

Article Phase Relations of Ni₂In-Type and CaC₂-Type Structures Relative to Fe₂P-Type Structure of Titania at High Pressure: A Comparative Study

Khaldoun Tarawneh * and Yahya Al-Khatatbeh

Department of Basic Sciences, Princess Sumaya University for Technology, Amman 11941, Jordan * Correspondence: khaldoun@psut.edu.jo

Abstract: Density functional theory (DFT) based on *first-principles* calculations was used to study the high-pressure phase stability of various phases of titanium dioxide (TiO₂) at extreme pressures. We explored the phase relations among the following phases: the experimentally identified nine-fold hexagonal Fe₂P-type phase, the previously predicted ten-fold tetragonal CaC₂-type phase of TiO₂, and the recently proposed eleven-fold hexagonal Ni₂In-type phase of the similar dioxides zirconia (ZrO₂) and hafnia (HfO₂). Our calculations, using the generalized gradient approximation (GGA), predicted the Fe₂P \rightarrow Ni₂In transition to occur at 564 GPa and Fe₂P \rightarrow CaC₂ at 664 GPa. These transitions were deeply investigated with reference to the volume reduction, coordination number decrease, and band gap narrowing to better determine the favorable post-Fe₂P phase. Furthermore, it was found that both transitions are mostly driven by the volume reduction across transitions in comparison with the small contribution of the electronic energy gain. Additionally, our computed Birch–Murnaghan equation of state for the three phases reveals that CaC₂ is the densest phase, while Ni₂In is the most compressible phase.

Keywords: phase transitions; enthalpy difference components; equation of state; first principles; phase relations; band gap

1. Introduction

The nature of bonding in titania (TiO₂) has attracted great interest over the last few decades due to its interesting industrial applications such as photocatalysts, energy generation and storage, environmental protection, and many more [1,2]. One of the important and promising research directions in studying this dioxide is investigating the high-pressure behavior of TiO₂ polymorphs, both experimentally and theoretically, due to their interesting properties [3–39]. However, much attention, using measurements and calculations, has been given to exploring the high-pressure phase stability of TiO₂ phases and the transition pressures between different phases and their equation of state parameters as well as to searching for new possible phases (e.g., [3,8,11,15,18,19,21,22,29,31–33,37]). Over the past decades, density functional theory has become the workhorse theory for the identification of the pressure-driven phase transitions [40,41].

As mentioned above, titania can be found in many structural forms with increasing pressure. In this regard, the well-known transition sequence that is experimentally observed and theoretically predicted is as follows: Orthorhombic OI \rightarrow orthorhombic cotunnite OII \rightarrow Fe₂P-type [3,15,29,31]. Thus, the hexagonal Fe₂P-type structure (Figure 1a) is the highest-pressure phase experimentally observed for TiO₂ which has been found to be stable at (210 GPa, 4000 K) using diamond-anvil experiments [31]. Recently, the tetragonal CaC₂-type structure (Figure 1c) has been theoretically predicted as a post-Fe₂P phase of titanium dioxide at pressures beyond 647–689 GPa [33,36]. Additionally, recent density functional theory (DFT) calculations have predicted the hexagonal Ni₂In-type structure

Citation: Tarawneh, K.; Al-Khatatbeh, Y. Phase Relations of Ni₂In-Type and CaC₂-Type Structures Relative to Fe₂P-Type Structure of Titania at High Pressure: A Comparative Study. *Crystals* **2023**, 13, 9. https://doi.org/10.3390/ cryst13010009

Academic Editors: Daniel Errandonea and Enrico Bandiello

Received: 27 November 2022 Revised: 17 December 2022 Accepted: 18 December 2022 Published: 21 December 2022

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

(Figure 1b) to be the post-Fe₂P phase in the similar dioxides ZrO_2 and HfO_2 at pressures that exceed 300 GPa [42-44].

(a) Fe_2P -type structure

Figure 1. Crystal structures of TiO₂ phases (generated using XCrySDen software [45]). The green spheres represent the titanium atom, while the alloy orange spheres represent the oxygen atom. (a) Fe₂P-type: crystal structure: hexagonal, space group: P62m, coordination number: 9, lattice parameters: a = b = 5.3274 Å and c = 3.1234 Å, atomic coordinates: Ti1 (1/3, 2/3, 1/2), Ti2 (0, 0, 0), O1 (0.262, 0, 1/2), O2 (0.601, 0, 0). (b) Ni₂In-type: crystal structure: hexagonal, space group: $P6_3$ /mmc, coordination number: 11, lattice parameters: a = b = 3.2632 Å and c = 6.0335 Å, atomic coordinates: Ti (1/3, 2/3, 1/4), O1 (0, 0, 0), O2 (1/3, 2/3, 3/4). (c) CaC₂-type: crystal structure: tetragonal, space group: I4/mmm, coordination number: 10, lattice parameters: a = b = 2.7407 Å and c = 6.7179 Å, atomic coordinates: Ti (1/2, -1/2, 0), O (1, -1, 0.152).

However, it is important to note that the three dioxides (TiO₂, ZrO₂, and HfO₂) share obvious similarities, especially in their high-pressure behavior (e.g., see Ref. [26] and references therein). In this regard, the overlapping high-pressure phase transition sequence, experimentally observed and theoretically confirmed in the three dioxides is as follows: Monoclinic baddeleyite MI \rightarrow OI \rightarrow OII \rightarrow Fe₂P [3,15,26,29,31,46–50].

The obvious and close similarities of the high-pressure behavior of titania, zirconia, and hafnia have motivated us to test the stability of Fe_2P -TiO₂ with respect to CaC₂ and Ni_2In phases. In detail, until recently, the theoretical work performed on TiO₂ predicted the $Fe_2P \rightarrow CaC_2$ transition [33,36], while the $Fe_2P \rightarrow Ni_2In$ transition was predicted in ZrO_2 and HfO₂ [42–44]. Therefore, to better understand the upper part of the phase transition sequence in TiO_2 , we have performed DFT calculations to investigate the phase relations among Fe₂P, CaC₂, and Ni₂In phases at megabar pressures. Consequently, the long-range target of this study is to draw the similarities and differences between TiO_2 and other similar transition-metal dioxides in terms of predicting the ultrahigh-pressure phase transition sequence, which will hopefully lead to a better understanding of the high-pressure behavior of such dioxides.

2. Computational Details

In order to investigate the phase stability and the equations of state (EOSs) of all tested phases of TiO₂, we used static *first-principles* computations performed within the framework of density functional theory (DFT) [51]. The projector-augmented wave (PAW) formalism [52,53] was used to treat the interactions between the titanium (Ti) and oxygen (O) atoms with the valence configuration of $3s^23p^63d^24s^2$ for Ti and $2s^22p^4$ for O. Following previous theoretical high-pressure studies carried out on TiO₂ and similar dioxides [29,43,44,46–48], the electronic exchange and correlation effects were treated within the GGA [54]. We performed our calculations using the Quantum ESPRESSO package [55] with an energy cutoff of 80 Ry and Γ -centered k-point meshes [56]. Our calculations yielded sufficient convergence to better than 10^{-5} Ry in the total energies for both phases, and pressures were converged to better than 0.1 GPa. The Brillouin zone integration was performed using the following k-point meshes for the ZrO_2 phases: $8 \times 8 \times 12$ for Fe₂P, $12 \times 12 \times 8$ for CaC₂, and $20 \times 20 \times 16$ for Ni₂In. For a fixed volume, all internal degrees of freedom and unit-cell parameters of the structure were optimized simultaneously during the geometry optimizations. The ground-state energy for each phase was determined for 13–16 volumes, and the EOS parameters for each phase were obtained by fitting the total energy as a function of volume to a second-order Birch–Murnaghan equation of state (BM-EOS) [57] (Table 1). Phonon dispersion calculations have not been performed and will be the scope of future studies.

Table 1. Calculated equations of state for the Fe₂P, Ni₂In, and CaC₂ phases of TiO₂. Our EOS is determined from GGA calculations using the second-order BM-EOS [57]. For comparison, we list other calculated EOSs for TiO₂ and the similar dioxides ZrO_2 and HfO₂. 1 σ uncertainties are given in parentheses.

Phase	Equation of State			Reference
i nase	V_0 (Å ³)	<i>K</i> ₀ (GPa)	K ₀ ′	
Fe ₂ P-TiO ₂	25.7	272.1	4	[31]
	25.53	287	4.1	[32]
	25.59 (0.03)	284 (2)	4 (fixed)	This work
Fe ₂ P-ZrO ₂	30.17	248	3.76	[42]
	30.94 (0.03)	272 (2)	4 (fixed)	[44]
	30.34	272	4 (fixed)	[48]
Fe ₂ P-HfO ₂	29.73 (0.02)	282 (2)	4 (fixed)	[43]
	29.69 (0.03)	288 (2)	4 (fixed)	[48]
	29.8	284	4.2	[50]
Ni ₂ In-TiO ₂	27.82 (0.19)	173 (6)	4 (fixed)	This work
Ni ₂ In-ZrO ₂	29.21	239	3.86	[42]
	31.81 (0.13)	200 (5)	4 (fixed)	[44]
Ni ₂ In-HfO ₂	30.49 (0.14)	213 (6)	4 (fixed)	[43]
CaC ₂ -TiO ₂	25.23 (0.04)	264 (3)	4 (fixed)	This work

3. Results and Discussion

3.1. Phase Stability and Equation of State

We computed our EOS parameters for each phase by fitting the energy-volume (*E-V*) data to the following second-order BM-EOS [57] for which the first pressure derivative of the bulk modulus at zero pressure (K_0') was fixed to 4 and the zero-pressure volume (V_0) and the zero-pressure bulk modulus (K_0) were used as fitting parameters. The determination of the EOS for the three phases allowed us to investigate their compressibilities and phase stability at high pressure as well as the volume change across different transitions.

The EOS parameters for all phases are summarized in Table 1 along with results from previous calculations [31,32]. We note that our calculated EOS for the Fe₂P phase agrees well with previous studies [31,32]. On the other hand, the EOS of either Ni₂In or CaC₂ has not been previously obtained. In this regard, we should emphasize that the Ni₂In-type structure has not been tested for TiO_2 , while CaC_2 has been proposed for TiO_2 [33,36]. Therefore, to our knowledge, we provide the EOS of the Ni₂In and CaC₂ phases of TiO₂ for the first time (Table 1). When comparing the EOS for the three phases, we notice that Fe_2P has the highest bulk modulus and thus is the most incompressible phase, followed by CaC_2 and finally Ni₂In that exhibits the most compressibility among all tested phases. In detail, a small bulk modus decrease (~7%) is predicted across $Fe_2P \rightarrow CaC_2$, while we note an obviously large decrease (~39%) across $Fe_2P \rightarrow Ni_2In$ (Table 1). Furthermore, the density of CaC₂ at zero pressure is higher than that of Fe₂P, as expected, which is not the case for Ni_2In where the density is less than that of Fe_2P by ~9% (Figure 2). We should note that such predicted large changes in K_0 and V_0 across Fe₂P \rightarrow Ni₂In are likely to be unexpected across transitions to higher-pressure phases, whereas the corresponding changes across $Fe_2P \rightarrow CaC_2$ are much more reasonable.

Figure 2. Pressure versus volume of TiO₂ phases as determined by GGA calculations using BM-EOS [57]. The dashed circles show the large volume reduction across the Fe₂P \rightarrow Ni₂In and Fe₂P \rightarrow CaC₂ transitions.

To obtain the transition pressures, we calculated the enthalpy change relative to the Fe₂P phase (Figure 3). First, we note that the transition from Ni₂In to CaC₂ or vice versa is not possible at ultrahigh pressures as their enthalpy curves are unlikely to intersect. Furthermore, although the enthalpy curves of the two phases seem to cross at lower pressures, this transition is not expected to occur within the stability field of the Fe₂P phase. Our enthalpy calculations indicate that the transition pressure across the Fe₂P \rightarrow Ni₂In transition is 564 GPa. On the other hand, our calculated transition pressure across the Fe₂P \rightarrow CaC₂ transition is 664 GPa, in agreement with previous findings (Table 2) [33,36]. We should note that although the Ni₂In phase has a lower enthalpy than the CaC₂ phase, this does not necessarily mean that Fe₂P \rightarrow Ni₂In is the favorable transition when compared to the Fe₂P \rightarrow CaC₂ transition. Consequently, there are two possible scenarios for the transition from the Fe₂P phase, and thus one must be eliminated from the transition sequence of TiO₂. Therefore, in the next sections, we further explore the two transitions to predict the favored post-Fe₂P phase of TiO₂.

3.2. Enthalpy Difference and Volume Collapse across Phase Transitions

In this section, we discuss the enthalpy difference across the two transitions and the contribution of the volume change in this difference as well as the correlation between the volume decrease and the coordination number increase. We note that the $Fe_2P \rightarrow Ni_2In$ and $Fe_2P \rightarrow CaC_2$ transitions are associated with a large enthalpy difference (Figure 3, Table 3) across the phase transition. Our calculations reveal that such noticeable enthalpy difference is mainly due to the obvious volume reduction across both transitions (Figure 2, Table 3), while the contribution of electronic energy gain has a minimal effect.

Although both transitions are driven by a large enthalpy change as discussed above, it has been found that the $Fe_2P \rightarrow Ni_2In$ transition requires a larger enthalpy change compared to the $Fe_2P \rightarrow CaC_2$ transition. This result is not unexpected and can be explained in view of the coordination number change across transitions; in this regard, we notice that the $Fe_2P \rightarrow Ni_2In$ is related to a 2-coordination-number increase (from 9 to 11) whereas $Fe_2P \rightarrow CaC_2$ is driven by a 1-coordination-number increase (from 9 to 10).

Figure 3. Change in enthalpy with respect to Fe_2P phase versus pressure of one formula unit as determined by GGA calculations for TiO_2 . The transition pressures across transitions from Fe_2P to Ni_2In and CaC_2 phases are shown.

Table 2. Calculated transition pressures across the $Fe_2P \rightarrow Ni_2In$ and $Fe_2P \rightarrow CaC_2$ phase transitions for TiO₂. For comparison, we list other calculated results.

Phase Transition	Transition Pressure (GPa)	Reference	
$Fe_2P \to Ni_2In$	564 GPa	This work	
$Fe_2P \rightarrow CaC_2$	647 GPa 689 GPa 664 GPa	[36] [33] This work	

Table 3. Enthalpy difference, band gap difference, volume change, and coordination number change across the $Fe_2P \rightarrow Ni_2In$ and $Fe_2P \rightarrow CaC_2$ phase transitions for TiO_2 .

Phase Transition	$\Delta H/\Delta P$		Band Gap		
	eV·GPa ^{−1} (×10 ^{−4})	kJ∙mol ^{−1} ∙GPa ^{−1}	Difference (eV)	(%)	Number Change
$Fe_2P \to Ni_2In$	-48.102	-0.46411	0.04	5.6	2
$Fe_2P \rightarrow CaC_2$	-28.135	-0.27416	0	3.7	1

However, regardless of the coordination number increase (either 1 or 2), the calculated volume collapse across both transitions does not show a large difference (3.7% for CaC₂ vs. 5.6% for Ni₂In), where Fe₂P \rightarrow Ni₂In is expected to show a much larger volume reduction due to the large coordination increase across this transition. In detail, it has been previously found that for TiO₂, the 2-coordination increase (from 7 to 9 in OI \rightarrow OII transition) results in an ~ 8% volume reduction [29] compared to a 5.6% reduction for the same coordination increase in Fe₂P \rightarrow Ni₂In. On the other hand, the 3.7% volume decrease in Fe₂P \rightarrow CaC₂ transition looks more appropriate for a 1-coordination increase and agrees well with previous studies that reported values of 3.3–3.4% [33,36]. Therefore, based on the interplay between the volume reduction and coordination number change, the Fe₂P \rightarrow CaC₂ transition is likely favorable in TiO₂ when compared to the Fe₂P \rightarrow Ni₂In transition.

3.3. Band Gap Calculations at the Transition Pressures

To further investigate the proposed ultrahigh-pressure phases of titania, we explored the pressure dependence of the band gap by analyzing the band structure of each phase at different pressures (Figures 4 and 5). Often, DFT calculations systematically underestimate band gaps; however, they accurately describe the pressure dependence [58,59]. We speculate that such analysis might be helpful in gaining a deeper insight into the Fe₂P \rightarrow Ni₂In and Fe₂P \rightarrow CaC₂ transitions to better determine the favorable phase transition. Our band gap calculations show that the band gap of the Fe₂P-type structure at zero pressure is ~0.94 eV and decreases as pressure increases, where the drop in the band gap becomes more obvious at megabar pressures (Figure 4). However, regardless of such band-gap collapse, we should note that the Fe₂P phase remains a semiconductor up to multi-megabar pressures before its metallization begins at pressures greater than 650 GPa (Figure 4), in good agreement with previous predictions obtained for Fe₂P-TiO₂ [33,36].

Figure 4. Calculated band gap of the Fe₂P phase as a function of pressure. The vertical dashed lines indicate the transition pressures of the Fe₂P \rightarrow Ni₂In and Fe₂P \rightarrow CaC₂ transitions.

Additionally, our analysis of the band structures of the Ni₂In and CaC₂ phases reveals that both structures have metallic characteristics (band gap = 0 eV) at their predicted transition pressures from the Fe₂P phase (Figures 4 and 5, Table 2). In this regard, we note that the band gap difference (Table 2, Figure 4) across Fe₂P \rightarrow CaC₂ transition is zero (0 eV \rightarrow 0 eV) compared to a ~0.04 eV difference across Fe₂P \rightarrow Ni₂In transition (0.04 eV \rightarrow 0 eV). Consequently, our band gap calculations likely provide further evidence that supports the Fe₂P \rightarrow CaC₂ transition being the favorable transition when compared to the Fe₂P \rightarrow CaC₂ transition. Thus, we confirm previous theoretical findings that predict CaC₂ to be the post-Fe₂P phase for TiO₂ [33,36]. Finally, it should be noted that such confirmation is important since the Ni₂In phase was a highly possible scenario for TiO₂ as it has been predicted to be the post-Fe₂P phase in the similar dioxides ZrO₂ and HfO₂ [42–44]. In this regard, we should emphasize that the three dioxides undergo the same transition sequence at high pressures (MI \rightarrow OI \rightarrow OII \rightarrow Fe₂P), but the post-Fe₂P phase in TiO₂ (i.e., Ni₂In-type).

Figure 5. Electronic band structure for: **(Top)** the Fe₂P phase at 0 GPa, 564 GPa, and 664 GPa; **(Bottom)** the Ni₂In and CaC₂ phases at 564 GPa and 664 GPa, respectively.

4. Conclusions

In conclusion, we employed DFT computations to investigate the ultrahigh-pressure phase stability of the Ni₂In and CaC₂ structures with respect to the Fe₂P structure of titania. We explored the Fe₂P \rightarrow Ni₂In and Fe₂P \rightarrow CaC₂ transitions to better predict the favored post-Fe₂P of TiO₂. These transitions were thoroughly studied in terms of the volume decrease, the coordination number increase, and the band gap reduction. Our analysis favored the Fe₂P \rightarrow CaC₂ transition, and thus we predict that the CaC₂-type structure is likely the post-Fe₂P phase of TiO₂, and therefore the most stable phase of titania at pressures that exceed 664 GPa. This result is also evidenced by a similar conclusion we recently obtained for ZrO₂, where the Fe₂P \rightarrow CaC₂ transition was predicted to be more favorable than the Fe₂P \rightarrow Ni₂In transition (unpublished), thus emphasizing the close similarities of the high-pressure behavior of titania and zirconia. Finally, our equation of state determination shows that CaC₂ is the densest phase with a high bulk modulus that is comparable to that of the experimentally observed Fe₂P phase, while the Ni₂In phase reveals a low density and high compressibility.

Author Contributions: Conceptualization, Y.A.-K. and K.T.; methodology, Y.A.-K.; software, K.T.; formal analysis, Y.A.-K. and K.T.; writing—original draft preparation, K.T. and Y.A.-K.; writing—review and editing, Y.A.-K. and K.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available in the article.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Wu, X. Applications of Titanium Dioxide Materials. In *Titanium Dioxide—Advances and Applications;* IntechOpen: London, UK, 2022.
- Basheer, C. Application of Titanium Dioxide-Graphene Composite Material for Photocatalytic Degradation of Alkylphenols. J. Chem. 2013, 2013, 456586. [CrossRef]
- 3. Nishio-Hamane, D.; Shimizu, A.; Nakahira, R.; Niwa, K.; Sano-Furukawa, A.; Okada, T.; Yagi, T.; Kikegawa, T. The Stability and Equation of State for the Cotunnite Phase of TiO₂ up to 70 GPa. *Phys. Chem. Miner.* **2009**, *37*, 129–136. [CrossRef]
- Swamy, V.; Kuznetsov, A.Y.; Dubrovinsky, L.S.; Kurnosov, A.; Prakapenka, V.B. Unusual Compression Behavior of Anatase TiO₂ Nanocrystals. *Phys. Rev. Lett.* 2009, 103, 75505. [CrossRef] [PubMed]
- Shul'ga, Y.M.; Matyushenko, D.V.; Golyshev, A.A.; Shakhrai, D.V.; Molodets, A.M.; Kabachkov, E.N.; Kurkin, E.N.; Domashnev, I.A. Phase Transformations in Nanostructural Anatase TiO₂ under Shock Compression Conditions Studied by Raman Spectroscopy. *Tech. Phys. Lett.* 2010, *36*, 841–843. [CrossRef]
- Ding, Y.; Chen, M.; Wu, W. Mechanical Properties, Hardness and Electronic Structures of New Post-Cotunnite Phase (Fe₂P-Type) of TiO₂. *Phys. B Condens. Matter* 2014, 433, 48–54. [CrossRef]
- Wang, Z.; Saxena, S.K. Raman Spectroscopic Study on Pressure-Induced Amorphization in Nanocrystalline Anatase (TiO₂). Solid State Commun. 2001, 118, 75–78. [CrossRef]
- 8. Gerward, L.; Olsen, J.S. Post-Rutile High-Pressure Phases in TiO₂. J. Appl. Crystallogr. 1997, 30, 259–264. [CrossRef]
- 9. Wang, Z.; Saxena, S.K.; Pischedda, V.; Liermann, H.P.; Zha, C.S. X-Ray Diffraction Study on Pressure-Induced Phase Transformations in Nanocrystalline Anatase/Rutile (TiO₂). *J. Phys. Condens. Matter* **2001**, *13*, 8317–8323. [CrossRef]
- Swamy, V.; Dubrovinsky, L.S.; Dubrovinskaia, N.A.; Langenhorst, F.; Simionovici, A.S.; Drakopoulos, M.; Dmitriev, V.; Weber, H.-P. Size Effects on the Structure and Phase Transition Behavior of Baddeleyite TiO₂. *Solid State Commun.* 2005, 134, 541–546. [CrossRef]
- Dubrovinskaia, N.A.; Dubrovinsky, L.S.; Ahuja, R.; Prokopenko, V.B.; Dmitriev, V.; Weber, H.-P.; Osorio-Guillen, J.M.; Johansson, B. Experimental and Theoritical Identification of a New High-Pressure TiO₂ Polymorph. *Phys. Rev. Lett.* 2001, *87*, 275501. [CrossRef]
- 12. Caravaca, M.A.; Mino, J.C.; Perez, V.J.; Casali, R.A.; Ponce, C.A. Ab Initio Study of the Elastic Properties of Single and Polycrystal TiO₂, ZrO₂ and HfO₂ in the Cotunnite Structure. *J. Phys. Condens. Matter* **2009**, *21*, 15501. [CrossRef] [PubMed]
- Hearne, G.R.; Zhao, J.; Dawe, A.M.; Pischedda, V.; Maaza, M.; Nieuwoudt, M.K.; Kibasomba, P.; Nemraoui, O.; Comins, J.D. Effect of Grain Size on Structural Transitions in Anatase TiO₂: A Raman Spectroscopy Study at High Pressure. *Phys. Rev. B* 2004, 70, 134102. [CrossRef]
- 14. Swamy, V.; Kuznetsov, A.; Dubrovinsky, L.S.; McMillan, P.F.; Prakapenka, V.B.; Shen, G.; Muddle, B.C. Size-Dependent Pressure-Induced Amorphization in Nanoscale TiO₂. *Phys. Rev. Lett.* **2006**, *96*, 135702. [CrossRef] [PubMed]
- 15. Ahuja, R.; Dubrovinsky, L.S. High-Pressure Structural Phase Transitions in TiO₂ and Synthesis of the Hardest Known Oxide. *J. Phys. Condens. Matter* **2002**, *14*, 10995–10999. [CrossRef]
- Wang, Y.; Zhao, Y.; Zhang, J.; Xu, H.; Wang, L.; Luo, S.; Daemen, L.L. In Situ Phase Transition Study of Nano- and Coarse-Grained TiO₂ under High Pressure/Temperature Conditions. *J. Phys. Condens. Matter* 2008, 20, 125224. [CrossRef]
- 17. Flank, A.-M.; Lagarde, P.; Itie, J.-P.; Hearne, G.R. Pressure-Induced Amorphization and a Possible Polyamorphism Transition in Nanosized TiO₂: An x-Ray Absorption Spectroscopy Study. *Phys. Rev. B* **2008**, *77*, 224112. [CrossRef]
- 18. Arlt, T.; Bermejo, M.; Blanco, M.A.; Gerward, L.; Jiang, J.Z.; Olsen, J.S.; Recio, J.M. High-Pressure Polymorphs of Anatase TiO₂. *Phys. Rev. B* **2000**, *61*, 14414. [CrossRef]
- 19. Mattesini, M.; de Almeida, J.S.; Dubrovinsky, L.; Dubrovinskaia, N.; Johansson, B.; Ahuja, R. High-Pressure and High-Temperature Synthesis of the Cubic TiO₂ Polymorph. *Phys. Rev. B* **2004**, *70*, 212101. [CrossRef]
- Swamy, V.; Muddle, B.C. Ultrastiff Cubic TiO₂ Identified via First-Principles Calculations. *Phys. Rev. Lett.* 2007, *98*, 35502.
 [CrossRef]
- Swamy, V.; Dubrovinskaia, N.A.; Dubrovinsky, L.S. Compressibility of Baddeleyite-Type TiO₂ from Static Compression to 40 GPa. J. Alloys Compd. 2002, 340, 46–48. [CrossRef]
- Muscat, J.; Swamy, V.; Harrison, N.M. First-Principles Calculations of the Phase Stability of TiO₂. *Phys. Rev. B* 2002, 65, 224112. [CrossRef]
- Lyakhov, A.O.; Oganov, A.R. Evolutionary Search for Superhard Materials: Methodology and Applications to Forms of Carbon and TiO₂. *Phys. Rev. B* 2011, *84*, 92103. [CrossRef]

- 24. Al-Khatatbeh, Y.; Lee, K.K.M.; Kiefer, B. Compressibility of Nanocrystalline TiO₂ Anatase. *Phys. Chem. C* **2012**, *116*, 21635–21639. [CrossRef]
- Swamy, V.; Dubrovinsky, L.S.; Dubrovinskaia, N.A.; Simionovici, A.S.; Drakopoulos, M.; Dmitriev, V.; Weber, H.-P. Compression Behavior of Nanocrystalline Anatase TiO₂. *Solid State Commun.* 2003, 125, 111–115. [CrossRef]
- Al-Khatatbeh, Y.; Lee, K.K.M. From Superhard to Hard: A Review of Transition Metal Dioxides TiO₂, ZrO₂, and HfO₂ Hardness. J. Superhard Mater. 2014, 36, 231–245. [CrossRef]
- 27. Van Gestel, T.; Sebold, D.; Kruidhof, H.; Bouwmeester, H.J.M. ZrO₂ and TiO₂ Membranes for Nanofiltration and Pervaporation. Part 2. Development of ZrO₂ and TiO₂ Toplayers for Pervaporation. *J. Memb. Sci.* **2008**, *318*, 413–421. [CrossRef]
- 28. Swamy, V.; Muddle, B.C. Pressure-Induced Polyamorphic Transition in Nanoscale TiO₂. J. Aust. Cer. Soc. 2008, 44, 1–5.
- 29. Al-Khatatbeh, Y.; Lee, K.K.M.; Kiefer, B. High-Pressure Behavior of TiO₂ as Determined by Experiment and Theory. *Phys. Rev. B* **2009**, *79*, 134114. [CrossRef]
- Meng, X.; Wang, L.; Liu, D.; Wen, X.; Zhu, Q.; Goddard, W.A.; An, Q. Discovery of Fe₂P-Type Ti(Zr/Hf)2O₆ Photocatalysts toward Water Splitting. *Chem. Mater.* 2016, 28, 1335–1342. [CrossRef]
- Dekura, H.; Tsuchiya, T.; Kuwayama, Y.; Tsuchiya, J. Theoretical and Experimental Evidence for a New Post-Cotunnite Phase of Titanium Dioxide with Significant Optical Absorption. *Phys. Rev. Lett.* 2011, 107, 45701. [CrossRef]
- Fu, Z.; Liang, Y.; Wang, S.; Zhong, Z. Structural Phase Transition and Mechanical Properties of TiO₂ under High Pressure. *Phys. Status Solidi Basic Res.* 2013, 250, 2206–2214. [CrossRef]
- Zhong, X.; Wang, J.; Zhang, S.; Yang, G.; Wang, Y. Ten-Fold Coordinated Polymorph and Metallization of TiO₂ under High Pressure. *RSC Adv.* 2015, *5*, 54253–54257. [CrossRef]
- Liang, Y.; Zhang, B.; Zhao, J. Mechanical Properties and Structural Identifications of Cubic TiO₂. *Phys. Rev. B* 2008, 77, 94126. [CrossRef]
- 35. Swamy, V.; Kuznetsov, A.; Dubrovinsky, L.S.; Caruso, R.A.; Shchukin, D.G.; Muddle, B.C. Finite-Size and Pressure Effects on the Raman Spectrum of Nanocrystalline Anatase TiO₂. *Phys. Rev. B* **2005**, *71*, 184302. [CrossRef]
- Lyle, M.J.; Pickard, C.J.; Needs, R.J. Prediction of 10-Fold Coordinated TiO₂ and SiO₂ Structures at Multimegabar Pressures. *Proc. Natl. Acad. Sci. USA* 2015, 112, 6898–6901. [CrossRef]
- Luo, W.; Yang, S.F.; Wang, Z.C.; Ahuja, R.; Johansson, B.; Liu, J.; Zou, G.T. Structural Phase Transitions in Brookite-Type TiO₂ under High Pressure. *Solid State Commun.* 2005, 133, 49–53. [CrossRef]
- Machon, D.; Daniel, M.; Pischedda, V.; Daniele, S.; Bouvier, P.; LeFloch, S. Pressure-Induced Polyamorphism in TiO₂ Nanoparticles. *Phys. Rev. B* 2010, *82*, 140102. [CrossRef]
- 39. Wang, Y.; Zhang, J.; Zhao, Y. Strength Weakening by Nanocrystals in Ceramic Materials. Nano Lett. 2007, 7, 3196–3199. [CrossRef]
- 40. Baty, S.R.; Burakovsky, L.; Errandonea, D. Ab Initio Phase Diagram of Copper. *Crystals* **2021**, *11*, 537. [CrossRef]
- Diaz-Anichtchenko, D.; Errandonea, D. Comparative Study of the Compressibility of M₃V₂O₈ (M = Cd, Zn, Mg, Ni) Orthovanadates. *Crystals* 2022, 12, 1544. [CrossRef]
- 42. Durandurdu, M. Novel High-Pressure Phase of ZrO2: An Ab Initio Prediction. J. Solid State Chem. 2015, 230, 233–236. [CrossRef]
- 43. Al-Khatatbeh, Y.; Tarawneh, K.; Hamad, B. The Prediction of a New High-Pressure Phase of Hafnia Using First-Principles Computations. *IOP Conf. Ser. Mater. Sci. Eng.* **2018**, 305, 012006. [CrossRef]
- 44. Al-Taani, H.; Tarawneh, K.; Al-Khatatbeh, Y.; Hamad, B. The High-Pressure Stability of Ni₂In-Type Structure of ZrO₂ with Respect to OII and Fe₂P-Type Phases: A First-Principles Study. *IOP Conf. Ser. Mater. Sci. Eng.* **2018**, 305, 012016. [CrossRef]
- 45. Kokalj, A. Computer Graphics and Graphical User Interfaces as Tools in Simulations of Matter at the Atomic Scale. *Comput. Mater. Sci.* 2003, *28*, 155–168. [CrossRef]
- 46. Al-Khatatbeh, Y.; Lee, K.K.M.; Kiefer, B. Phase Diagram up to 105 GPa and Mechanical Strength of HfO₂. *Phys. Rev. B* 2010, *82*, 144106. [CrossRef]
- Al-Khatatbeh, Y.; Lee, K.K.M.; Kiefer, B. Phase Relations and Hardness Trends of ZrO₂ Phases at High Pressure. *Phys. Rev. B* 2010, 81, 214102. [CrossRef]
- 48. Al-Khatatbeh, Y.; Tarawneh, K.; Al-Taani, H.; Lee, K.K.M. Theoretical and Experimental Evidence for a Post-Cotunnite Phase Transition in Hafnia at High Pressures. *J. Superhard Mater.* **2018**, *40*, 374–383. [CrossRef]
- 49. Nishio-Hamane, D.; Dekura, H.; Seto, Y.; Yagi, T. Theoretical and Experimental Evidence for the Post-Cotunnite Phase Transition in Zirconia at High Pressure. *Phys. Chem. Miner.* **2015**, *42*, 385–392. [CrossRef]
- 50. Dutta, R.; Kiefer, B.; Greenberg, E.; Prakapenka, V.B.; Duffy, T.S. Ultrahigh-Pressure Behavior of AO₂ (A = Sn, Pb, Hf) Compounds. *J. Phys. Chem. C* 2019, 123, 27735–27741. [CrossRef]
- 51. Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. *Phys. Rev.* **1964**, *136*, B864–B871. [CrossRef]
- 52. Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. *Phys. Rev. B* 1999, *59*, 1758–1775. [CrossRef]
- 53. Blochl, P.E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953. [CrossRef] [PubMed]
- 54. Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, 77, 3865–3868. [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials. *J. Phys. Condens. Matter* 2009, 21, 395502. [CrossRef] [PubMed]

- 56. Monkhorst, H.J.; Pack, J.D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13, 5188–5192. [CrossRef]
- 57. Birch, F. Elasticity and Constitution of the Earth's Interior. J. Geophys. Res. 1952, 57, 227–234. [CrossRef]
- 58. Bandiello, E.; Errandonea, D.; Martinez-Garcia, D.; Santamaria-Perez, D.; Manjón, F.J. Effects of High Pressure on the Structural, Vibrational, and Electronic Properties of Monazite-Type PbCrO 4. *Phys. Rev. B* **2012**, *85*, 024108. [CrossRef]
- 59. Borlido, P.; Schmidt, J.; Huran, A.W.; Tran, F.; Marques, M.A.L.; Botti, S. Exchange-Correlation Functionals for Band Gaps of Solids: Benchmark, Reparametrization and Machine Learning. *npj Comput. Mater.* **2020**, *6*, 96. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.