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Abstract: Despite the increasing interest in graphene, a less studied aspect is the enhancement of
silicon (Si) performances due to the interaction with graphene-based materials. In this study, cyclic
voltammetry and electric impedance measurements are performed on graphene oxide (GO) dip-
coated on n-type and p-type Si samples. The electrical properties of GO on n-type Si samples are
dramatically enhanced: The conductivity and the photocurrent meaningfully increase in comparison
to bare n-type Si. Such findings could be used in a wide variety of optoelectronic applications,
improving GO future applicability in the Si semiconductor industry.
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1. Introduction

The semiconductor technology is based on crystalline silicon (Si), which is an inefficient
light-emitting material because it is an indirect bandgap semiconductor [1]. Therefore,
attention in the semiconductor field has turned to graphene, which is a single layer of
carbon atoms arranged in a honeycomb lattice [2] that has ultrahigh charge-carrier mobility,
broadband light absorption, and linear dispersion band structure [3]. Graphene is thus an
advantageous material for several applications in electronics and optoelectronics [4,5].

Despite its outstanding properties, graphene cannot replace Si entirely because of the
poor on/off current ratio, which results from its zero bandgap [6]. However, it has been
suggested that graphene could improve Si-based devices to afford broadband operation
in light routing and amplification in components such as polarizers, modulators, and
photodetectors [6].

Another advantage of graphene-based materials is that they can be produced in
ultrathin sheet form that can be transferred to suitable substrates [7].

Graphene oxide (GO) is a graphene-based material that has more oxygen-containing
groups and defects compared with mechanically exfoliated or chemical vapor-deposited
graphene. These defects are proven to be favorable to enhancing the performance of
photodetectors [8]. Furthermore, previous research works have shown that GO thin films
have high optical transmittance in the visible region of the spectrum that allows their use
as protective coatings and optically transparent electrodes, crucial in solar cells and for
optical applications [9].

GO has been studied for several applications [10–24] in previous research works.
In particular, Brzhezinskaya et al. [25] demonstrated a simple method for GO deposi-

tion for creating different electronic devices including memristor devices for neuromorphic
computing systems in the field of large data and artificial intelligence. Khurana et al. [26]
observed thermally stable bipolar resistive switching behavior in the memory devices
composed of GO thin films on indium tin oxide coated glass substrate with platinum as
the top electrode. Panin et al. [27] reported resistive switching behaviors in an Al/GO/Al
planar structure. Qi et al. [28] demonstrated highly uniform resistive switching and a
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high on/off ratio of resistive random access memory based on GO by embedding gold
nanoparticles into the device. Jeong et al. [28] presented a GO-based memory that can be
easily fabricated using a room-temperature spin-casting method on flexible substrates and
has reliable memory performance in terms of retention and endurance.

In our works, we have studied the optical properties of GO [9,29]. A less studied
aspect in the framework of graphene-based material is the enhancement of Si performances
due to the interaction with GO.

In this work, we characterize GO thin films deposited on n-type and p-type Si sub-
strates using cyclic voltammetry and impedance measurements. The photocurrent and
conductivity of n-type Si are substantially enhanced due to the interaction with GO thin
films, which could be crucial for several applications in the optical field.

2. Materials and Methods

The n-type and p-type Si wafers used as substrates were ultrasonically cleaned in
acetone, then in bidistilled water, and finally in isopropanol.

All samples were prepared using GO 2 g/L dispersion in H2O (bought from Punto Quantico).
The dip-coating process [30] was used to deposit GO films (10 nm) on n-type and

p-type Si with a homemade apparatus at a speed of 0.33 mm/s.
In Figures 1 and 2, the schemes of the sample cell are reported.
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Figure 2. Scheme of the sample cell.

The ends of the silicon strip were etched with a hydrogen fluoride solution to remove
the native SiO2 layer, and two copper conductors were indium soldered on both ends. An
opaque mask reduced the light-exposed surface of the sample to an area of 17 mm × 5 mm.

In Figure 4, the scheme of the experimental setup is reported.
In Figure 3, the photos of the sample cell are reported.
The sample was placed inside an insulated dark box, the temperature of which was

controlled by a fan and a thermometer. The light beam was emitted by a tungsten halogen
lamp powered at a constant current of 8.3A (100 W) using an Instek 2010 PSP-2010 power
supply. Current-to-voltage scans were performed using a Keithley 2612A source meter.
Sample impedance was measured using an Agilent 4294A Precision Impedance Analyzer.
All the measurements were made at room temperature and were performed inside the dark
box in conditions of dark and light illumination (4450 lux).

Additional morphological, optical, and electrical measurements of the samples are
available in the Supplementary Materials.
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3. Results and Discussion

In Figures 5 and 6, the cyclic voltammetry measurements of n-type (p-type) Si and
GO/n-type (p-type) Si samples under dark and light illumination conditions are reported.



Crystals 2023, 13, 73 4 of 7

Crystals 2023, 13, x FOR PEER REVIEW 4 of 7 
 

 

3. Results and Discussion  
In Figures 5 and 6, the cyclic voltammetry measurements of n-type (p-type) Si and 

GO/n-type (p-type) Si samples under dark and light illumination conditions are reported.  

 
Figure 5. Cyclic voltammetry measurements on n-type silicon and graphene oxide/n-type Si sam-
ples under dark and light illumination conditions. 

 
Figure 6. Cyclic voltammetry measurements on p-type silicon and graphene oxide/p-type Si sam-
ples under dark and light illumination conditions. 

As can be seen in Figure 5, the I–V characteristics show that the photocurrent of the 
GO/n-type Si samples more than tripled in comparison to bare n-type Si samples under 
light illumination.  

Under light illumination conditions, incident light is absorbed in the Si substrate and 
electron−hole pairs are generated as a result. Therefore, an explanation of the observed 
behavior may be that photogenerated carriers in GO can be driven toward the Si conduc-
tion band by a built-in electrical field with light illumination. At the same time, Si also 
absorbs photons and excites the photogenerated carriers. Electrons will accumulate in the 
conduction band of Si, while photogenerated holes will be transported into the GO’s 

Figure 5. Cyclic voltammetry measurements on n-type silicon and graphene oxide/n-type Si samples
under dark and light illumination conditions.

Crystals 2023, 13, x FOR PEER REVIEW 4 of 7 
 

 

3. Results and Discussion  
In Figures 5 and 6, the cyclic voltammetry measurements of n-type (p-type) Si and 

GO/n-type (p-type) Si samples under dark and light illumination conditions are reported.  

 
Figure 5. Cyclic voltammetry measurements on n-type silicon and graphene oxide/n-type Si sam-
ples under dark and light illumination conditions. 

 
Figure 6. Cyclic voltammetry measurements on p-type silicon and graphene oxide/p-type Si sam-
ples under dark and light illumination conditions. 

As can be seen in Figure 5, the I–V characteristics show that the photocurrent of the 
GO/n-type Si samples more than tripled in comparison to bare n-type Si samples under 
light illumination.  

Under light illumination conditions, incident light is absorbed in the Si substrate and 
electron−hole pairs are generated as a result. Therefore, an explanation of the observed 
behavior may be that photogenerated carriers in GO can be driven toward the Si conduc-
tion band by a built-in electrical field with light illumination. At the same time, Si also 
absorbs photons and excites the photogenerated carriers. Electrons will accumulate in the 
conduction band of Si, while photogenerated holes will be transported into the GO’s 

Figure 6. Cyclic voltammetry measurements on p-type silicon and graphene oxide/p-type Si samples
under dark and light illumination conditions.

As can be seen in Figure 5, the I–V characteristics show that the photocurrent of the
GO/n-type Si samples more than tripled in comparison to bare n-type Si samples under
light illumination.

Under light illumination conditions, incident light is absorbed in the Si substrate and
electron−hole pairs are generated as a result. Therefore, an explanation of the observed
behavior may be that photogenerated carriers in GO can be driven toward the Si conduction
band by a built-in electrical field with light illumination. At the same time, Si also absorbs
photons and excites the photogenerated carriers. Electrons will accumulate in the conduc-
tion band of Si, while photogenerated holes will be transported into the GO’s valence band.
The mechanism of generation and transportation inhibits the effective recombination of
carriers, and in turn, increases the photocurrent.

The I–V characteristics in Figure 6 reveal a current behavior in the GO/p-type Si sam-
ples almost identical to that of the bare p-type Si in dark and light illumination conditions.
Therefore, there is no substantial improvement due to the presence of GO in the case of
p-type Si substrates.
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Figures 7 and 8 show the impedance measurements on n-type (p-type) Si and GO/n-
type (p-type) Si samples.
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In Figure 7, the impedance of GO/n-type Si samples decreases in both the absence
and presence of light radiation. The conductivity is quintupled for GO/n-type Si samples
in comparison to bare n-type Si under light conditions.

A possible explanation may be that GO doping shifts the Fermi energy level of Si
towards the Si conduction band, thus increasing its conductivity. However, additional
research is required to corroborate this claim.

As shown in Figure 8, the p-type silicon and GO/p-type Si samples have the same
impedance behavior in dark conditions. In the presence of light radiation, there is an
increase in GO/p -type Si conductivity in comparison to bare p-type Si.

4. Conclusions

In summary, this study provides a demonstration of an innovative method for improv-
ing the conductivity of Si using GO.

The photocurrent and conductivity of n-type Si are significantly enhanced by dip-
coating GO on it. The photocurrent of p-type Si is not significantly affected by interaction
with GO, whereas its conductivity is enhanced.
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Hence, GO could improve the Si semiconductor industry, (especially n-type Si), finding
applications in numerous areas such as solar cells, touch screens, transparent displays,
imaging, sensing, and other optoelectronic applications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cryst13010073/s1, Figure S1: Scanning electron microscopy image
of GO films on Si substrates (n-type). Figure S2: Scanning electron microscopy image of GO films
on Si substrates (p-type). Figure S3: Particle size distribution of very diluted GO flakes in water.
Figure S4: Variable angle spectroscopic ellipsometry measurements of graphene oxide films on Si
substrates (n-type). Experimental and model generated ψ (a) and ∆ (b) data fit at different angles of
incidence. Figure S5: Variable angle spectroscopic ellipsometry measurements of graphene oxide
films on Si substrates (p-type). Experimental and model generated ψ (a) and ∆ (b) data fit at different
angles of incidence. Figure S6: Impedance measurements on n-type Si and graphene oxide/n-type Si
samples under dark and light illumination conditions. Figure S7: Cyclic voltammetry measurements
on n-type Si and graphene oxide/n-type Si samples under dark and light illumination conditions.
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