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Abstract: Quaternary phosphonium salts are popular candidates used in many chemical trans-
formations and synthetic chemistry, notably in catalysis. We have examined the single crystals
of two bulky phosphonium compounds, tetra([1,1′-biphenyl]-4-yl) phosphonium dicyanamide
(C48H36P+·N(CN)2

−, compound 1), and tetra([1,1′-biphenyl]-4-yl) phosphonium bromide hydrate
(C48H36P+·Br−, CH3CN, H2O, compound 2), and herein report the structural properties for the
compounds with an emphasis on the influence of the ion-ion interaction towards self-assembly; the
overall self-assembly for both structures is very similar, with subtle differences in the cell parameters.
The symmetrical tetra ([1,1′-biphenyl]-4-yl) phosphonium cations in both compounds self-assembled
to form robust stacked columns in the solid-state, with voids occupied by anions or solvent molecules.
Quantitative examination of intermolecular interactions using Hirshfeld surface analysis found that
classical and non-classical hydrogen bonding appears to be the dominant contributor in stabilizing
the self-assembly in both cases. The present work can not only benefit in understanding the mutual
interaction between the sterically encumbered tetra ([1,1′-biphenyl]-4-yl) phosphonium cations and
between counterions, but also provide insights for the self-assembled arrays in the solid-state.

Keywords: phosphonium; self-assembly; crystal structure; Hirshfeld surface; biphenyl

1. Introduction

Phosphonium compounds are promising candidates for a myriad of applications due
to their structural and stereochemical diversity and outstanding thermal and electrochemi-
cal stability and flexibility. The most commonly encountered phosphonium compounds
have four organic substituents attached to a phosphorus center, forming the quaternary
phosphonium cation. Along with a multitude of available anions, salts of these quaternary
compounds are extensively used as Wittig reagents [1], phase transfer catalysts in asymmet-
ric synthesis [2–6], ionic liquids [7–9], corrosion inhibitors [10], and polymer-based anion
exchange membranes [11,12], as well as tracers for tumor imaging [13]. The versatility
of the phosphonium quaternary compounds is known to be contributed by the different
molecular features and self-organization of the ions within the compound. Hence, prior to
designing functional organophosphorus materials, it is vital to understand the ubiquitous
structure and the influence of governing intermolecular interactions on supramolecular
self-assembly. Of particular interest, phosphonium compounds bearing at least two phenyl
moieties can engage themselves in multiple phenyl embraces. These well-established aro-
matic interactions are strong and directional, and are capable of forming extended networks
in the solid-state [14]. Dance et al. reported that for compounds containing tetraphenyl
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phosphonium cations, the multiple phenyl embraces, namely the sixfold/sextuple and the
fourfold/quadruple phenyl embrace, are found to be the dominant factor in the crystal
supramolecularity [15–19]. Other commonly found intermolecular interactions are non-
classical hydrogen bonding such as C-H···X (X = O, N, F, Cl) and C-H···π, which also play
a significant role in crystal packing.

Over the years, we have judiciously studied the impact of a series of mono- and
di-phosphonium salts towards the self-assembly of the ubiquitous p-sulfonatocalix[4]arene
in a programmed manner [20]. These now well-established studies demonstrated that
the use of large, bulky organophosphonium cations, and often in the presence of lan-
thanide(III) ions, was found to play a dominant role in driving the formation of different
self-assembled supermolecules and packing arrangements. We note that the inclusion of the
organophoshonium cations in the presence of p-sulfonatocalix[4]arene can be either (i) endo-
cavity with the inclusion of one phenyl ring and/or (ii) exo-cavity with the phosphonium
cations organized on the hydrophobic surface of the calixarene bilayers. An expansion
to the calixarene bilayers was evident, where at the organic domain, the phosphonium
molecules form a robust interlocking arrangement within themselves, and with calixarenes,
through π· · ·π interactions. Self-organization of the hydrophobic molecules within the
hydrophobic surfaces of calixarenes results in the assembly of infinite chains, nets, or grid-
like layers within the bilayers through the common multiple phenyl embrace, involving
C-H· · ·π interactions and hydrogen bonding between the two components. Furthermore,
we also reported unique crystal structures of various phosphonium salts which resulted
from the metathetical ionic exchange between the phosphonium salts and N-heterocyclic
compounds during the inclusion process in the presence of p-sulfonatocalix[4]arene [21,22].

During our systematic investigations on the commonly reported tetraarylphospho-
nium salts, we noticed that the knowledge concerning bulkier phosphonium salts
with polyaromatic rings is limited. We are focused on integrating geometrically com-
plicated organophosphonium salts in self-assembled crystalline materials formed with
p-sulfonatocalix[4]arene and a commercial available ionic liquid (1-butyl-3-methylimidazolium
dicyanamide). Herein, we investigate the organization of a relatively new homoleptic
quaternary aryl phosphonium compound containing symmetric biphenyl moieties (tetra-
biphenyl phosphonium) linked in the 1,1′ positions in which the aromatic rings create
high steric hindrance directly around the cation charge associated with the phosphonium
moiety. Understanding how the molecules pack in the solid-state is important as this
would promote the design and fabrication of functional devices for targeted applications
for which the current crystallographic details is sparce. Our anticipation of forming a
new structural motif was hampered as the aggregation between the three components did
not take place, but rather metathetical exchange between tetra-biphenyl phosphonium
bromide with 1-butyl-3-methylimidazolium dicyanamide occurred. The X-ray crystallogra-
phy analysis of two tetra-biphenyl phosphonium compounds bearing different anions are
reported here, with the structural investigation augmented by Hirshfeld surface analysis
with a view to understanding the characteristic intermolecular interactions, and to identify
the dominant factors involved in directing their self-assembly behaviors. To-date, only
one crystal structure pertaining to biphenyl substituents has been reported in the CCDC,
however in that case the biphenyl moieties were attached to a larger silicon atom [23]. The
analysis presented herein focuses on structural properties, in particularly self-assembly,
an issue that is of general significance and that may be of interest to others working in
this area.

2. Materials and Methods

All chemicals and solvents used were of analytical grade and obtained from commer-
cial suppliers. These were used without further purification unless otherwise specified.
Tetra-biphenyl phosphonium bromide salt was synthesized according to literature [24,25].
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2.1. Synthesis

Three equivalents of gadolinium(III) chloride was added to an equimolar mixture
of 1-butyl-3-methylimidazolium dicyanamide, tetra-biphenyl phosphonium bromide and
sodium p-sulfonatocalix[4]arene in tetrahydrofuran and water (1:1). The solution was
then warmed and slow evaporation at room temperature over several weeks afforded
colourless plate-like crystals of P(C6H4-C6H5)4·N(CN)2, 1 (Scheme 1). Interestingly, 1
was formed as crystals by metathetical exchange involving tetra-biphenyl phosphonium
bromide with 1-butyl-3-methylimidazolium dicyanamide in the presence of sodium p-
sulfonatocalix[4]arene and lanthanide, though the latter is not included in the resulting
crystalline material. Prism-shaped crystals of 2 were formed on slow evaporation of tetra-
biphenyl phosphonium bromide salt in a 1:1 mixture of acetonitrile and water (Scheme 1).
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2.2. Single Crystal X-ray Crystallography

All data were measured from multiple crystals to ensure the homogeneity of the mate-
rials using an Oxford Xcalibur-S (1) and Oxford Gemini-R Ultra (2) CCD diffractometers at
100(2) K with monochromatic MoKα (λ = 0.71073 Å) and CuKα (λ = 1.54178 Å) radiation,
respectively. Data were corrected for Lorentz and polarization effects, and absorption
correction applied using multiple symmetry equivalent reflections. The structures were
solved by direct methods and refined against F2 with full-matrix least-squares using the
program suite SHELX [26]. Anisotropic displacement parameters were employed for the
non-hydrogen atoms. One of the N-atoms in 1 is disordered. All hydrogen atoms were
added at calculated positions and refined using a riding model with isotropic displacement
parameters based on those of the parent atom. Crystallographic data for the structures
reported in this paper have been deposited at the Cambridge Crystallographic Data Cen-
tre. Copies of data with CCDC numbers 2211649–2211650 can be obtained free of charge
via https://www.ccdc.cam.ac.uk/structures/ (accessed on 6 December 2022), or from
the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK
(Fax: +441223336033; email: deposit@ccdc.cam.ac.uk). The Hirshfeld surfaces, 2D finger-
print plots and the energy framework analysis were generated using CrystalExplorer17 [27].
It is important to note that C-H bond distance is set as 1.083 Å whilst that for O-H is set at
0.983 Å in CrystalExplorer.

3. Results

The two crystalline tetra-biphenyl phosphonium salts, 1 and 2, have N(CN)2
− and Br−

anions, respectively), and have not previously been structurally authenticated. This was
undertaken herein with an aim to understand the nature of the interactions between the
cations and between the anions, and the cation–anion interplay in balancing electrostatic
attraction and repulsion. Both solid-state structures exhibit the same structural motif,
having very similar cell parameters, crystallizing in a triclinic system, and have been solved
in the P1 space group. The asymmetric unit found in the structure of 1 comprises one
tetra-biphenyl phosphonium cation and a disordered dicyanamide anion, whilst that in
2 contains one tetra-biphenyl phosphonium cation, a bromide anion, and an acetonitrile

https://www.ccdc.cam.ac.uk/structures/
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and water of crystallization. Full crystallographic data and details for these structures are
summarized in Table S1.

3.1. Structural Description
3.1.1. Molecular Features of Tetra-Biphenyl Phosphonium Cation

The molecular structure of the tetra-biphenyl phosphonium cation in 1 is shown in
Figure 1a. Owing to the presence of a different counterions, the tetra-biphenyl phospho-
nium cation in 2 has subtle structural differences in terms of the bond angles and lengths
when compared with those found in 1. The tetrahedral symmetry of the central phosphorus
atom in both compounds is slightly distorted, which is evident from the varying C-P-C
bond angles, as tabulated in Table S2. The interplanar angles between the inner and outer
aromatic rings, as shown in Figure 1b, differ for all four biphenyl units with their angles
listed in Table S2. Interestingly, the interplanar angle at ring 3a/ring 3b in 2 is significantly
larger than in 1, indicating a more twisted biphenyl unit. This feature has led to an ad-
ditional intermolecular interaction observed in 2, details of which are presented in the
discussion section. All reported interplanar angles are greater than the ideal interplanar
angle of 0◦ observed in a stable, isolated biphenyl in its crystalline state [28]. In general, the
differences in molecular features of the cations observed are due to steric necessities for
close packing and electrostatic interaction between the ions.
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Figure 1. (a) ORTEP [29] view of the molecular structure of tetra-biphenyl phosphonium cation for 1.
Ellipsoids are drawn at 50% probability level. Salt 2 has similar cation structure and follows the same
numbering scheme as in 1. (b) The interplanar angle between inner and outer (closer to or further
from the phosphorus centre, respectively) aromatic ring of a single biphenyl unit.

3.1.2. Self-Assembly

Examination of the extended structures shows that the phosphonium cations in both
crystal structures exhibit similar self-assembly behavior, as shown in Figure 2. Two phos-
phonium cations are arranged in opposite orientations, forming a phosphonium pair (one
purple and one orange molecule) with closest P···P distances of 7.91 Å and 8.05 Å for 1 and
2, respectively. The packing in both crystals consists of phosphonium pairs propagated
by translational operations, resulting in parallel horizontal columns, as viewed down the
a-axis, that are devoid of the common phenyl embrace interactions. From another point
of view, inspection of packing through the crystallographic c-axis reveals that cations
form stacked columns with voids occupied by N(CN)2

− in 1, and Br−, CH3CN and H2O
in 2. The occurrence of similar cationic packing in the presence of differing anions and



Crystals 2023, 13, 59 5 of 10

additional solvent of crystallization suggests that this assembly mode may be more stable
than other alternatives.
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Figure 2. Partial space filling representation depicting the self-assembly of 1 (a) and 2 (b) viewed
down the crystallographic a-axis. A phosphonium cation pair is highlighted as one purple and one
orange species in each case, with closest P···P distances of 7.91 Å and 8.05 Å for 1 and 2, respectively.
Anions are highlighted in red space filling representations. Light blue surfaces represent the voids
occupied by N(CN)2

− anions in 1, or Br− anions and solvent molecules in 2. (c) Visualization of the
calculated void volume within the crystal lattice of 1 is 45.4%. Similar packing arrangement with
voids within the crystal lattice is found for 2 with a calculated void volume of 54.5%. Hydrogen
atoms and solvent molecules are omitted for clarity.

Packing involving C–H···π interactions is commonly observed in supramolecular
assemblies. Two significant C–H···π interactions are observed in 1: C(106)–H(106)···π(ring 2b)

and C(211)-H(211)···π(ring 3b) with respective distances of 2.68 Å and 2.79 Å (Figure 3a).
Similar respective interactions are also found in 2 with slightly longer distances of 2.90 Å
and 2.84 Å relative to those found in 1. The structure of 2 displays an additional C–H···π
interaction at C(206)-H(206)···π(ring 3b) with a distance of 2.69 Å which relates to the more
twisted conformation on its aromatic ring 3a/ring 3b (with interplanar angle of 35.2◦

compared to 27.4◦ in 1, Figure 3b). There are no obvious π ···π interactions observed in
both crystals, with the shortest centroid to centroid distance between parallel aromatic
rings within and between phosphonium pairs is more than 4 Å [30].
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Figure 3. Ball-and-stick representation of C–H···π interactions between phosphonium cations in 1
(a) and 2 (b), with the red square highlighting an additional crystallographically unique C–H···π
interaction found in 2.

The anions and solvent molecules fit in the voids formed by the packing of phospho-
nium cations (Figure 2c); the volume of the voids in 1 and 2 were calculated as 45.38%
and 54.53%, respectively using a solvent probe of 0.9 Å and a grid spacing of 1.2 Å. In
1 the N(CN)2

− anion participates in multiple C-H···N interactions with calculated close
contacts of 2.64 Å, 2.63 Å and 2.62 Å for C(102)-H(102)···N(0) (symmetry: −x + 1, −y + 1,
−z + 1), C(312)-H(312)···N(1) (symmetry: x−1, y, z), and C(203)-H(203)···N(2), respectively
(Figure 4a). The N(CN)2

− anion also exhibits close C···H contacts (C-atoms from the
cyano-group to the phosphonium phenyl H-atoms) with distances of 2.86 Å to 2.94 Å. The
bond lengths in N(CN)2

− are within the expected range with N-C distances ranging from
1.132 (4) Å to 1.335 (3) Å. In 2, there are multiple hydrogen bonding interactions present
between anion, cation and solvent molecules, as illustrated in Figure 4b. The Br− ion
displays relatively strong H···Br interactions with H-atoms from the water and acetonitrile
of crystallization, with respective distances of 2.55 Å and 2.77 Å. The Br- interaction with
phenyl H-atoms at H(412) (2.81 Å) and H(312) (2.85 Å) are longer and presumably weaker
than the aforementioned H···Br interaction. Other hydrogen bonds present in the crystal
structure include a C-H···N interaction at 2.85 Å and C-H···O interactions with distances at
2.58 Å and 2.62 Å.
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Figure 4. Ball-and-stick representation of intermolecular interactions involving N(CN)2
− in com-

pound 1 (a) and CH3CN, H2O, and Br- in compound 2 (b). C-H···N, C-H···O and C-H···Br close
contacts are represented by blue, red and yellow lines, respectively.

3.1.3. Hirshfeld Surface Analysis

Interactions in both crystals can be further described with the aid of two-dimensional
fingerprint plots generated from the Hirshfeld surface analyses using CrystalExplorer17 [27],
which provides information on the relative contribution of various intermolecular inter-
actions present in the crystal structure. Figure 5a,b depicts the fingerprint plot of cation
and anion in 1 and 2, respectively. The relative contributions of various intermolecular
interactions, in terms of percentages, to the cation Hirshfeld surface are summarized in the
pie-charts displayed below the fingerprint plots. It is observed that intermolecular H···H
bonding appears to be the primary contributor in the crystal packing of both compounds
(45.8% in 1 and 50.4% in 2), which is consistent with the high proportion of hydrogen atoms
present in the crystal structure. The second major contributor is attributed to reciprocal
C–H···π interactions (often abbreviated as C···H/H···C contact) encompassing 40.0% in 1
and 38.8% in 2. In 1, interactions of H···N (9.6%) and C···C (4.1%) are found at a slightly
higher percentage compared to 2, and C···N interactions with the lowest contribution of
0.5% completes the Hirshfeld surface. Additional charge assisted non-classical hydrogen
bonds of H···Br, H···O and C···O contribute 2.7%, 1.2% and 0.5%, respectively, making up
the residual Hirshfeld surface for 2. In the anion fingerprint plot, the green region towards
the spikes and some red streaking represents greater relative contribution of hydrogen
bonding on the surface. The C-H···N interaction (64.4%) is the major contributor in the
N(CN)2

− surface in 1, whilst for 2 the Br···H-C interaction (99.9%) dominates the anion
Hirshfeld surface. Salt 2 has less efficient close packing compared to 1 as evidenced by
the extended contact distances at higher de and di value, as well as a larger percentage of
void volume. Energy framework analysis (generated from CrystalExplorer17) was also
used to visualize the interaction topology within the crystal structures. The prevailing
intermolecular interaction energies in the crystal structures are denoted as thick cylinders
joining the molecules. From the analysis, it is not surprising that the dispersion contribution
dominates the intermolecular interactions for both structures. The zigzag tubes intersect
the molecular sheets along the a- and b-axes in 1, Figure 6. Similar energy distribution
patterns were found for 2.
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4. Discussion

The Cambridge Structural Database (CSD, Version 5.42, updated September 2021)
was searched for tetra([1,1′-biphenyl]-4-yl) phosphonium salts. There were no comparable
structures found for such species. The best structural comparison to 1 and 2 is provided
by CCDC refcode ZZZUJT [23], which differs structurally in terms of the overall packing
in that the bulky tetraphenylsilane crystallized in the tetragonal space group I4. The
interplanar angle for all the biphenyl moieties is 31.55◦, and this is within the range of the
measured interplanar angles found in the structures of 1 and 2.

We have demonstrated the self-aggregation of the tetra-biphenyl phosphonium molecules
into a stacked-column is robust with the smaller counterions and solvent molecules filling
interstitial channels/voids. It is noteworthy that the presence of the different types of
counterions and/or solvent molecules does not significantly influence the structural motifs
of the bulky phosphonium cations, except for the subtle close P . . . P distances. Crystal-
Explorer has in turn enabled us to rationalize the multifaceted classical and non-classical
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hydrogen-bonding patterns in the tetra-biphenyl phosphonium salts which contributed to
the very similar structural motifs between the two reported structures.

5. Conclusions

In conclusion, the crystal structures of tetra-biphenyl phosphonium salts with either
N(CN)2

− (1) or Br− (2) anions are reported. Single crystal X-ray diffraction analysis re-
vealed that both compounds crystallize in the same triclinic system, with structure solution
being performed for both cases in the space group P1. The molecular features of the phos-
phonium cation in 1 and 2 have subtle differences, of particular interest being the larger
interplanar angles displayed in 2 which results in an additional C–H···π interaction being
observed in the extended structure. The salts exhibit analogous packing behavior in which
the phosphonium cations assemble in stacked columns with voids occupied by anions
and solvent molecules. Although it is common for phenyl containing compounds to form
embraces, from the results presented herein it is seen that tetra-biphenyl phosphonium
does not exhibit such interactions, but rather it is held together by multiple non-classical hy-
drogen bonding. Hirshfeld surface analyses revealed that intermolecular H···H interactions
appear to be the dominant contributor in stabilizing the phosphonium cation self-assembly
in both compounds, followed by C–H···π interactions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst13010059/s1, Table S1: Crystallographic data and refinement
parameters; Table S2: Relevant geometrical parameters; Table S3: Selected hydrogen-bond geometry
(Å, o) for Compound 2.
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