution shape-memory behaviors [38–40], and new synthetic ap-
proaches [41,42] to prepare LCEs with peculiar properties, such as flexoelectricity [43] and
giant lateral electrostriction [44].

The interest in new LCE-based materials related to their rich variety of applications is
a great stimulus also for the development of physical models at the meso-scale [8,45–47]
and for the better understanding of these systems at the molecular and supramolecular
scale [15–18,48–51]. In this regard, several experimental techniques, such as Deuterium
Nuclear Magnetic Resonance (2H NMR), are successfully applied to LCEs selectively
labelled by deuterium in different positions (crosslinkers or comonomers) [18,33,52–56] or
doped with small deuterated probes [57–60]. Static 2H NMR experiments are helpful for
elucidating the nature of the isotropic (Iso) to mesophase transition [61,62], which in most
of the cases is a nematic phase, while in much less of the cases is a smectic phase [11–14].
Moreover, both 2H NMR and calorimetric investigations demonstrated the presence of
the paranematic phase in LCEs, characterized by a small, but detectable, local order at
temperatures above the clearing point [54–57]. The possibility to prepare LCE systems
selectively labelled on the crosslinker and on different comonomers allowed us to obtain an
insight into a local molecular order [54–56], local heterogeneities and misalignments [57],
as well as different scales of molecular dynamics of the different molecular fragments [53].
The structural and orientational properties of LCEs in the nematic and smectic phases
can be obtained by NMR and X-ray diffraction [18,63], while the combination between
thermomechanical and stress–strain investigations was important to fully characterize
the mechanical properties of monodomain LCEs and their behavior at isotropic–nematic,
isotropic–smectic A, and nematic–smectic A phase transitions [16].

In this paper, we are reporting on the design and preparation of new SC-LCEs based on
polysiloxane chains, containing a smectic crosslinker and two mesogenic comonomers. The
two comonomers, a nematogen and a smectogen, mixed in different relative concentrations,
allowed us to obtain two SC-LCE samples with a nematic phase or a smectic A phase, both
stable in a reasonably broad temperature range. These new SC-LCEs were investigated and
prepared in the polydomain and in the monodomain aligned forms. Differential scanning
calorimetry (DSC), polarizing optical microscopy (POM), small-angle X-ray (SAXS), and
wide-angle X-ray (WAXS) diffractions were performed to fully characterize the mesophase
behavior and the main structural features of the two types of side-chain liquid crystalline
elastomers. The thermo-mechanic and stress–strain properties of the SC-LCEs in the
monodomain form were also measured. Moreover, the SC-LCE sample showing a direct
transition from the isotropic to the Smectic A phase was also prepared in its deuterated
form, by using a deuterium-labelled nematic comonomer, and it was studied by means of
2H NMR static and dynamic experiments. The orientational and dynamic properties of
the smectic A SC-LCE sample obtained from 2H NMR are finally discussed in view of the
recent advances in liquid crystalline elastomers.

2. Materials and Methods
2.1. Liquid Crystalline Crosslinker

The molecular structure of the smectic crosslinker, labelled ‘C’, is reported in Scheme 1.
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Figure 1. Compounds used in the synthesis of LCE systems: (P) hydroxymethyl polysiloxane 
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The synthesis of the smectic crosslinker is reported in ref. [64]. The mesomorphic
behavior, as determined by differential scanning calorimetry (DSC), and confirmed by
polarizing optical microscopy (POM), is shown in Table 1.

Table 1. Mesophase transitions determined by DSC (cooling rate of 5 K/min) of the sample labelled
‘C’. Phase transition temperatures (T, ◦C) and phase transition enthalpy (∆H, J/g) measured at the
second DSC cycle are shown. The values of melting point (m.p.) and clearing point (c.p.) (measured
on heating) are reported.

m.p. c.p. Phase Phase Phase Phase Phase

T (◦C) 90.0 193.2 Cr 80.9 SmJ 136.1 SmI 162.7 SmC 191.7 Iso

∆H (J/g) 61.7 32.8 45.0 6.5 3.5 31.2

2.2. Liquid Crystalline Elastomers

The SC-LCE samples were prepared using the well-known two-step crosslinking
procedure [65], in the form of polydomains (not oriented) and monodomain (oriented)
samples. The basic chemical components are shown in Figure 1 and Scheme 1. Two
comonomers, namely the 4- methoxyphenyl 4-(but-3-en-1-yloxy) benzoate nematogen
(denoted by M4) and the 4-methoxyphenyl 4-(undec-10-en-1-yloxy) benzoate smectogen
(denoted by M11), were used, in different relative concentrations, to obtain a nematic or
a smectic SC-LCE sample. The synthetic procedure and the characterization of the two
comonomers is reported elsewhere [18,66,67]. For the preparation of each SC-LCE sample,
1 mmol of hydroxymethyl polysiloxane (P in Figure 1) was mixed with ‘c’/2 mmol% of
the smectic crosslinker ‘C’ (Scheme 1), ‘n’ mmol% of nematogen M4 (N in Figure 1), and ‘s’
mmol% of smectogen M11 (S in Figure 1) in 2 mL of anhydrous toluene. Then, 30 µL of
71 mmol/l Pt-catalyst solution (Dichloro (1,5-cyclooctadiene) platinum (II) from Fischer
scientific, dissolved in CH2Cl2) was added.
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Figure 1. Compounds used in the synthesis of LCE systems: (P) hydroxymethyl polysiloxane
polymeric chain; (S) smectic comonomer, M11; (N) nematic comonomer, M4. X = 1H for the not
labelled SC-LCEs, while X = 2H for the deuterated SC-LCEs. (The structure of the crosslinker, C, is
shown in Scheme 1).

The resulting pre-polymerization mixture was then filtered into a cylindrical form for
the first step of the crosslinking reaction inside a centrifuge (a rate of 5500 rpm, temperature
of 343 K, and reaction time of 70 min). The resulting partially crosslinked LCE film gel
was then cut into stripes to be mechanically strained. The second step of the crosslinking
reaction to obtain the monodomain SC-LCEs was performed under progressive weights
from 3 mg to 10 mg for each stripe. The elongated SC-LCE films were further crosslinked
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at 70 ◦C overnight. A representation of the two SC-LCE films in the oriented and aligned
phase showing the molecular components (P, N, S, and C) is reported in Scheme 2.
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Two types of SC-LCEs, denoted as SC-LCE 1 and SC-LCE 2, were prepared with the
values of mmol%, namely ‘c’, ‘n’, and ‘s’, reported in Table 2. The sample with a higher
concentration of nematogen, M4, called SC-LCE 1, has a nematic phase stable in a wide
range of temperatures, while the sample with the higher concentration of the smectogen
M11, called SC-LCE 2, exhibits a smectic A phase, stable in a very wide temperature
range. The SC-LCE 2 was also prepared in its deuterated form (labelled ‘SC-LCE 2 (D)’)
by using the deuterated mesogen, M4-d2, deuterium labelled on the aromatic ring close to
the polymerizable bond (see Figure 1) [18].

Table 2. Mesophase transitions determined by DSC (cooling rate of 5 ◦C/min) of the samples labelled
‘SC-LCE 1′, ‘SC-LCE 2′, and ‘SC-LCE 2 (D)’. Temperature transitions (T, ◦C), transition enthalpy
(∆H, J/g), and thermal capacity (Cp, J/g ◦C) are reported. All values correspond to the second
cooling run.

Sample
Label:

Monomer,
M4

(‘n’, mmol%)

Monomer
M11

(‘s’, mmol%)

Crosslinker
C

(‘c’, mmol%)
Phase T (◦C)/[Cp

(J/g ◦C)] Phase T (◦C)/
[∆H (J/g)] Phase

SC-LCE 1 50 35 15 Glass −11.4
[0.3] Nematic 85.0

[2.1] Iso

SC-LCE 2 20 70 10 Glass −4.5
[0.40] Smectic 121.4

[−5.3] Iso

SC-LCE 2 (D) 20 70 10 Glass −8.1
[0.67] Smectic 113.3

[−5.2] Iso

The mesomorphic behavior of the SC-LCE samples, explored by combining different
experimental techniques, such as DSC and POM, are summarized in Table 2 and discussed
in Section 3.

2.3. Mesomorphic Properties (DSC and POM)

The sequence of phases and phase transition temperatures were determined on heat-
ing/cooling to/from the isotropic phase by the identification of the characteristic textures
and their changes observed in a polarizing optical microscope (POM NICON ECLIPSE
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E600POL). In the case of LCE films, they have been inserted between two glasses. The LCE
film’s thickness is about 150 µm and the director is aligned along the direction of the elonga-
tion of the film (pre-determined during the preparation of the monodomain SC-LCEs). The
LINKAM LTS E350 heating stage with a TMS 93 temperature programmer was used for
the temperature control, which enabled the temperature stabilization within ±0.1 ◦C. The
phase transition temperatures and transition enthalpies were evaluated from differential
scanning calorimetry (DSC Pyris Diamond, Perkin-Elmer 7) on cooling and heating the
sample at a rate of 5 ◦C/min. The sample (10 mg) hermetically sealed in an aluminum pan
was placed in a nitrogen atmosphere. The temperature was calibrated on the extrapolated
onsets of the melting points of water, indium, and zinc. The enthalpy change was calibrated
on the enthalpies of the melting of water, indium, and zinc. The mesomorphic behavior of
the LCEs has been studied by DSC on heating and subsequent cooling (5 ◦C/min). Each
sample was placed into a DSC sample cell holder at room temperature, cooled to −40 ◦C
and, after 5 min, heated to 140 ◦C, maintained at this temperature for 1 min, cooled to
−40 ◦C and, after 2 min, reheated once again. Several heating/cooling runs were performed,
showing the perfect reproducibility of the resulting DSC curves.

2.4. 2H NMR Measurements
2H NMR static experiments were carried out with a Bruker Advance III 500 MHz

high resolution solid-state NMR spectrometer, equipped with an 11.74 T Bruker Ultra-
shield superconducting magnet. The deuterium Larmor frequency was of 76.753 MHz.
The spectra were recorded as a function of the temperature, on heating and on cooling,
by applying the quadrupolar echo [68] sequence with a calibrated 90 degrees pulse of
7.5 µs. The echo delay was fixed to 50 µs, the delay was 20 µs, and the delay between the
consecutive acquisitions was 30 ms. The measurements of the monodomain LCE stripes
was performed as described in ref. [55]. The number of scans was set between 51,200 and
102,400 at each acquired temperature depending on the sample. The temperature control
was of an approximately 0.1 K of accuracy and the thermal equilibration of the sample
was about 15 min at each temperature. The 2H spin–lattice relaxation times, T1, were
measured by applying the pulse sequence (90◦ − τ − 90◦ − τ1 − 90◦ − τ2 − ACQ) [68].
The experimental parameters are those reported in ref. [53]. The T1 values were deter-
mined by fitting the experimental magnetization intensities as a function of τ by using the
following equation:

I(τ) = I0

(
1− e−τ/T1

)
(1)

The 2H spin–spin relaxation times, T2, were measured by applying the solid-echo
sequence (90◦ − τ − 90◦ − τ − ACQ) and EXORCYCLE phase cycling [69,70] with the
parameters reported in ref. [53]. The T2 values were determined by fitting the experimental
magnetization intensities according to the equation:

I(τ) = I0e(−2τ/T2) (2)

Top Spin Software for the Bruker Advance III console was used to process the 2H NMR
spectra and to obtain the main spectral parameters. The calculated NMR properties and the
elaboration of the spectral parameters were mostly obtained by using home-made programs
written in Mathematica 5.0 software for PC (copyright 1988–2003, Wolfram Research, Inc.,
Champaign, IL, USA).

2.5. X-ray Diffraction

Small-angle X-ray diffraction (SAXS) studies were conducted using Bruker NanoStar
system (CuKα radiation, cross-coupled Goebel mirrors, three pinhole collimation system,
MRI heating stage, and Vantec-2000 area detector). Wide-angle X-ray diffraction patterns
were collected with the Bruker GADDS system (CuKα radiation, Goebel mirror, point beam
collimator system, adapted Linkam heating stage, Vantec-2000 area detector). The samples
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of the SC-LCE stripes in the monodomain alignment were measured in transmission mode.
SAXS measurements were also performed on the smectogen crosslinker, ‘C’ sample, in the
bulk, on cooling the sample from the isotropic phase to the crystalline phase.

2.6. Thermo-Mechanic and Elastic Measurements

The thermo-mechanic measurements of the monodomain SC-LCEs have been per-
formed on a home-built computer-controlled setup comprising a temperature-controlled
cell, a strain gauge, and a linear actuator for the stretching of the samples, which allowed
for the simultaneous measurement of the temperature, force, and sample length, L(T). The
variations of the SC-LCE length were recorded as a function of the temperature at different
heating–cooling rates by using a constant-force feedback loop with a minimal force of about
1 mN. The same apparatus has been used to measure the elastic modulus by stretching the
LCE film and simultaneously recording the applied stress.

3. Results and Discussion
3.1. Mesophase Properties of the Crosslinker ‘C’

The new SC-LCEs were prepared by using a crosslinker, labelled ‘C’ (see Scheme 1
and Table 1), which shows a series of tilted smectic phases, as evidenced by the formation
of schlieren-type optical textures in samples with one free surface (Figure 2). Similar POM
images were observed in other smectic LCs [71].
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Figure 2. Optical textures observed in liquid crystalline phases of crosslinker ‘C’ for sample with one
free surface: (A) SmC at 185 ◦C, (B) SmI at 145 ◦C, and (C) SmJ at 130 ◦C. The width of the pictures is
about 100 µm.

Small-angle X-ray diffraction measurements allowed for the determination of the tem-
perature dependence of the layer spacing, d, (Figure 3). Consistent with the tilted arrange-
ment of the molecules within smectic layers, the d values were found to be considerably
smaller than the estimated molecular length, L ~ 52 Å (Gaussian 98 with b3lyp/3–21 g) [72].
The observed increase in the layer spacing during the cooling might be attributed to the
increase in the orientational order of the molecules, causing the growth of the effective
molecular length in the mesophases. The phase sequence ‘SmC–SmI–SmJ’ has been ob-
served in other smectic LCs and it corresponds to an increase in the ordering from a short
range (SmC) to a long-range order (SmJ), which is also associated with the appearance of a
2D structure, typically a hexatic one, in the smectic phase [73].
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3.2. Mesophase and Structural Properties of the New SC LCEs

In this work, the smectogen ‘C’ was used as a crosslinker to prepare the new SC-
LCEs in the polydomain and in the monodomain forms. The relative concentration of the
crosslinker was chosen from 10% to 15%, according to the literature [18,52], with the aim of
preparing mechanically robust LCEs. Relative concentrations of all chemical components of
the new SC-LCEs are reported in Table 2. Despite the flexibility of the smectogen (see also
its molecular structure in Figure 3), to guarantee the soft and elastic properties of the new
SC-LCEs, a mixture of two standard mesogens, namely M4 and M11, was chosen. These
two comonomers were widely studied by means of different techniques [16,18,53–55,74]
and they were used to prepare a series of SC-LCEs showing the nematic and the Smectic A
phases [16,18]. Based on previous studies [16,18,53,74], the relative concentration of the two
co-monomers, M4 and M11, was selected to obtain a nematic SC-LCE (M4:M11 of 50/35)
and a smectic A SC-LCE (M4:M11 of 20/70). As expected, these two different relative
concentrations of the nematogen M4 and the smectogen M11 are optimal to obtain SC-LCEs
with a single phase (nematic or smectic A) stable in a very wide temperature range. The
mesomorphic behavior of the two samples, SC-LCE 1 and SC-LCE 2, as determined by
DSC, are reported in Table 2. For each SC-LCEs, several samples were prepared in the
form of polydomain and oriented monodomain stripes. A selection of the representa-
tive microphotographs obtained during POM observations on the monodomain smectic
SC-LCE 2 sample is shown in Figure 4.
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The birefringence phenomenon due to the aligned smectic domains of the thin film is
clearly observed by decreasing the temperature from the isotropic phase, confirming the
occurrence of an ordered phase. It should be noted that the smectic A liquid crystalline
elastomer in the form of monodomain stripes shows no defects in the morphology at a
macroscopic level; in fact, the film appears completely transparent, thus confirming the
very good homogeneous alignment.

The two SC-LCE monodomain stripes were investigated by X-ray diffraction. An
X-ray diffraction pattern of an aligned SC-LCE 1 (Figure 5A) taken at room temperature is
typical for the nematic phase, where only broad diffuse signals are observed in small-angle
and in the wide-angle regions. In the pattern of the SC-LCE 2 (Figure 5B), a series of sharp
commensurate signals is seen in small-angle range, while the high-angle signal, positioned
at the orthogonal azimuthal direction with respect to small-angle signals, is similar to that
observed for SC-LCE 1. Such a pattern is characteristic for a well-aligned lamellar structure
showing no long-range positional correlations within the layers; thus, it is fully consistent
with the smectic A phase assignment.
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Figure 6 reports the evolution of small-angle XRD patterns as a function of the temper-
ature for the monodomain SC-LCE 2 sample. In the smectic A phase, a small increase in
the layer’s thickness is observed (from 31.8 Å to 32.8 Å, with a positive thermal expansion
coefficient of the order of 0.01 Å/K). It should be noted that the smectic layer periodic-
ity is slightly larger than the length of the smectogen comonomer, M11, which is about
28.8 Å (see Figure 6). This feature can be explained by taking into account that the polymer
backbone and the crosslinker ‘C’ also contributes to the average thickness of the smectic
layers and influences the structure of the smectic domains. Moreover, the values of d of
the SC-LCE 2 sample within the smectic A phase are similar to those obtained in similar
LCE systems showing an SmA phase and containing high concentrations of M11, as a
comonomer [18]. The transition from the SmA phase to the isotropic liquid, which is not
usual in LCEs but is widely investigated in low-molecular weight liquid crystals [75,76],
is not abrupt; instead, a smooth decrease in the diffraction signal’s intensity is observed
which is associated with its gradual broadening due to the continuous decrease in the
correlation length of the positional order of the molecules in the isotropic liquid. As shown
from the 2H NMR results, the SmA-Iso phase transition in liquid crystalline elastomers
is of a weak first order, as observed in other similar systems [10–14]. The behavior of the
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studied elastomer just above the SmA-Iso transition is similar to that observed in other
LCEs with a direct transition from the isotropic to the smectic-A phase [10,12,16] and it is
also coherent with the thermo-mechanic trend reported in the following paragraph.
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Figure 6. Temperature evolution of small-angle XRD pattern for the monodomain SC-LCE 2 sample.
Diffracted intensity is coded with color (red to yellow to blue). On the right-top side, the optimized
molecular structure of M11 (smectogen) showing its average length. On the right-bottom, layer
spacing (d—black points) and diffraction signal width at its half-maximum (fwhm—red points) are
reported as a function of temperature.

3.3. Thermo-Mechanic and Elastic Properties of New SC LCEs

The thermo-mechanic properties of the two SC-LCE samples are reported in Figure 7. Here,
the normalized elongation L/L0 of the SC-LCE 1 and SC-LCE 2 are reported as a function of
the temperature. The temperature dependences of L/L0 in the case of SC-LCE 1 is typical
of side-chain LCEs with a nematic phase [16]. In this sample, the maximum elongation
is about 43% at room temperature with respect to the length in the isotropic phase (L0),
obtained with a load of 1 mN/mm2. In the case of the SC-LCE monodomain sample with
the higher concentration of M11, namely the SC-LCE 2, the hermos-mechanic temperature
trend shows a much smaller elongation with respect to nematic SC-LCE 1. Lowering the
temperature from the isotropic phase, the elastomer film elongates in the direction of the
local SmA phase director until it reaches ~15%. The maximum elongation is reached at
about 118 ◦C, which is close to the temperature transition iso-SmA. Within the temperature
range of the stability of the SmA phase, the elongation of the SC-LCE 2 slowly decreases,
reaching the value of ~10% at room temperature. This behavior has been observed in several
SC-LCE samples with a concentration of M11 higher than 50% [16], and in other LCEs
with a smectic phase [11–14,17,77–80]. This thermo-mechanic behavior can be explained
with the formation of layered local structures, whose layer spacing is gradually reduced
by decreasing the temperature. The higher molecular packing lowers the mechanical
response of the LCEs in the smectic phase, and the LCE stripes appear to be stiff [16].
Similarly to what was observed in other SmA LCEs [12], this shrinkage process is related
to an increasing perfection of the smectic structure rearrangement of the network with a
consequent realignment of both comonomers and polymer chains.
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Figure 7. Thermo-mechanic measurements on the two monodomain SC-LCE samples: SC-LCE 1
(black) and SC-LCE 2 (red). Temperature transitions are indicated with dotted lines.

The elastic properties of the two SC-LCE samples were investigated at room temperature,
as reported in Figure 8. The elastic modulus, E, was measured by applying a uniaxial
mechanical stress parallel to the phase director,

→
n . In the case of the nematic SC-LCE 1, the

typical rubber elastic response of nematic networks is observed and the value of 234 kPa is
comparable to that measured in similar LCEs with the nematic phase [16]. In the SC-LCE 2
sample, with a smectic A phase stable at room temperature, the value of the elastic modulus
is about 2 MPa, which confirms the presence of a smectic structure and the typical enthalpy-
elastic behavior ascribable to the long-range 1D order of the smectic layered structures [81].
If we compare the results obtained for these two SC-LCEs with those reported in the detailed
investigation [16] of the thermo-mechanic and elastic properties of strongly crosslinked
bimesogenic monodomain LCEs, with the controlled relative composition of nematogenic
and smectogenic constituents, it is possible to conclude that they represent the two limiting
cases of a typical soft nematic LCE (i.e., SC-LCE 1 sample) and typical smectic A LCE (i.e.,
SC-LCE 2 sample).
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3.4. 2H NMR Studies of the Smectic SC LCE Sample

A further investigation was performed on the SC-LCE showing the smectic A phase,
by means of 2H NMR spectroscopy. To this aim, a monodomain SC-LCE 2 sample was
prepared by following the same procedure described in Section 2.2, by using the nematic
comonomer deuterium-labelled on the phenyl moiety, namely the nematogen M4-d2 shown
in Figure 2A. The deuterated sample, called SC-LCE 2 (D), was characterized by POM
and DSC (see Table 2). As it can be noted, the temperature transition from the isotropic
to the SmA phase was shifted to lower temperatures with respect to the not-labelled
sample. This can be attributed to the deuteration substitution or to small differences in the
loads applied during the second crosslinking step of the SC-LCE synthesis. A ‘sandwich-
like’ sample formed by the square pieces of monodomain SC-LCE 2 (D) was prepared
following the procedure reported in refs [53,74] to perform static 2H NMR measurements,
as described in Section 2.4. A selection of the 2H NMR spectra recorded on the cooling of the
SC-LCE 2 (D) sample from 120 ◦C to 30 ◦C are reported in Figure 9. The 2H NMR spectra in
the oriented phase are characterized by a well-defined doublet ascribable to the deuterons
present on the phenyl ring of the nematogen M4, indicating the good alignment of the
monodomain sample in its SmA phase. At temperatures above the isotropic-SmA transition
temperature, the 2H NMR spectra are characterized by a single peak, which is typical of
disordered (liquid-like) phases. In the vicinity of the mesophase transition, a very small
quadrupolar splitting can be measured, which is the proof of a partial local orientation
of the mesogens. In the case of SC-LCE showing the isotropic to nematic transition, this
phenomenon was interpreted as the evidence of a critical phase transition [53–57] (or
subcritical/critical/supercritical phase transition, depending on the crosslinker density).
In the present SC-LCE system, the direct transition from the isotropic to SmA phase
shows the typical features of a weak first order phase transition. This feature has been
theoretically explained by a phenomenological model based on the modified Landau-de
Gennes theory [79] and the existence of a weak first order transition is correlated with
the relatively high crosslinker density (i.e., 10% in the presence case). The temperature-
dependence of the quadrupolar splitting, obtained by fitting the spectral doublets with two
Lorentzian functions, is shown in Figure 9.
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Here, η is 0.04 and qaa is 185 kHz, according to the literature for aromatic deuterons 
[84]. The angle ϕ between the C-D bond and the para axis of the biphenyl fragment is fixed 
equal to 60°. The application of Equation (3), by assuming a fragment biaxiality of 0.05, as 
in analogous LCEs prepared with the comonomer M4-d2 [75], gives rise to a local order 
parameter, Szz, which ranges from 0 (far above the temperature transition) to ~0.52 at room 
temperature. It should be noticed that at temperatures lower than 55 °C, the spectra 
become much broader (see Figure 9), as it can also be observed from the trend of the half-
height line-broadening (Δνfwhm) reported in Figure 10B. 

Usually, the analysis of the temperature dependence of the 2H NMR spectra of LCEs 
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temperature transition as observed by 2H NMR spectroscopy.
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As observed on structurally similar liquid crystalline elastomers [53,74], the quantita-
tive analysis of the temperature-dependence of 2H NMR quadrupolar splitting (∆νquad)
can be done by using Equation (3) [82,83], which expresses the relationship between the
measured quadrupolar splitting of the deuterons on the aromatic fragment and the orien-
tational order parameters, Szz and ∆biax (=Sxx − Syy), referred to the biphenyl axes frame
(with z parallel to the para axis):

∆νq =
3
2

qaa

{
Szz

(
cos2 ϕ− 1

2
sin2 ϕ− η

6
cos2 ϕ +

η

6
+

η

3
sin2 ϕ

)
+ ∆biax

(
1
2

sin2 ϕ +
η

6
cos2 ϕ +

η

6

)}
(3)

Here, η is 0.04 and qaa is 185 kHz, according to the literature for aromatic deuterons [84].
The angle φ between the C-D bond and the para axis of the biphenyl fragment is fixed
equal to 60◦. The application of Equation (3), by assuming a fragment biaxiality of 0.05, as
in analogous LCEs prepared with the comonomer M4-d2 [75], gives rise to a local order
parameter, Szz, which ranges from 0 (far above the temperature transition) to ~0.52 at room
temperature. It should be noticed that at temperatures lower than 55 ◦C, the spectra become
much broader (see Figure 9), as it can also be observed from the trend of the half-height
line-broadening (∆νfwhm) reported in Figure 10B.
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Usually, the analysis of the temperature dependence of the 2H NMR spectra of LCEs
requires quite sophisticated models [57], since they are inherently heterogeneous systems
at the micro-scale level. The eventual local misalignment of the phase directors in the
micro-domains, as well as the presence of a distribution of the local orientational order,
cannot be excluded [53–57]. In the present case, additional information about the eventual
heterogeneities can be obtained from the analysis of the temperature dependence of the
half-height linewidths and both relaxation times, T1 and T2.

Focusing on the spin–lattice relaxation times (T1 versus 1000/T) reported in Figure 10A,
we can observe an almost continuous trend at the isotropic to SmA transition and the
occurrence of a minimum in the SmA phase, around T = 50–56 ◦C.

A similar temperature-dependence of the 2H NMR spin–lattice relaxation times has
been observed in other side-chain LCEs containing deuterated comonomers linked to the
polymer chain [53,75]. In particular, the values of T1 in the mesophase formed by liquid
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crystalline elastomers are in the range of 6–12 ms, as observed in other LCEs [53,75], and
the presence of a minimum indicates that the characteristic correlation time, τC, associated
with the dynamic processes active in the high frequency range of 10–100 MHz, passes from
a fast to slow regime. This phenomenon is not observed in low-molecular weight LCs and
this is due to the fact that once the mesogens are connected to the polymer chains, their
overall reorientational motions, namely the spinning and tumbling processes, are much
slower (i.e., the relative diffusion coefficients are two or three orders of magnitude smaller)
than in the case that they are completely free to move [53].

The trend of the spin–spin relaxation times (T2) versus the temperature, reported in
Figure 10A, indicates a linear temperature-dependence in the isotropic phase, associated
with a drop of the T2 from 6.5 ms to ~300 µs at the transition between the isotropic and
SmA phase. A sudden change in the slope of the T-dependence of T2 is observed at the
phase transition. Within the SmA phase, the values of T2 decrease much more slowly,
reaching the value of ~100 µs at room temperature. A similar behavior and similar values
of T2 were obtained on the SC-LCEs prepared with deuterated M4 (and M11) [53,75].
Another interesting feature is related to the nature of the 2H NMR spectral linewidth
(Figure 10B). In fact, the homogeneous contribution to the linewidth, ∆νfwhm, which can
be calculated from the measured T2, as fwhmhomo = 1/(πT2) [85–87], coincides with the
2H NMR spectral linewidth, evaluated from the half-height of the Lorentzian peaks. This
finding can be interpreted in terms of the motional processes responsible for the measured
2H NMR spectral linewidth: the motions affecting the 2H NMR linewidth are in the extreme
motional narrowing regime, as observed in other cases in LCEs prepared with deuterated
comonomers [53,75]. Different phenomena have been found in LCEs deuterium-labelled
on the crosslinker, whose molecular motions are usually much hindered due to the two
links to the polymer chains [53,75].

4. Conclusions

In this paper, we are reporting a complete study of new side-chain liquid crystalline
elastomers in the form of monodomain films, containing a new smectic crosslinker and
two comonomers, a nematogen and a smectogen, in different relative concentrations. Two
types of SC-LCE films were designed and characterized, showing a nematic or a smectic A
phase stable in a wide temperature range. The mesomorphic and structural studies based
on X-ray diffraction confirmed the good alignment and uniaxial orientation of the two
SC-LCE systems, while the thermo-mechanic and thermo-elastic characterizations indicate
that the two SC-LCE films have good properties to act as shape-memory materials for an
application in the field of soft actuators. Detailed investigations were performed on the
SC-LCE film showing a direct transition between the isotropic and the smectic A phase.
All the experimental measurements confirm the nature of the weak first-order transition
in agreement with the theoretical models describing the Iso-SmA transition in LCEs. The
observed thermo-mechanic behavior could be interpreted as due to the formation of layered
local structures, whose layer spacing is gradually reduced by decreasing the temperature,
while the increasing perfection of the smectic structure lowers the mechanical response
of the LCEs within the smectic phase. This process is associated with an increase in the
orientational order within the SmA phase, as confirmed from 2H NMR spectroscopy. Both
static and dynamic investigations based on the 2H NMR measurements indicate a relatively
high orientational order of the nematic comonomer and the presence of dynamic motions
passing from a fast to a slow regime within the SmA phase.
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