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Abstract: In this study, we develop a facile and feasible synthetic technique for producing denser
porous titanium dioxide (TiO2) films. The porous TiO2 films are effectively prepared using a sol–
gel process with dimethylformamide (DMF). The TiO2 solution is synthesized by adjusting DMF
doses ranging from 0 to 10 wt%, and the as-grown TiO2 films are further annealed at different
temperatures from 300 to 500 ◦C. The TiO2 films exhibit an asymmetry anatase TiO2 phase as
annealing temperatures increase, and a denser structure as DMF doses increase. The optical properties
of all samples are studied, and the porous TiO2 obtained by 7.5 wt% DMF dose demonstrates a
remarkable transmittance and reflectance of 51.87% and 27.55%, respectively, in the visible region
from 350 to 850 nm when compared to the pure TiO2 films. The calculated band gap values range from
3.15 to 3.25 eV. Furthermore, the resistivity of 350 ◦C-annealed porous TiO2 thin film is determined
by the Hall effect, revealing an increase from 4.46 to an of average 4.79 ohm · cm after injecting DMF
solvent. These findings have the potential to assist a growing number of optoelectronic applications.

Keywords: titanium dioxide (TiO2); porous; annealing temperature; dimethylformamide; spin-coating

1. Introduction

Titanium dioxide (TiO2) films are one of the most widely utilized metal oxide mate-
rials due to their desirable chemical, electrical, and optical properties. Indeed, TiO2, as a
promising wide bandgap semiconductor, demonstrates outstanding light transmission, as
well as a super high refractive index and insulating characteristics, making it suitable for
use as a protective layer for very large-scale integration and optical device manufacture.
Furthermore, TiO2 is commonly used as a substitute for storing gas in silicon dioxide [1,2]
and as a replacement for ultra-thin oxide dielectric in logic elements [3–5] due to its high
dielectric constant. Additionally, TiO2 is also used in a variety of emerging electronics,
including solar cells [6–11], perovskite-based solar cells [12,13], anti-reflection coatings [7,8],
gas sensors [14,15], electrochromic displays [16,17], planar waveguides [4], and field-effect
transistors [3,5]. In 1972, multiphase photocatalysts were proposed by two researchers,
Fujishima and Honda, via decomposing water on TiO2 to generate oxygen and hydrogen
gas [18]. Since then, an intriguing phenomena of photocatalytic TiO2 rapidly emerged
in academia and industry, and it has been actively used in a wide range of applications,
such as self-cleaning surfaces, water and air purification, anti-fog surfaces, anti-corrosion,
and for anti-bacterial purposes. Most studies adopting powdered TiO2 material, however,
have found that dispersion and coating are significant challenges. As a result, extensive
research on the preparation of TiO2 films has been conducted, including atomic layer depo-
sition (ALD) [9,11], chemical vapor deposition (CVD) [19,20], physical vapor deposition
(PVD) [14,15], spray, dip, or spin-coating, and the sol–gel technique [5–8]. The utilized
TiO2 solutions critically depend on the application and substrate used. The most popular,

Crystals 2023, 13, 61. https://doi.org/10.3390/cryst13010061 https://www.mdpi.com/journal/crystals

https://doi.org/10.3390/cryst13010061
https://doi.org/10.3390/cryst13010061
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0001-9161-3678
https://orcid.org/0000-0002-1065-0889
https://doi.org/10.3390/cryst13010061
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst13010061?type=check_update&version=3


Crystals 2023, 13, 61 2 of 18

titanium tetrachloride (TiCl4) and titanium alkoxide [20,21], are usually employed in ALD,
CVD, and PVD, whereas solutions of sol–gel TiO2 [17,18] are utilized via spray, dip, and
spin-coating. In comparison to the complicated equipment needed in ALD, CVD, and PVD,
nanoscale TiO2 thin films can be obtained by using the popularized sol–gel technique. The
sol–gel technique is a cost-effective method and there is good control over the chemical
composition of the products due to the low reaction temperature. Furthermore, it is a con-
ventional and industrial method for the synthesis of nanoparticles with different chemical
compositions. The basis of the sol–gel technique is also the production of a homogeneous
sol from the precursors and its conversion into a gel. The solvent in the gel is then removed
from the gel structure, and the remaining gel is dried [22]. The above statements reveal the
advantages of convenience, controllability, and repeatability for the sol–gel technique.

Currently, avoiding the aggregation of TiO2 nanoparticles during the sol–gel prepara-
tion process is a key issue. The TiO2 samples annealed at 750 ◦C via microwave-assisted
hydrothermal reaction consist of larger aggregated particles with diameters of 500–900 nm,
and still retain a mesoporous anatase structure, but with a reduced specific surface area [23].
The TiO2 microspheres synthesized by ultrasonic spray pyrolysis have a crystallite size
of 8 nm and a specific surface area of 27 m2·g−1, and were produced as soft spherical
agglomerates of ~0.6 mm [24]. It is found that the appropriate addition of different kinds
or amounts of organic solvents suggests the result of homogeneous dispersion of sol–gel
TiO2 [25]. Meanwhile, high temperatures can be used to treat amorphous TiO2 sol–gel to
obtain the porous TiO2 films with anatase phase [25,26]. The preparation of porous TiO2
thin films is notably useful for their higher photoactivity than compact films due to the
benefit of a higher surface area, despite the limitation of low adhesive strength and poor
compactness, both of which are difficult to improve. The dense TiO2 film can be prepared
by heating or annealing the porous characteristic under the proper temperature control,
improving the disadvantages of porous TiO2 film, such as low mechanical strength, low
adhesive strength on the substrate, and the lower transmittance. On the other hand, among
the solvents that were used, dimethyl sulfoxide (DMSO) was thought to be more useful due
to its relatively less dangerous nature [27]. To improve transmittance, DMSO is commonly
used as a formulation additive in the preparation of the TiO2 electron transport layer (ETL)
of perovskite solar cells [28]. Furthermore, this study has compared the optical differences
in TiO2 ETL prepared by distilled water and dimethylformamide (DMF), respectively. On
the surface of TiO2 films, before annealing in air gas, another treatment has been found; a
mixed solution of titanium (IV) isopropoxide (TTIP), ethanol, distilled water, and HNO3
was spin-coated with Cs2CO3 that had been dissolved in a CH3OCH2CH2OH solution.
Acid-treated TiO2 films, such as HCl and H2SO4, are another option for improving dye-
sensitized solar cell performance [29] due to a rougher surface and more hydroxyl groups,
resulting in increased surface area and enhanced adherence of the dense TiO2 film with the
porous TiO2 film by Ti-O-Ti bonds formed by a simple heating process of 150 ◦C for 10 min.
Some research has looked into ethylene glycol and formamide, as well as a mixed solution
of N-methylformamide and HF, NH4F, or KF for the application of the TiO2 film [30].

One of the proper and most commonly used organic solvents is dimethylformamide
(DMF), due to its high dielectric constant, the aprotic nature of the solvent, and its low
volatility [7]. The DMF is used in organic synthesis, especially a series of metal carbonyl
complexes and a few carbonylative reactions. The DMF is an aprotic solvent that can sol-
ventize Ti cations. As the reaction proceeded, the DMF molecules would be taken off from
these Ti chelates under high temperature and pressure [31]. However, the decomposition
of DMF is difficult due to its high boiling point. The requirement of high temperature and
strong acids or bases to volatilize results in the production of carbon and oxygen atoms
of the carbonyl group (CO) bonds. The carbon and oxygen atoms can exist in the crystal
structure with the defect or interstitial state, and the typical CO-containing volatile organic
compounds on an anatase TiO2 (001) surface can also be calculated by density functional
theory [32]. This finding contributes to a better understanding of how the possible produc-
tion reacted with carbon-containing compounds during volatilization. Currently, there are
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many organic solvents acting as a reaction medium, and the Suzuki reaction utilizes the
in situ generated CO from photocatalytic DMF decomposition as a CO source [33]. The
presence of CO is a proof and incentive to examine the true crystal structure of TiO2 films by
decomposing DMF at high annealing temperatures. The most common application of DMF
solvent is to enhance the film compactness, which means making the film more compact.
Furthermore, increasing the film compactness is also an excellent functional technique for
preventing the recombination of electrons and holes in solar cells [9]. Although DMF is
used to inhibit the aforementioned drawbacks, only a few reports discuss the effects of
concentration or doses on the post-annealing temperatures for TiO2 film formation [12,13].
Hamid Latif, et al., reported that the deposition of the compact TiO2 layer without DMF,
but both the active CH3NH3PbBr3 layer and spiro-OMeTAD as a hole transport layer were
prepared in DMF solution [12]. Govindhasamy Murugadoss, et al., also reported that
the perovskite CH3NH3PbI3 layer was prepared using a PbI2 solution dissolved in DMF
solvent with stirring at 70 ◦C. However, the increased current density is attributed to the
improved crystal structure obviously induced by DMF solvent via annealing.

Furthermore, the effects of carbon and oxygen atoms and the CO bonds on the prepa-
ration of the TiO2 film should be looked into to find out how organic polar solvents interact
with the film after the annealing process. In general, thermal treatment, such as substrate
heating or post-deposition annealing, is important for TiO2 thin films to improve their op-
toelectrical and structural properties. The most important parameters will be the annealing
environment with pure oxygen gas or an atmosphere, the difference in oxygen concentra-
tion to cause the oxygen supplementation, and a sufficient or insufficient oxygen lattice for
repairing the disordered lattice and improving the crystallinity. Several studies indicate
that the annealing process effectively increases the film compactness [34], leading to an
increase in mobility, but a slight decrease in transmittance, which is crucially determined
by the annealing parameters. In order to obtain the best transmittance and compactness,
the parameters of annealing temperatures and solvent doses should be traded off.

In this study, several doses of dimethylformamide (DMF) solvent ranging from 0 to
10 wt% are applied to the solution based on Ti metal. The dynamic spin-coating technique
is used to prepare porous TiO2 thin films. After that, the formed porous films are annealed
at temperatures ranging from 300 to 500 ◦C. The effects of DMF solvent doses and annealing
temperatures on the porous TiO2 thin film, as well as a variety of optical, structural, and
electrical properties, are investigated. Meanwhile, the porous TiO2 thin film prepared
achieves the goals of higher transmittance than 50% and lower reflectance than 30% at
the visible wavelength range of 400–700 nm to increase the light utilization efficiency for
optoelectronics, including solar cells and optical sensors.

2. Materials and Methods

In this paper, all required materials were purchased by the commercial channels and
encased in a vacuum moisture-proof box. These materials were not purified before solution
preparation. As in our previous research [9–11], the fluorine-doped tin oxide-coated glass
substrate (FTO glass (2.2 mm), with a sheet resistance of 7 Ω/sq, AimCore Technology,
Hsinchu, Taiwan), and dimensions of 2 cm × 2 cm was cleaned by standard operating
procedures. To reduce carbon contamination and improve the surface energy, the FTO glass
was treated by 10 W oxygen (O2) plasma for 2 min (Junsun Tech. Co., Ltd., Taipei, Taiwan)
before being transferred to the glove box. The detailed preparation parameters for the TiO2
solution and film growing are summarized in Table 1.
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Table 1. The preparation parameters for the TiO2 solution and its film growth.

Parameter Value Units Note

Deionized water 3 mL
2 Nanopowder TiO2 2 G Sigma-Aldrich

CAS No. 13463-67-7

Triton-100; 1 dM = 1.06 g·cm−3 100 µL Sigma-Aldrich
purity: 3 CP

Acetylacetone; 1 dM = 0.973 g·mL−1 100 µL Sigma-Aldrich
purity: 3 GC

DMF solvent 0 to 10
(0, 2.5, 5, 7.5, and 10) wt% Sigma-Aldrich

purity: 3 AR
Spin speed 3000 rpm
Spin time 60 s

Film growing temperature 180 ◦C

Annealing temperature 300 to 500 ◦C(300, 350, 400, 450,
and 500)

1 Here, dM is the density of material. 2 Nanopowder TiO2 has a 21 nm primary particle size (TEM), and ≥99.5%
trace metals basis. 3 Abbreviations are as follows: CP, chemically pure grade; GC, gas chromatography grade; AR,
analytical reagent grade.

2.1. TiO2 Solution and TiO2 Thin Films

The preparation for the TiO2 solution and its film growing was carried out in a glove
box with low water and O2 values. As shown in Figure 1, the TiO2 solution was mixed
using the following materials: titanium oxide (Sigma-Aldrich), Triton-100 (Sigma-Aldrich),
acetylacetone (Sigma-Aldrich), deionized water, and DMF (Sigma-Aldrich). It was then
was stirred at 300 rpm for 24 h. During the preparation of the TiO2 solution, the DMF
concentration was varied from 0 to 10 wt%, corresponding to the dose dripping by 54, 107,
160, and 216 µL, respectively. The TiO2 solution was spin-coated with dynamic dispersal on
the FTO substrates and then heated on a hotplate to dry the TiO2 thin film. The thickness of
the 350 ◦C-annealed samples as the DMF dose increased were near 780.5, 785.9, 786.4, 794.9,
and 786 nm, respectively. After growing the TiO2 thin film, the film subsequently received
an annealing process in a furnace (RH-274, Tender, Taiwan) at 1 atm in air for 30 min. The
annealing temperature was varied from 300 to 500 ◦C to investigate its influence on the film
properties. The sample is placed in the tube during the annealing process. The annealing
process has been set up in a three-stage mode, as follows: annealing to 70% temperature set
within 30 min in the initial stage and maintaining it for 15 min as the second stage, and
then annealing to the temperature set in the third stage. After the annealing process, the
samples were cooled down to 40% temperature set within 1 h and then until they reached
room temperature within 1 h before being taken out.

2.2. Characteristic Measurement

The crystallite structure was obtained by X-ray diffraction (XRD, Ultima IV, Rigaku
Corporation, Tokyo, Japan) on a Philips X’s Pert diffractometer equipped with CuKα

irradiation (λ = 0.15418 nm) and a fixed power source operating at 40 kV and 40 mA. The
XRD patterns were collected in the 2θ range of 10◦ to 60◦, with a step size of 0.06◦. The
optical properties were measured by the UV–Visible spectrophotometer (UV-3900, Hitachi,
Tokyo, Japan). The film thickness (d) was determined by using an alpha-step profilometer
(D-500, KLA Tencor Milpitas, CA, USA). The band gap (Eg) of the films was determined by
using Tauc’s plot method with the following equation: (αhν)0.5 = Am(hν − Eg); where Am
is the material dependent constant, hν is the incident photon energy, and α is the absorption
coefficient which is illustrated as given by the following: α = (ln((1 − R)/T))/d, where
the R and T are the optical reflectance and transmittance of films, respectively. The Eg
values of the TiO2 films are evaluated by plotting (αhν)0.5 versus hν and extrapolating the
linear region of the resultant curves to obtain an interception with the hν-axis. The sample
was observed by field-emission scanning electron microscopy (FESEM (0.5 to 30 kV), JEOL
6330, Japan) and high-resolution transmission electron microscopy (TEM (200 kV), JEOL
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JEM-2100F CS STEM, Japan) to demonstrate the top-view morphologies and the cross-
section images, respectively. Energy-dispersive spectroscopy (EDS, Hitachi S-4800, Oxford
Instruments, Shenzhen, China) is used to determine the atomic and weight content of
carbon, nitrogen, oxygen, and titanium. Before sample cutting, the sample was capped by a
carbon deposited by an E-gun system as a protective layer to prevent damage from Ga ions
during sample cutting. The Hall effect analyzer (AHM-800B, advanced design technology,
Marchannel Co., Ltd., Shanghai, China) was measured at room temperature to acquire the
carrier concentration, mobility, and resistivity.
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3. Results and Discussion

As shown in Figure 2a, X-ray diffraction (XRD) was used to obtain the diffraction
patterns of TiO2 films at different annealing temperatures from 300 to 500 ◦C. An obvious
(101) peak as a major crystal phase is observed as TiO2 film is annealed. Based on the
diffraction peaks of the TiO2 films and FTO substrate indexed from the JCPDS card (nos.
71-0652 and 41-1445) [35–37], there is no additional crystal phase growth with the increasing
annealing temperatures. Meanwhile, the major peak of (101) observed as the preferred
orientation reveals the single-crystal-like structure of TiO2 films prepared by the 7.5 wt%
DMF dose. However, as shown in Figure 2b, a (101) phase at the diffraction angle near
25.32◦ ± 0.02◦ observed is asymmetric, and slightly shifts as the increasing annealing
temperatures. For example, the peak position shifts to a higher 25.34◦ and a lower 25.3◦ as
the annealing temperature increases to 350 and 450 ◦C, respectively. Furthermore, the peak
position at 400 and 500 ◦C shifts to the initial angle, respectively. The reason for the shift
of peak position is attributed to the presence of coexisting crystalline phases induced by
the phase-transition phenomena between β-TiO2 and λ-TiO2 [37]. The non-stoichiometric
components of Ti metal may be another reason [38–40]. Some researchers point out that this
crystalline phase belongs to the anatase (101), and similar studies for solution engineering
via the spin-coating method also reveals the single-crystal-like TiO2 films [41].

The full width at half maximum (FWHM) value calculated by the Gaussian function
in Figure 2c can highlight the intensity variation of the (101) diffraction peak. Notably,
as the annealing temperature increases, the highest and lowest FWHM values of 0.178◦

and 0.305◦ are obtained at 350 and 500 ◦C, respectively. The FWHM values at 300, 400,
and 450 ◦C are approximately 0.223◦, 0.242◦, and 0.223◦, respectively. The decrease in
FWHM at 350 ◦C and 450 ◦C is due to the increase in crystallinity, suggesting a lattice
expansion or contraction [42]. Therefore, the grain size (D) and d-spacing from XRD data
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are also calculated by using the Scherrer formula and Bragg formula, as in the following
Equations (1) and (2), respectively [35–37]:

D (βcosθ) = κλ, (1)

2 d̄ sinθ = nλ, (2)

where, in Equation (1), based on θ, the Bragg angle is the peak position where the κ of 0.9 is
the Scherrer constant, and λ is the wavelength of the X-ray sources to estimate the β value
by the line broadening at FWHM; in Equation (2), n is the order of diffraction to obtain
the d-spacing of d̄. Furthermore, the micro-strain (ε), and dislocation density (δ) are also
calculated, respectively, by the following Equations (3) and (4):

ε = β/4tanθ, (3)

δ = m/D2, (4)

where the m as a factor is 1. The calculated values are summarized in Table 2. The d-spacing
of TiO2 films varies with the increasing annealing temperatures from 300 to 500 ◦C, reveal-
ing the values of ~3.509, ~3.523, ~3.517, ~3.525 Å, and ~3.525 Å, respectively. It is found
that the d̄ at 300 ◦C is close to the standard value of 3.353 Å, illustrating a lattice expansion
of films induced by the chemical reaction [35,36]. In fact, an obvious color difference on the
film surface is observed visually after heating on a hotplate. Thus, due to the bad thermal
conductivity of the FTO substrate, it can be said that the heating temperature of 180 ◦C
is insufficient to volatilize the DMF solvent (bp = ~153 ◦C) incompletely, leading to the
irregular arrangement and revealing the smaller estimated d-spacing of ~3.51 Å at 300 ◦C.
Increasing the temperature from 300 to 350 ◦C contributes to atoms being able to acquire
more diffusion activation energy to move to energetically favorable lattice sites, causing
the lattice expansion and the increase in d-spacing at 350 ◦C. The decreasing d-spacing
at 400 ◦C evidences the lattice contraction, indicating that the decomposed atoms, such
as carbon, nitrogen, and oxygen, are possibly at interstitial sites and able to be released
by air annealing. Meanwhile, the role of DMF solvent based on the XRD results not only
reveals its assistance in film formation, but also determines the further decomposition as
the proper annealing parameters.

Table 2. The XRD results of the 7.5 wt%-injected TiO2 annealed at different temperatures from 300 to
500 ◦C.

Annealing
Temperatures

(◦C)

Peak
Position

(◦)

(101) Plane

β d̄ D ε × 10−3 δ × 10−3

(◦) (Å) (nm) (nm−2)

300 25.38 0.223 3.5093 36.545 4.3212 0.7488
350 25.32 0.178 3.5229 45.775 3.4633 0.4772
400 25.32 0.242 3.5174 33.672 4.7008 0.8820
450 25.34 0.223 3.5147 36.542 4.3282 0.7489
500 25.34 0.305 3.5147 26.718 5.9197 1.4009

3.1. Effect of Solvent

In Figure 3, the optical properties of TiO2 films only prepared with different DMF
doses from 0 to 10 wt% are demonstrated as the function of wavelength from 350 to 850 nm.
The FTO substrate and air were served as the baseline sample to obtain the transmittance
and reflectance, respectively. The absorbance was calculated from the transmittance result
converted within the instrument. As shown in Figure 3a, with the increasing injection of
doses of DMF, there is almost no change in transmittance in the 0 and 2.5 wt% samples.
The transmittance increases greatly from 5 to 7.5 wt%, and indicates the highest value at
7.5 wt%. Meanwhile, the reflectance presents the opposite trend to the transmittance in
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Figure 3b. The films doped 2.5 wt% DMF have a slight decrease in reflectance compared
to the original sample. The reflectance also decreases massively from 5 to 7.5 wt% and
demonstrates the lowest value at 7.5 wt%. The reason is possibly attributed to the fact
that the chemical interaction between DMF and acetylacetone breaks the bonding of the Ti
metal and oxygen [43], further inducing the formation of co-existing crystalline structures
in Figure 2. At the same time, the proper addition of DMF solvent inhibits the higher
reaction activity [31]. On the other hand, although the hydrolysis product resulting from
the DMF solvent also inhibits the TiO2 crystal growing along the (101) direction, the TiO2
crystal growth was described as a controlled nucleation–crystallization dissolution process,
possibly due to the coordination effect [31]. The variation of transmittance and reflectance
(~10%) at short wavelengths is mainly caused by the difference in absorbance, as shown in
Figure 3c. Therefore, the haze result in Figure 3d is further calculated by the optical loss
equation of 100 − T − R = A, where T, R, and A are, respectively, transmittance, reflectance,
and absorbance; the inserted image is locally enlarged from 500 to 700 nm. As an indicator
of the light diffusion, the haze is usually defined as the percentage of light scattering at
more than 2.5◦ from the incident light direction. With the increase in DMF injection, the
haze slightly increases and then decreases to the lowest value at 7.5 wt%. As the DMF
solvent increases to 10 wt%, the films describe the optical loss of ~2% from the inserted
image of Figure 3d due to the optical loss induced by the light scattering. The consequence
of light scattering is mainly attributed to the oxygen vacancy defects. The slight absorption
of free carriers in oxygen vacancy defects may be another reason, leading to the Eg variation.
These results are also similar to a few other studies [44,45].

3.2. Effect of Annealing

The optical properties of 7.5 wt% DMF solvent-induced TiO2 films prepared at different
annealing temperatures from 300 to 500 ◦C are obtained as shown in Figure 4. The variation
of transmittance and reflectance are observed to show opposite trends in Figure 4a,b.
With the increasing annealing temperatures, the highest transmittance and the lowest
reflectance are demonstrated at 350 ◦C. As the annealing temperature increases from
350 to 450 ◦C, the transmittance decreases, and reflectance increases, respectively, and
then displays the reverse change at 500 ◦C. This indicates that the variation between the
transmittance is mainly due to the reflectance, which results from the differences in the
thickness after annealing. Thus, Figure 4c shows the understandable result of the slight
change in absorbance. The reflectance results at 300, 400, and 500 ◦C show the approximate
result in the short wavelength range. However, similar results in the long wavelength range
are also observed in the films obtained by 300 and 400 ◦C, and 350 and 500 ◦C, respectively,
mainly owing to the optical loss induced by light scatting. Therefore, the haze variation,
particularly in the long wavelength range, is estimated near 4% in Figure 4d, revealing
that the annealing temperatures below 350 ◦C exhibit no haze change, as with films at
temperatures higher than 400 ◦C.

Figure 5 further illustrates the optical properties of TiO2 films annealed at 350 ◦C in
which the solution is prepared by different DMF doses from 0 to 10 wt%. Interestingly, as
shown in Figure 5a, an obvious increase in transmittance is observed with the increase in
DMF injection. When the injected DMF dose is higher than 2.5 wt%, the transmittance of
films is closed, with the highest transmittance at 7.5 wt%, and then it decreases at 10 wt%.
Compared to the sample without annealing in Figure 3b, the reflectance decreases as the
DMF dose increases to 2.5 wt% and it remains almost unchanging at 5 wt% in Figure 5b;
however, the TiO2 films prepared by 7.5 wt% have the lowest reflectance. In general, the
compactness of films has an agreement with the increase in DMF doses [46]. The main
reason is that the slight DMF injection results in the TiO2 particle clustering during the crys-
talline formation [39,40], leading to the increased transmittance and decreased reflectance.
However, the excess DMF dose leads to the weakening transmittance and reflectance,
probably owing to the abundant bonding of Ti and oxygen. Thus, the absorbance can be
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realized in Figure 5c, despite the difference in reflectance, which is due to the haze results
in Figure 5d, leading to the closed variation of ~2%.
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Figure 3. The (a) transmittance (T), (b) reflectance (R), (c) absorbance, and (d) haze spectra for the
TiO2 films prepared by injecting different DMF doses from 0 to 10 wt%, where the inserted haze
image is in the range from 500 to 700 nm.
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Figure 5. The (a) transmittance, (b) reflectance, (c) absorbance, and (d) haze spectra for the 350 ◦C-
annealed TiO2 film prepared by injecting different DMF doses from 0 to 10 wt%.

3.3. Effect of Comprehensive Comparison

In Figure 6, the Eg of the 7.5 wt%- injected TiO2 film at 300 ◦C is 3.17 eV, and it reveals
no change from 300 to 450 ◦C, and then slightly increases to 3.19 eV at 500 ◦C. The reason
is that it is only when the annealing temperature is higher than 450 ◦C that sufficient
forming energy is provided, resulting in the densest TiO2 film. However, the Eg of the
350 ◦C-annealed TiO2 film slightly decreases from 3.17 to 3.16 eV at the 2.5 wt% DMF
dose and then increases to ~3.21 eV when increasing the DMF dose from 2.5 to 10 wt%.
The slight Eg variation in TiO2 film is affected by the DMF dose, revealing that the minor
addition of DMF solvent obviously inhibits the aggregation of nanocrystalline structures
and improves the film uniformity.

As shown in Figure 7, the topographic scanning electron microscope (SEM) images of
350 ◦C-annealed TiO2 films prepared at different DMF doses from 0 to 10 wt% are observed.
Each enlarged image is inserted to clearly estimate the crystallite size. With the increasing
DMF doses, the film surface becomes denser due to the decreasing proportion of black
cavities. Furthermore, the maximum long columnar shape observed and a clear increase in
crystallite size to ~270 nm in Figure 7d indicate the densest 350 ◦C-annealed TiO2 film. The
excess 10 wt% DMF dose reveals the additional circular particle clusters. The estimated
crystallite size distribution of the 350 ◦C-annealed TiO2 films prepared by injecting different
DMF doses from 0 to 10 wt% is approximate 169, 166, 174, 186, and 177 nm, respectively. It
can be seen that the oxygen vacancies existing within the film defects act as the nucleation
center to form the TiO2 films due to the lower kinetics [47]. On the other hand, cross-cut
testing was further used to demonstrate the film adhesion in Figure 8, revealing that better
350 ◦C-annealed TiO2 films were prepared with 7.5 wt% DMF dose as compared to the
other samples.
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Figure 6. The variation of Eg for the 350 ◦C-annealed and 7.5 wt%-injected TiO2 films prepared at
various DMF doses and different annealing temperatures, respectively.

As shown in Figure 9, the porosity determined by the ImageJ software is defined
by the ratio of the red area. The variation of determining porosity is shown in Figure 9f,
illustrating that with the increasing DMF doses, the porosity value keeps consistent at ~40%
from 0 to 5 wt%. The largest porosity of films is obtained at 350 ◦C, and then gradually
decreases to 32.9% and 31.4% in the range of 7.5 to 10 wt%, respectively.

The cross-sectional and high-resolution transmission electron microscopy (TEM) im-
ages of 350 ◦C-annealed TiO2 films prepared without and with 7.5 wt% DMF are shown
in Figure 10a,b, respectively. The cross-sectional layers observed from top to bottom are
identified as glue, TiO2, FTO substrate, and SiO2, respectively. The corresponding selected
area electron diffraction images inserted into right side identify the single-crystal-like struc-
ture of the porous TiO2 films. The obvious variation of distances between bright spots is
observed, proving the existence of Ti3O5 phase-transition. The single-crystalline structure
is demonstrated with the calculated d-spacing value as the high-resolution images in the
image of the right side. Based on the energy-dispersive spectrometer result, the area of
relative element distribution (O, Sn, Ti, and Si) presents that the black circuit shape from
the TEM is the real TiO2 particle, as shown in Figure 11. In Table 3, the carbon content
of the 350 ◦C-annealed samples with and without the 7.5 wt% DMF dose are 10.26 and
8.94 at%, respectively. Meanwhile, the nitrogen content of all samples is 0%. Compared to
the expected stoichiometry of TiO2 film, the 350 ◦C-annealed samples with and without the
7.5 wt% DMF dose show O-to-Ti (RO/Ti) atomic ratios of 1.85 and 2.23, respectively. This
result shows that the increased 1.32 at% carbon content caused by the DMF solvent, which
slightly increases the transmittance of ~7%, possibly since the carbon is an interstitial state
of the TiO2 crystal structure.
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Table 3. The concentration of the carbon and nitrogen of the 350 ◦C-annealed samples with and
without the 7.5 wt% DMF dose.

Sample Carbon Nitrogen Oxygen Titanium O/Ti
(Atomic Ratio)DMF Temp. at% wt% at% wt% at% wt% at% wt%

without
7.5 wt% 350 ◦C 8.9 4.4 0 0 62.9 40.8 28.2 54.8 2.2

with
7.5 wt%

300 ◦C 10.2 4.7 0 0 57.7 35.7 32.2 59.6 1.8

350 ◦C 10.3 4.8 0 0 58.2 36.3 31.5 58.9 1.9

400 ◦C 9.5 4.4 0 0 58.6 36.4 31.9 59.2 1.8

450 ◦C 10.5 5.3 0 0 63.2 42.1 26.3 52.6 2.4

500 ◦C 7.6 3.4 0 0 57.6 34.4 34.8 62.2 1.7

However, as annealing temperatures rise, the RO/Ti ratios of 1.79, 1.85, and 1.84 at% in
the range of 300–400 ◦C not only support the oxygen complement brought by air annealing,
but also demonstrate that the lower temperatures of 300–400 ◦C provide the Ti and O
atoms with sufficient diffusion activation energy to move to energetically favorable lattice
sites. The film annealed at 450 ◦C has the highest RO/Ti of 2.4 at%, revealing the smaller
grain size and the lowest transmittance. At 300–500 ◦C, on the other hand, the carbon
content of samples is 10.15, 10.26, 9.45, 10.53, and the lowest is 7.6 at%, respectively. This
result indicates that, in the range of 300–450 ◦C, the oxygen-insufficient TiO2 film gradually
becomes an oxygen-rich one via annealing. The removal of carbon caused by a higher
annealing temperature from 450 to 500 ◦C reveals the oxygen-insufficient film with 1.66 at%,
resulting in a decrease in carrier concentration due to the suppression of the formation
energy of oxygen vacancies [48].

Consequently, in order to obtain the transparent conductive TiO2 films, the electrical
properties as a critical factor are worthy to be discussed. Figure 12 shows the carrier
concentration (Ne), mobility (µ), and resistivity (ρ) determined by Hall effect measurements.
In Figure 12a, the Ne of 2.55 × 1020 cm−3 slightly changes to 3.12 × 1020 cm−3 when the
DMF dose is 2.5 wt%. Continuously, the highest Ne of 2.35 × 1021 cm−3 prepared with a
5.0 wt% DMF dose sharply decreases to ~3.15 × 1020 cm−3 at 7.5 and 10 wt% DMF. The µ

of the film without the DMF dose is 51.67 cm2·V−1·s−1, and it dramatically reduces to the
lowest 5.56 cm2·V−1·s−1 as injecting DMF dose to 5.0 wt%. The reason is attributed to the
addition of the DMF solvent, causing the (110) phase formation of metastable crystalline
near 25.28◦, which is observed Ti3O5 (JCPDS card references: 23-0606); this is seen as a
phase-transition based on the peak position shift. This shift toward a higher or lower
angle leads to the lattice contraction or expansion, respectively. However, the 7.5 wt%
DMF dose properly inhibits the proportion of coexisting crystalline phases. As shown in
Figure 12b, the ρ of the films prepared by injecting different DMF doses is in the range
of 4.74 × 10−4 and 4.85 × 10−4 ohm-cm, which is associated with the possible partial
lattice mismatch in the TiO2 films during crystallization, resulting in the optical loss at the
long wavelength. Compared to the FTO film (4.46 × 10−4 ohm-cm) measured and other
studies [45], this solvent-induced engineering can effectively tune the Ne and ρ of TiO2
films. On the other hand, increasing the dripping DMF dose is able to prepare the highly
transparent conductive TiO2 film.
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Figure 12. (a) Carrier concentration and mobility of the 350 ◦C-annealed TiO2 film. (b) Resistivity
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4. Conclusions

The porous TiO2 films with a single-crystal-like structure are prepared by injecting
DMF doses from 0 to 10 wt%. These solvent-induced TiO2 films are also annealed at
different temperatures from 300 to 500 ◦C. For the optoelectronic devices, such as solar
cells, optical sensors, and biomedicine engineering, the porous TiO2 film needs high
transmittance or low reflectance to increase the light utilization efficiency. With the increase
in DMF injection, the 7.5 wt% DMF indicates the best optical properties of transmittance
and reflectance. However, the porous TiO2 films prepared by 5 wt% DMF demonstrates the
optimized carrier concentration of 2.35 × 1021 cm−3 after the low-annealing temperature of
350 ◦C. The production of carbon and oxygen atoms of the carbonyl group (CO) bonds and
the carbon-containing compounds during volatilization may exist in the crystal structure
with the defect or interstitial state. Compared to the samples with and without annealing,
the appearance of the unique (101) peak near 25.2◦ proves the single-crystalline structure
of porous TiO2 films, and the slight shift of peak position proves the lattice expansion and
contraction at lower and higher than 350 ◦C, respectively. The sample at 350 ◦C also shows
the lowest FWHM value, suggesting the phase-transition phenomena between β-TiO2 and
λ-TiO2. Another possible reason can be attributed to the fact that the non-stoichiometric
components of Ti metal are induced by the addition of DMF solvent bonds with the oxygen.
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