
Citation: Tang, Z.; Xu, J.; Wu, B.; Li,

S.; Sun, F.; Ma, T.; Kuznetsova, I.;

Nedospasov, I.; Su, B.; Kang, P.

Topological Valley Transport of

Elastic Waves Based on Periodic

Triangular-Lattices. Crystals 2023, 13,

67. https://doi.org/10.3390/

cryst13010067

Academic Editors: Kuo-Chih

Chuang, Yanfeng Wang, Yongquan

Liu and Yuri Kivshar

Received: 21 November 2022

Revised: 18 December 2022

Accepted: 28 December 2022

Published: 30 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

crystals

Communication

Topological Valley Transport of Elastic Waves Based on Periodic
Triangular-Lattices
Zehuan Tang 1, Jiachao Xu 1, Bowei Wu 1, Shuanghuizhi Li 1,*, Fei Sun 1, Tingfeng Ma 1, Iren Kuznetsova 2 ,
Ilya Nedospasov 2, Boyue Su 1 and Pengfei Kang 1

1 School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
2 Institute of Radio Engineering and Electronics of RAS, 125009 Moscow, Russia
* Correspondence: 2111081008@nbu.edu.cn; Tel.: +86-15-207-422-135

Abstract: Topological transports of elastic waves have attracted much attention because of their
unique immunity to defects and backscattering-suppression ability. Periodic lattice structures are
ideal carriers of elastic-wave transports due to their ability to manipulate elastic waves. Compared
with honeycomb-lattice structures, the wave-guide-path designs of triangular-lattice structures have
higher flexibility. In this paper, topological transports of elastic waves in the periodic triangular-
lattice structure are explored. It is shown that differences between intra-coupling and inter-coupling
radii can cause the destruction of the effective spatial inversion symmetry, which gives rise to the
valley Hall phase transition and the forming of topological edge states. Utilizing valley Hall effect,
topological transports of elastic waves traveling along linear and Z-shaped waveguides are realized
with low scattering and immunity to defects. On this basis, the path-selection function of transports
of elastic waves in periodic triangular-lattice structures is obtained. Topological valley Hall edge
states of elastic waves in periodic triangular-lattice structures have a good application prospects in
elastic-wave manipulations and communications.

Keywords: topological edge states; valley Hall effect; periodic triangular lattice; elastic waves

1. Introduction

Acoustic waves can carry out logical operation, signal processing, and accurate mea-
surement of multiple physical parameters [1–7]. These advantages of acoustic waves are
particularly prominent in solids, which propagate in the form of elastic waves. In recent
years, as a carrier of information and energy, elastic waves have become a hot spot of con-
cern, which have several important advantages, such as strong anti-interference ability [8],
low transmission loss [9,10], and large information capacity [11]. In addition, elastic-wave
devices are easy to integrate, and are thus widely used in traditional fields such as wireless
communication, passive sensing, nondestructive testing, geological exploration, as well
as the rapidly quantum computing, and so on. However, there are still many problems in
elastic wave transports [12,13]; for instance, the existence of too much scattering can cause
problems and the transport effect is sensitive to defects in the structure.

Topological protections provide unprecedented opportunities for wave manipulation
and energy transport in various physical fields [14,15], including elasticity, acoustics, quan-
tum mechanics, and electromagnetisms. Elastic waves with topological protections can
achieve lossless transport through suppressing backscattering and are immune to various
defects and impurities [13,16,17]. There is no wave propagation inside the topological
insulator. On the interface composed of two kinds of topological insulators with different
phases or the boundary of the topological insulator itself, the wave energy can be trans-
ported with topological protections. Lattice structures have a wide application prospect
in topological insulators because the propagation of elastic waves in this type of structure
are easily controlled [18]. Previously, lattice-structure based topological transports were
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realized mainly on honeycomb-lattice [19] and kagome-lattice structures [20,21], for which,
the construction of the path lacks flexibility. The periodic triangular-lattice structure has
a good application prospect in topological transport of elastic waves due to its simplicity
in structure. The structure has uniform mass-point arrangement and all mass-points are
distributed on straight lines, thus straight and bend wave-guide paths can both realized
easily, namely the wave-guide-path designs have higher flexibility.

In this work, by breaking the spatial symmetry of the structure by changing the intra-
coupling and inter-coupling radii, a valley Hall topological insulator based on periodic
triangular-lattices is constructed to realize topological transports of elastic waves, and its
immunities to defects and path corners are verified. On this basis, a direction-selective
elastic energy splitter based on periodic triangular-lattice structures is designed.

2. Model

The triangular-lattice structure is shown in Figure 1a, where a is the lattice constant
and

→
a1 and

→
a2 are lattice vectors. The unit cell of the triangular lattice is represented

within the dashed frame in Figure 1a and a zoomed-in figure is shown in Figure 1b. The
inter-coupling and intra-coupling radii between cylinders, namely radii of round bars
responsible for intra-coupling and inter-coupling of the unit cell, are set as R1 and R2,
respectively. The cylinder radii are both R, and the cylinder height is hd. The parameters
are set as: R = 5 mm, R1 = 3mm, R2 = 0.8 mm, hd = 15 mm.
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Assuming a time dependence of the form e−iωt, the time independent elastic wave
equation in a homogeneous medium [22] can be written as

(λ + 2µ)∇(∇ · u)− µ∇×∇× u + ρω2u = 0, (1)

where u is the displacement vector, and ρ is the mass density. λ, µ are Lame coefficients
of the medium, which are related to Young’s modulus and Poisson’s ratio. This equation
gives rise to uncoupled longitudinal and shear waves with velocities cl =

√
(λ + 2µ)/ρ

and cs =
√

µ/ρ, respectively. In the structure shown in Figure 1, by detuning the values of
radii R1 and R2, the inter-couplings and intra-couplings of the unit cell change accordingly.
Thus, the space-inversion symmetry can be broken, which gives rise to gapless edge states.
In order to clearly explain the influence of inter-coupling and intra-coupling radii, the
tight-binding model is used to describe this structure.

The governing equation of vibrations of the system can be written as:

M
..
u + Ku = P(t), (2)

where M represents mass matrix,
..
u is acceleration matrix, K stands for stiffness matrix, u is

displacement matrix, and P(t) stands for load matrix. In this case, the load matrix P(t) = 0
is considered. Thus, the motion governing equation can be written as

M
..
u + Ku = 0, (3)
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The basis vector in three directions of the lattice of the unit cell satisfies:

|r1|+ |r2|+ |r3| = 1,

r1 + r2 + r3 = 0,

〈 r1, r2〉 = 〈 r2, r3〉 = 〈 r3, r1〉 = 1
2 .

(4)

The unit cell in Figure 1b contains four masses of value m, the radii of intra-bars
and inter-bars are denoted by R1 and R2, respectively, corresponding to equivalent intra-
coupling and inter-coupling spring constants k1 and k2, respectively. Letting ur

j be the
displacement of mass j in the unit cell (r), a Floquet–Bloch wave of wave number k and
frequency ω is characterized by

ur
j = uk(j)ei(k·r−ωt) (5)

By using the tight-binding model, according to Equation (3), the governing equations
for the four cylinders in the unit cell are obtained, namely

−mω2u1 = k1〈u2 − u1, r1〉 r1 + k2
〈

Q∗1u2 − u1, r1〉 r1

+k1〈u3 − u1, r2〉 r2 + k2〈Q2u3 − u1, r2〉 r2

+k2〈Q3u4 − u1, r3〉 r3 + k2
〈

Q∗3u4 − u1, r3〉 r3,

(6)

−mω2u2 = k1〈u1 − u2, r1〉 r1 + k2〈Q1u1 − u2, r1〉 r1

+k1〈u3 − u2, r3〉 r3 + k2
〈

Q∗3u3 − u2, r3〉 r3

+k1〈u4 − u2, r2〉 r2 + k2〈Q2u4 − u2, r2〉 r2,

(7)

−mω2u3 = k1〈u1 − u3, r2〉 r2 + k2〈Q∗2u1 − u3, r2〉 r2

+k1〈u2 − u3, r3〉 r3 + k2〈Q3u2 − u3, r3〉 r3

+k1〈u4 − u3, r1〉 r1 + k2
〈

Q∗1u4 − u3, r1〉 r1,

(8)

−mω2u4 = k2〈Q3u1 − u4, r3〉 r3 + k2
〈

Q∗3u1 − u4, r3〉 r3

+k1〈u2 − u4, r2〉 r2 + k2〈Q∗2u2 − u4, r2〉 r2

+k1〈u3 − u4, r1〉 r1 + k2〈Q1u3 − u4, r1〉 r1.

(9)

According to Bloch’s theorem:

Q∗j = e−iqj ,
Qj = eiqj ,

(10)

where qj = 〈q, rj〉, for j = 1, 2, 3.
From Equations (6)–(9), it can be seen that intra-coupling radii R1 and inter-coupling

R2 influence status of motions of four cylinders in the unit cell. Through change the relative
size of R1 and R2, the effective spatial symmetry can be destroyed, which is expected to
cause the valley Hall phase transition.

COMSOL Multiphysics was used to solve the dispersion relation of elastic-wave
transport in periodic triangular lattices. Figure 2a shows the dispersion curve when the
inter-coupling and intra-coupling radii are the same (R1 = R2 = 2 mm). It is shown that
a degeneracy appears at point K in the dispersion relation. When the inter-coupling and
intro-coupling radii are different (R1 = 3 mm, R2 = 0.8 mm), the dispersion relation curve
is shown in Figure 2b, where the Dirac cone at point K is opened, and a bandgap is formed.
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3. Valley Hall Effect Analogy

Figure 3a,b show the structure diagrams and dispersion curves for unit cells of type
A and B, respectively. In Figure 3a, the intra-coupling radius (R1) is larger than the inter-
coupling (R2) radius, which results a stronger intra-coupling compared with the inter-
coupling. For the unit cell of type B shown in Figure 3b, the strengths of intra-coupling and
inter-coupling inverse compared to type A. For each case, by breaking the space-inversion
symmetry, a Dirac cone in two bands is opened and a complete band gap is formed.

The displacement fields of valley Modes 1–4 are calculated, as shown in Figure 3c. The
results show that Mode 1 (the top valley of type-A unit cell) is obviously polarized (from left
to right), while Mode 2 (the bottom valley of type-A unit cell) has no obvious polarization
phenomenon, and the displacement is concentrated in the center of the unit cell. Similarly,
for Mode 3 (the top valley of type-B unit cell), there is no obvious polarization phenomenon.
In Mode 4 (the bottom valley of type-B unit cell), the displacement is significantly polarized
to the left from right, and the displacement is concentrated in the center of the unit cell.
It is shown that the polarization direction of type-A and type-B unit cells are opposite,
indicating a chiral distribution. The existence of chiral polarization is an important feature
of the valley mode. With these valley degrees of freedom, robust wave transports are
expected to be achieved. It can be seen that the polarization direction reverses during the
change from R1 > R2 to R1 < R2, and the topological phase is indeed transformed.

The influences of coupling-radii variations of the unit cell on the valley bandgap are
further analyzed for the K point. Firstly, the inter-coupling radius in the unit cell is fixed
as 2.5 mm and that of the intra-coupling radius is increased from 1 to 4 mm. In Figure 4a,
it is shown that when ∆R 6= 0, the bandgap opens up. The bandgap size increases with
the increase of the absolute value of ∆R. In addition, the midgap frequency of the bands
increases obviously with the increase of ∆R. Figure 4b shows the relationship between
the bandgap value and ∆R. It can be seen that with the increase of the absolute value of
∆R, the bandgap value increases nonlinearly. Then, the intra-coupling radius in the unit
cell is fixed as 2.5 mm and that of the inter-coupling radius is increased from 1 to 4 mm.
Figure 4c,d shown that a similar conclusion can be obtained. Based on the above results,
the required frequency band-structure can be achieved by selecting suitable coupling radii,
which determine the frequency range of topological edge states.
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4. Topological Valley Edge States

The topological phase transition is confirmed by the chiral polarization of displacement
field distributions of the unit cells. In order to further verify the existence of topological
edge states, a supercell is constructed. The unit cells of types A and B are jointed to form
a supercell, making the periodicity in one direction of the structure disappear; namely,
it degenerates into a finite structure in one direction, as shown in Figure 5a. The top
and bottom boundaries along the y-direction are assigned free boundary conditions. The
dispersion relations of the supercell are calculated, as shown in Figure 5b. The valley
Hall edge states can be observed in the frequency range from 47 to 54 kHz, which are
indicated by the line in the red dashed frame, and other lines correspond to bulk states. The
displacement fields of the supercell for the edge-state frequency of 52 kHz are calculated,
as shown in Figure 5c. It is shown that the domain wall can support edge states effectively.

In order to study the transport characteristics of elastic waves in the periodic triangular
lattices, linear waveguides, Z-shaped waveguides and Z-shaped waveguides with defects
are constructed. Figure 6a,c show the linear and Z-shaped waveguides, respectively. The
structure consists of 12 × 12 unit cells. Periodic triangular lattices of types A and B are
distributed in two sides of the path. The simulations are carried out via COMSOL Multi-
physics. A wave source is set at the entrance of the waveguide. During FEM simulations,
an absorbing boundary condition is applied to four outer edges of the structure to prevent
wave reflections from the boundaries. The Solid Mechanics Module is used to model the
lattice structure, a frequency-domain analysis is conducted to simulate the elastic-wave
transport. The frequency range of scanning for the simulation is 40–60 kHz.
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the linear waveguide; (c) Schematic diagram of the Z-shaped waveguide; (d) Topological transport of
elastic waves in the Z-shaped waveguide.

The result of the wave transport in the linear waveguide is shown in Figure 6b. It can
be found that the vibrations generated by the wave source can propagate along the path,
and the energy is mainly concentrated on the interface and the scattering is not obvious.
Figure 6d shows the result of the wave transport in the Z-shaped waveguide. Even if there
are bending corners in the waveguide path, the backscattering is minor and the energy loss
in propagation is very small.
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In order to further verify the immunity of topological insulators to defects, a 16 × 16
Z-shaped waveguide with a defect is designed, shown in Figure 7a. An inter-coupling
pillar in the path is deleted, forming a defect. The local magnification of the defect is shown
in the right part of Figure 7a. The result of the wave transport is shown in Figure 7b. The
existence of the defect does not obviously affect the wave transport. It is indicated that
the topological insulator has a good immunity to the defect. On the interface composed of
valley hall insulators with unit cells of types A and B, the valley phases on both sides of the
interface are opposite, and the topological boundary states are formed. Therefore, elastic
waves can propagate stably along the interface and are robust to defects and corners.
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In addition, a direction-selective elastic energy splitter is designed based on the
periodic triangular-lattice structure, as shown in Figure 8a. This splitter includes four
sections consisted of lattices with unit-cell types A or B. Four interface paths are formed,
which are labeled by OT, OU, OV and OW, respectively. To characterize the cross-waveguide
splitter, a full-field numerical simulation of elastic-wave transports is performed, and the
material and dimension parameters used are same to those in Section 3. The exciting
positions are set in points U, V and W, respectively. The transport effects are shown in
Figure 8b–d, respectively.
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In Figure 8b, it can be seen that when the elastic wave is excited in Point T, the wave
prefers to split and propagate back along OU and OV, eventually localizing at the left edge
of the lattice without reaching the opposite edge (OW). Opposite group velocities between
OT and OW interfaces result in elastic waves that cannot propagate straight through the
junction. Figure 8c shows the result when the exciting point is selected in point W. Similarly,
the elastic waves split and propagate back along OU and OV without reaching the opposite
edge (OT). In addition, the exciting point is set in O, the effect of wave transport is shown
in Figure 8d. It can be seen that the elastic wave split to only paths OU and OV. When the
wave starts from point O, for paths OT and OW, the left is of lattice-type B and the right
is of lattice-type A, which correspond to the interface mode in Section 3. For paths OU
and OV, when the wave starts from point O, the left is of lattice-type A and the right is
of lattice-type B, thus opposite group velocities are obtained. Therefore, the wave cannot
propagate in the paths OU and OV.

5. Conclusions

In this paper, by utilizing the valley Hall effect obtained by breaking the spatial
inversion symmetry of periodic triangular-lattice structures, the elastic wave topological
valley transport is explored. It is shown that differences in intra-coupling and inter-coupling
radii can cause the destruction of the effective spatial inversion symmetry, which gives
rise to the forming of topological edge states. The valley bandgap width increases with
larger differences between the two coupling radii. Topological transports of elastic waves
traveling along linear and Z-shaped waveguides are realized with low scattering and
immunity to defects. On this basis, a direction-selective elastic energy splitter based on the
periodic triangular-lattice structure is obtained. The results presented in this work have
good application prospects in elastic functional devices with arbitrary paths.
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