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Additive manufacturing (AM) is an emerging and rapidly evolving technology that has
revolutionized the way products are developed, fabricated and commercialized. This has
enabled the disruption of long-running manufacturing processes, leading to economic and
societal change. Many design and manufacturing technologies are receiving widespread
attention to advance AM technology towards high efficiency, high precision, high perfor-
mance, and low cost in an environmentally friendly manner. This Special Issue focuses
on exploring topical issues in additive manufacturing processes, material design, struc-
ture design, process planning, and performance evaluation. The call for articles for this
Special Issue resulted in an enthusiastic response from the research community, who
contributed an excellent series of high quality and technically diverse manuscripts. This
Special Issue “Additive Manufacturing (AM) for Advanced Materials and Structures: Green
and Intelligent Development Trend” covers topics surrounding the structural design of
complex components, the integrated, advanced design for the preparation and manufac-
ture of high-performance materials, and performance optimization; containing a mix of
20 communications, original articles, and review articles.

In the ever-expanding field of additive manufacturing processes, Chao et al. [1] have
proposed a novel high-resolution fused deposition 3D printing technique based on electric
field-driven (EFD) jet deposition. An experimental approach based this process was devised
to print polycaprolactone (PCL) porous scaffold structures. To explore the application
prospects of this technique in the fabrication of microchannel structures, Chao et al. [2]
have successfully printed waxy structures with a size of tens of microns.

Laser-based additive manufacturing processes are of long-standing interest among
emerging additive manufacturing processes. For example, in laser powder bed fusion
(LPBF) technology, scholars have conducted extensive research into structural design,
material and part properties, and process strategies. With regard to structural design,
Li et al. [3] have developed an optimization method for a body-centered cubic with Z
support (BCCZ) lattice based on parametric modeling. The designed BCCZ structures
were able to maintain their strength whilst also retaining light weights. Ma et al. [4] have
prepared diamond lattice structures with different material distributions using selected
laser melting techniques. The mechanical behavior of the structures was investigated
under quasi-static and dynamic loading, and the gradient sheet diamond (GSHD) was
found to possess the highest yield strength. With regard to material and part properties,
Shen et al. [5] used LPBF to fabricate SiC-reinforced Al–Zn–Mg–Cu composites in situ. The
results showed that the organization of the composites was regulated, the matrix grains
were refined, and the grain orientation growth was suppressed. In a similar fashion, to
improve the mechanical properties of the AlSi10Mg alloy prepared by LPBF, Lu et al. [6]
have investigated the effect of nano-Si3N4 reinforcement on the densification behavior,
microstructure, and tensile properties of AlSi10Mg. It was revealed that the tensile and yield
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strengths of the composites steadily increased with increasing nano-Si3N4 content, while the
elongation decreased. Li et al. [7] have analyzed the fracture behavior of 316L stainless steel
fabricated with defects by selective laser melting using a near-field kinetic approach. They
demonstrated that crack sprouting is caused by the defects and crack branching contributes
to complex multi-crack extensions. The effect of scanning strategy on the quality of the
manufactured part is also important in process optimization. Cao et al. [8] have examined
the effect of the transient temperature field of the molten layer in LPBF under linear and
annular laser scanning strategies on the forming accuracy and quality of the manufactured
part. Their analysis identified that annular scanning was more suitable than linear bi-
directional scanning for the high-precision fabrication of thin-walled Fe–Cr–Al overlays.
Other laser-based additive manufacturing processes such as laser cladding have also been
the focus of attention. Wang et al. [9] used this technique to produce WC (hard tungsten
carbide) Co–Cr alloy coatings with different mass fractions on 316L substrates. It was found
that laser cladding of the Co–Cr–WC composite layer could significantly improve the wear
and corrosion resistance of the 316L substrate. Lasers also have the important ability to
fabricate micro/nanostructures. Du et al. [10] have manufactured Se-doped silicon thin
films by irradiating Si–Se bilayer-coated silicon with femtosecond (fs) and picosecond (ps)
lasers. Their work revealed that the changes brought about by ps laser processing are
significant for ultrafast laser processing of brass-doped silicon in silicon-based integrated
circuits. Ultrafast lasers can effectively process special materials and improve the mechanical
properties of parts, giving them the advantage over short pulse lasers and continuous wave
lasers. Finally, Wu et al. [11] have reviewed the interaction mechanisms between ultrafast
lasers and metallic materials and discussed the current status and challenges of ultrafast laser
application in the formation of special materials.

Aside from laser-based additive manufacturing processes, fused deposition modeling
(FDM), projection stereolithography, and resistive additive manufacturing are also discussed.
Tura et al. [12] have used adaptive neuro-fuzzy methods and artificial neural networks to
predict the tensile strength of ABS parts manufactured using fused deposition models. The
results showed that an enhanced mechanical strength can be achieved by optimizing the
process parameters. Based on FDM technology, Yang et al. [13] have explored an additive
manufacturing process based on continuous carbon fiber-reinforced polylactic acid (PLA)
composite prepreg filaments, resulting in the direct additive manufacture of lightweight and
high-strength composite honeycomb load-bearing structures. Regarding stereolithography,
Wen et al. [14] introduced a structure optimization-based compensation method to improve
the geometric accuracy of microstructures printed by projective stereolithography. As for
resistive additive manufacturing, Li et al. [15] have optimized the relative process parameters
and analyzed their effects on the morphology of coating formation.

The concept of additive manufacturing can also be extended to high-performance coating
preparation, which has received increasing attention in recent years. Zhang et al. [16] have
researched the tribological properties of different crystalline diamond coatings prepared by
the microwave plasma chemical vapor deposition (MPCVD) method in dry and seawater
environments, providing important insights into the wear behavior of diamond coatings
in seawater. Zhou et al. [17] investigated the nanomechanical properties of Ni-Co-Al-Ce
coatings fabricated by velocity oxygen-fuel (HVOF) spraying, providing vital predictions
for the erosion resistance of MCrAlY coatings. Li et al. [18] have synthesized two types of
cemented carbide tools based on WC–Co–Zr and WC–Ni–Zr, namely cemented carbide tools
and functional gradient cemented carbide (FGC) tools with FCC-phase ZrN-rich surfaces,
which have potential in future hybrid additive/subtractive manufacturing applications.

Green, intelligent, and high-performance manufacturing processes are the focus of this
Special Issue; therefore, several other studies on manufacturing trends are herein presented.
The influence of inclusions on the mechanical properties of spring steels is significant; thus,
Li et al. [19] have investigated the effect of alkalinity and Al2O3 content on slag viscosity and
structure to explore their effect on inclusion removal from steel. The generation of coal fly
ash (CFA) in manufacturing is a serious barrier in the development of eco-friendly process
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manufacturing. Qi et al. [20] have constructed three different regression models to quickly
and accurately predict the generation of CFA, thus saving time in planning of CFA disposal.

This Special Issue, “Additive Manufacturing (AM) for Advanced Materials and Struc-
tures: Green and Intelligent Development Trend,” can be considered as a review of the
progress of additive manufacturing over the past year in the areas of advanced materials,
structural design, and manufacturing processes.

Conflicts of Interest: The author declares no conflict of interest.
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