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Abstract: Among chalcogenide thermoelectric materials, SnTe is an excellent candidate for intermedi-
ate temperature applications, in replacement of toxic PbTe. We have prepared pure polycrystalline
SnTe by arc melting, and investigated the structural evolution by temperature-dependent neutron
powder diffraction (NPD) from room temperature up to 973 K. In this temperature range, the sample
is cubic (space group Fm-3m) and shows considerably larger displacement parameters for Te than for
Sn. The structural analysis allowed the determination of the Debye model parameters and provided
information on the Sn–Te chemical bonds. SEM images show a conspicuous nanostructuration in
layers below 30 nm thick, which contributes to the reduction of the thermal conductivity down to
2.5 W/m·K at 800 K. The SPS treatment seems to reduce the number of Sn vacancies, thus diminishing
the carrier density and increasing the Seebeck coefficient, which reaches 60 µV K−1 at 700 K, as well
as the weighted mobility, almost doubled compared with that of the as-grown sample.

Keywords: thermoelectrics; neutron powder diffraction; Ge deficiency; structural phase transition

1. Introduction

The recent revival of interest in thermoelectric materials (TEs) over the past two
decades is motivated by the fact that around two-thirds of produced energy is lost as waste
heat. TEs can recover part of this heat and convert it directly to useful electrical energy using
thermal gradients via the Seebeck effect [1,2]. Advances in thermoelectricity are hindered
by the fact that the relevant thermoelectric properties are strongly and antagonistically
interrelated. TEs obviously require a large Seebeck coefficient (S), but also low electrical
resistivity (ρ) against Joule-heating losses and low thermal conductivity (κ) against shorting
the thermal gradients. However, S and ρ are coupled in the heavily doped semiconductors
that yield the best TEs. Additionally, the Wiedemann–Franz law couples ρ and κ for
electronic transport. To evaluate the thermoelectric properties, TEs are characterized
by a dimensionless figure of merit (ZT = S2T/ρκ); commercial TEs, typically made of
chalcogenide semiconductors such as alloys of PbTe or Bi2Te3 [3,4], have ZT~1, with
state-of-the-art TEs reaching ZT~2–2.5, depending on temperature (T) [5–7].

In recent years, we studied in detail the structure and excellent thermoelectric prop-
erties of the revisited SnSe chalcogenide (Kanatzidis group at Northwestern University,
published in Nature [8]) with various types of doping, using straightforward arc-melting
procedures. We obtained highly nanostructured SnSe with exceptionally low thermal
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conductivity [9] and followed its high temperature structural phase transition [10]. After
improving the electrical grain-to-grain resistivity, we obtained n-type semiconducting
SnSe at high temperature, according to an unreported midtemperature sign change of
the Seebeck coefficient. It was associated with a pronounced increase in the electronic
conductivity near the structural phase transition, yielding a high-performance thermoelec-
tric ZT of ~1.8 in a polycrystalline sample [11]. SnSe prepared by arc melting is also an
excellent platform for modifications. We doped or alloyed SnSe with Sb at Sn positions,
stabilizing n-type thermoelectricity [12], and developed a novel technique to incorporate
K as a potassium hydride precursor [13], opening the way for other air sensitive alkali
and alkaline incorporations. Thermoelectric efficiency is often improved upon structural
phase transitions to higher symmetry polymorphs, inducing band convergence criteria. We
studied in detail the high-temperature structural changes in SnSe doped with Ge [14,15],
and of GeTe [16–18] and PbTe [19], using neutron diffraction.

As an alternative to toxic PbTe, an appealing thermoelectric material is SnTe, since it
also crystallizes in the rock-salt structure. Moreover, SnTe has been described as a paradig-
matic example of a topological crystalline insulator, by identifying its nonzero topological
index. It has been shown that SnTe has metallic surface states with an even number of
Dirac cones on high-symmetry crystal surfaces, such as {001}, {110}, and {111} [20]. Three-
dimensional topological (crystalline) insulators are materials with an insulating bulk but
conducting surface states that are topologically protected by time-reversal (or spatial) sym-
metries [21]. In fact, experimental evidence for the topological crystalline insulating (TCI)
phase has been reported in tin telluride [22] from angle-resolved photoemission spectra.
Nevertheless, pristine SnTe is a poor TE due to an intrinsically high hole concentration
arising from Sn vacancies, on the one hand, as well as its excessive thermal conductiv-
ity [23,24]. Unfortunately, SnTe has a prominent band offset between its two valence bands
and a high lattice thermal conductivity, both of which limit its peak thermoelectric figure
of merit. Valence bands convergence or introducing resonant states is found to enhance
the electronic properties [25], while nanostructuring or introducing interstitial defects is
believed to reduce the lattice thermal conductivity [26]. Alternatively, it has been shown
that the thermoelectric performance of SnTe can be improved by microstructure and band
structure engineering, establishing that melt spinning is a controllable synthetic method to
high-performance thermoelectrics [27].

In this study, we demonstrate that SnTe can be prepared as a nanostructured material
by arc-melting procedures, yielding a reduced thermal conductivity at high temperature
with respect to some reports elsewhere [25,28–31]. Moreover, a neutron powder diffraction
study unveils that the Sn vacancies, of 20% at RT, decrease at moderate temperatures, below
4%, in the range of application of this thermoelectric material. An SPS process applied to
the sample seems to reduce the number of these vacancies, in agreement with the neutron
powder diffraction data.

2. Materials and Methods

SnTe alloys were obtained as compact pellets directly from an Edmund Buhler mini-
arc furnace. Mixtures of nominal 1:1 stoichiometric amounts of analytical-grade Sn (Alfa
Aesar, 99.8%) and Te (Alfa Aesar, 99.99%) were ground, pelletized, and molten under Ar
atmosphere in a water-cooled Cu crucible, leading to intermetallic ingots. The as-grown
ingots were uniaxially pressed (~1 ton) for transport characterization, or ground to powder
for structural analysis. Alternatively, some ingots were ground to powder and then sintered
by spark plasma sintering (SPS) at 773 K for 8 min under an axial pressure of 40 MPa
(Dr. Sinter Lab Jr. SPS-212Lx) for transport characterization.

A laboratory XRD pattern was collected on a Bruker D8 diffractometer with Cu Kα

(λ = 1.5418 Å) radiation. To study the crystallographic structure evolution, NPD patterns
were collected in the D2B instrument (Institut Laue–Langevin, Grenoble, France) with a
wavelength of 1.594 Å, at room temperature (298 K, RT) and at 523, 673, 773, 873, and 973 K.
The sample (about 2 g), contained in a V cylinder, was introduced in a vanadium furnace
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working under vacuum (10−5 mbar). The measurement of each pattern lasted 2 h in the
high-flux mode. The refinement of the structure was performed by the Rietveld method
using the FullProf software (April 2019) [32,33]. A pseudo-Voigt function was chosen to
generate the line shape of the diffraction peaks. The background was interpolated between
regions devoid of reflections. The following parameters were refined in the final run: scale
factor, background coefficients, zero-point error, pseudo-Voigt corrected for asymmetry
parameters, positional coordinates, anisotropic displacement factors, and occupancy factors.
For the neutron refinements, the coherent scattering lengths for Sn and Te were 6.225 and
5.80 fm, respectively.

The high-temperature Seebeck coefficient was measured using an MMR technologies
instrument under vacuum (103 mbar) from room temperature up to ~800 K. Conventional
van der Pauw geometry was employed to determine the electrical resistivity. The mea-
surements have always been made perpendicular to the pressing direction. The total
thermal conductivity was calculated from the thermal diffusivity (α) using a Linseis LFA
1000 equipment by the laser flash technique. The thermal conductivity (κ) is determined
from κ = α·cp·d, where cp is the specific heat, calculated using the Dulong–Petit equation,
and d is the sample density. Scanning electron microscopy (SEM) images of an as-grown
pellet were collected with a FEI Nova NanoSEM 230 microscope. The results are repro-
ducible; and the synthesis procedure, by arc melting, has been repeated a sufficient number
of times, as well as the measurements, yielding similar results in 4–5 samples.

The experimental study was also supported by theoretical models based on density
functional theory (DFT) with the CRYSTAL17 package [34]. Based on a previous evaluation
of functionals for this system, the WC1LYP [35] functional was chosen for the elaboration
of the theoretical study. The Te and Sn basis set used in the calculations were triple-zeta
valence with polarization Gaussian basis sets developed by Laun and Bredow [36].

The coulomb and exchange series thresholds (overlap and penetration for coulomb
integrals, overlap for HF exchange integrals, and pseudo-overlap) used in the CRYSTAL17
package were defined as 8, 8, 8, 8, 16 (10−8, 10−8, 10−8, 10−8, and 10−16). The shirking
factors (Pack–Monkhorst method Gilat net) were set as 8 and 8, respectively. The gradient
components and nuclear displacement tolerance on their root mean square were 0.0003 and
0.0012 a.u., respectively. The topochemistry evaluation was performed according the
“Quantum Theory: Atoms in Molecules” (QTAIM) method implemented in the TOPOND,
program that is part of the crystal package [37].

3. Results and Discussion
3.1. Crystal Structure Evolution

Polycrystalline SnTe powder was obtained by carefully grinding the as-grown ingot
from the arc furnace. The X-ray diffraction pattern collected with Cu Kα radiation (Figure 1)
corresponds to the well-known cubic structure, as identified via Rietveld refinement; no
impurities or unreacted products were detected.
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Figure 1. XRD pattern of SnTe from laboratory equipment, with Cu Kα radiation.
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The NPD pattern collected at RT was essential to evaluate the microscopic composition
of our specimen, elaborated by arc melting. Neutrons take advantage of the access to a
large region of the reciprocal space with no form factors, enabling us to decouple the dis-
placement factors and occupancy factors during the structural refinement. The penetration
of neutrons enables probing the bulk and minimizes preferred orientation and absorption
issues. The cubic crystal structure was defined in the Fm-3m space group (No. 225), Z = 4,
with unit-cell parameter a = 6.3212(1) Å, V = 252.579(7) Å3 at 298 K. The starting model was
taken from Bauer-Pereira et al. [38]. Sn atoms were located at 4a (0,0,0) positions, while Te
was placed at 4b ( 1

2 , 1
2 , 1

2 ). Given the high-symmetry positions, the displacement factors
were isotropic (spherical); the occupancy factors of Sn (with respect to Te fixed to unity)
gave a Sn-defective stoichiometry, as Sn0.803(13)Te. Table 1 condenses the most important
parameters after the Rietveld refinement from NPD data at RT, and Figure 2a displays the
goodness of the fit.

Table 1. Main structural parameters after the Rietveld refinement from NPD data at RT for SnTe in
the cubic (Fm-3m) phase; a = 6.3212(1) Å.

Atom Site x y z B (Å2) focc

Sn 4a 0.0 0.0 0.0 0.79(8) 0.803(13)

Te 4b 0.5 0.5 0.5 1.60(9) 1.0

Discrepancy factors: Rp = 2.78%, Rwp = 3.74%, RBragg = 1.30%; χ2 = 3.35.
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Figure 2. NPD profiles after the Rietveld refinement of the cubic crystal structure at (a) 298 K and
(b) 973 K. Stars indicate unidentified impurities.

A temperature-dependent NPD study was also essential to investigate the thermal
evolution of the crystal structure above room temperature. Besides, an increase in density
in nanoprecipitates and an induced Te deficiency due to neutron irradiation in some
tellurides have been reported [39], so this neutron study becomes even more relevant.
NPD data were collected at 523, 673, 773, 873, and 973 K. The same cubic model was
utilized to refine the crystal structures in all the temperature range; no phase transition
was detected. A progressive segregation of an unidentified phase was observed at high
temperatures, which agrees with the similar case of segregation of Ga2Te3 reported for an
irradiated Pb0.975Ga0.025Te-0.25% ZnTe compound inserted in a nuclear reactor [39]. This
is illustrated in the Rietveld plots included in Figure 2a, at 298 K, and Figure 2b, at 973 K.
The plots corresponding to the remaining temperatures are included as Figure S1 in the
Supplementary Information (S.I.).

Table S1 at the S.I. includes the structural parameters at 973 K. The displacement
parameters and full coordination at RT are shown in the representation of the crystal
structure of Figure 3. Whereas at RT, the Sn isotropic factors are conspicuously smaller than
the Te ones, at 973 K, they become virtually similar. It is also noteworthy that the occupancy
factors become virtually stoichiometric at high temperatures, for example, at 973 K, the
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crystallographic formula is Sn0.97(53)Te (see Table S1). The unit cell monotonically expands
in this temperature range, as shown in Figure 3c.
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Figure 3. Views of the cubic crystal structure, highlighting the evolution of the displacement pa-
rameters with temperature, from NPD data, at (a) 298 K and (b) 973 K. (c) Thermal variation of the
a unit-cell parameter.

Taken into account that we start from a stoichiometric 1:1 Sn/Te relationship, the fact
that we conspicuously observe a significant Sn deficiency implies that some Sn is segregated
from the main phase during the synthesis process, as either tiny particles or superficial
coating of each individual microcrystals, where it is not visible by diffraction methods.
Upon warming, the segregated Sn is progressively incorporated into the crystal structure,
which is detected by neutron diffraction and as an increase in the Sn occupancy factor.

3.2. Debye Model Fittings and DFT Calculation

From the Rietveld refinements, we have extracted the temperature-dependent mean-
square relative displacements, abbreviated as MSDs or Ueq in units of Å2. From those
data, we can estimate the Debye temperature (θD) and the bonding stiffness. In solid-state
physics, the Debye theory describes the temperature evolution of the MSDs according to
the next formula [40,41],

Ueq = d2
s +

3}2T
mkBθ2

D

[
T

θD

∫ θD/T

0

x
ex − 1

dx +
θD
4T

]
(1)

where d2
s is the static disorder and m, kB, }, and T keep their usual meaning in physics.

In Figure 4, the experimental MSDs are compared with the fitting using Equation (1). We
have fixed d2

s = 0, since we recorded only high-temperature NPD data, being mandatory
low-temperature points to provide reliable static disorder values. Therefore, the Debye
analysis for individual MSDs for Sn and Te revealed Debye temperatures of 145(2) K and
128(2) K, respectively. Those values provided a Debye temperature for SnTe of 136(2) K,
which fully agrees with specific heat measurements yielding θD of 135(3) K [42]. Indeed,
the local bonding Sn–Te properties can be estimated using the harmonic potential, from
which a force constant can be determined as K = mkBθ2

D/3}2. For an average <Sn–Te>
interaction, we have a K of 1.36(3) eV/Å2. Those values can be used as starting point to
better constrain the bond anharmonicity in SnTe in future investigations.

The optimized unit cell of the theoretical model presented a lattice parameter of 6.30 Å,
a value in accordance with the experimental result at room temperature (6.3212(1) Å, as
listed in Table 1). In addition, the evaluation of the electronic structure showed a direct
band gap (K→K) of 0.42 eV (see Figures S2 and S3). The topochemical analysis of the bond
critical point (BCP) of the Sn–Te bond was performed. The electron density (ρ), Laplacian
of electron density (∇2ρ), virial field density (V), Lagrangian kinetic energy density (G),
and total energy (H) (all in atomic units) of the BCP are 0.0321, 0.0247, −0.0166, 0.0114,
and −0.0052, respectively. The ∇2ρ > 0, H < 0, and 1 < |V|

G < 2 (1.46) indicate a transit
bond (transit region between closed-shell and shared-shell bond) [43]. Such a behavior was
expected, since it is a material composed by Sn and Te, as estimated from the Debye model.
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Figure 5 shows the Laplacian of electronic density map of the <100> planes, which brings
some combined isolines between the atomic centers.
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3.3. SEM Investigation

The texture of the as-grown SnTe pellets can be appreciated in the high-resolution FE-
SEM images shown in Figure 6. The material consists of a stacking of sheets, each of them
presumably single crystalline, with the large surfaces perpendicular to a crystallographic
axis. The thickness of the individual sheets, better evaluated in Figure 6b, is below 0.03 µm;
Figure S4 at the Supplementary Material assesses layer thicknesses in the 15–30 nm range.
This strong nanostructuration is also responsible for its potential as thermoelectric material,
as described below.
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tructuration in layers observed in this material, grown from arc melting.

3.4. Thermoelectric Properties

The thermoelectric transport properties of arc-melted SnTe are shown in Figure 7.
Additionally, we can see the transport properties of an arc-melted SnTe with an SPS
treatment applied afterwards, for the sake of comparison.
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Figure 7. Temperature dependence of the three main thermoelectric properties: (a) resistivity,
(b) Seebeck coefficient, and (c) power factor.

The electrical resistivity (Figure 7a) is quite similar in both cases, starting with
2 × 10−6 Ω·m at room temperature and increasing with temperature till reaching 10−5 Ω·m
at 780 K, which is a metal-like behavior reported before elsewhere [25,28–30]. The resistivity
of the sintered sample seems to be slightly lower than the other one, which may be caused
by the increased density achieved, thanks to the thermal and pressure treatment. This result
agrees with some reports on other tellurides, which show that some samples of relatively
low density, or even with pores within, have an increased electrical resistivity [44]. This
low resistivity shown by the undoped SnTe is reflected in the very low Seebeck coefficient
shown at room temperature (Figure 7b), around 15–20 µV/K. This low value agrees with
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the usually reported data for pristine SnTe, which shows a low thermopower associated
with the relatively high carrier density intrinsic to this compound [23–25,30,31,45]. Finally,
with the measured resistivity and Seebeck coefficient, we can calculate the power factor,
displayed in Figure 7c. The sample measured after the SPS treatment shows a higher
power factor than the just arc-melted one, so we can say that the sintering process seems
to be beneficial for the thermoelectric performance of the SnTe compound, unlike in other
chalcogenides [46]. It is worth remarking that the XRD pattern after the SPS treatment is
exactly comparable to that of the pristine sample.

The weighted mobility [47] of both samples is shown in Figure 8. This calculated
parameter gives nearly the same information about carrier transport compared with that
offered by the Hall mobility data. Their dependence on temperature is very similar in both
cases, showing that the electronic transport is hindered by the acoustic phonon scattering
(αT−3/2), a feature commonly found in most good thermoelectric materials [47]. The higher
weighted mobility shown by the sintered composition comes from the increased Seebeck
coefficient measured in the compound after the thermal and pressure treatment.
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the arc-melted and sintered (SPS) SnTe.

This result suggests that the use of the SPS process reduces the Sn vacancies present in
the structure of the arc-melted SnTe, as it was suggested from the analysis of the NPD data,
yielding almost stoichiometric samples at high temperatures. Indeed, the Sn occupancy
at 773 K, refined from NPD data, is 0.95(5), virtually stoichiometric within the standard
deviation. Therefore, the reduction of the Sn vacancies also leads to a reduction of the
carrier density, thus explaining the higher Seebeck coefficient observed in the sintered
sample. Besides, the effect of the sintering process is noteworthy in the weighted mobility,
which is doubled in the sintered SnTe compared with the weighted mobility of the arc-
melted sample. This parameter does not depend on the carrier density [47], so the increase
in the weighted mobility comes from the improved conductivity between the grains in this
polycrystalline sample, which is promoted by the sintering process [48].

This enhancement of the electronic properties is represented in the power factor
(Figure 7c), but also in the quality factor, B, and the electronic counterpart, BE, in Figure S5,
suggesting an overall improvement of the thermoelectric transport due to the SPS process.
The chemical potential is also shifted closer to the optimal region due to the reduction of
the Sn vacancies (Figure S6).

Regarding the thermal conductivity (Figure 9a), it seems to be very similar in both
cases, with no appreciable differences between the sintered and nonsintered sample. At
room temperature, the total thermal conductivity is ~7 W/m·K. This value agrees very well
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with previously reported data for SnTe, which ranges between 6 and 8 W/m·K [25,28–31].
In this case, the two contributions to the total thermal conductivity, lattice and electronic
(Figure 9b), are really close to each other, owing to the high carrier density usually present
in this compound that we already mentioned before. This effect has been reported before
in pristine SnTe with similar results [24,25,30].
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In Figure 10, we can see the calculated figure of merit for both compounds, the arc-
melted and the arc-melted and sintered SnTe. The figure of merit for the sintered compound
is clearly higher at all temperatures, thus demonstrating that, for this compound, the effect
of sintering and, more precisely, the reduction of the Sn vacancies, is beneficial for the
thermoelectric performance of SnTe. The maximum ZT is achieved at 723 K, reaching a
value of ~0.11. Compared with the calculated ZT (Figure S5) using the quality factor, we
observe that these samples remain in the highly doped reduced chemical potential range,
indicating the detrimental effect of Sn vacancies in the crystalline structure. This figure of
merit is low if we compare it with other state-of-the-art thermoelectric materials [6–8,11,49],
but it is similar to previously reported data of pristine SnTe, which barely reaches a ZT of
~0.3 at high temperature [23,25,30,31].
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4. Conclusions

We have prepared pure polycrystalline SnTe by arc-melting, and investigated the
structural evolution by temperature-dependent neutron powder diffraction (NPD) up to
973 K. We find that, at all analyzed temperatures, the sample is cubic (space group Fm-3m),
and it shows considerably larger displacement parameters for Te than for Sn. The structural
analysis allowed us to obtain the Debye model parameters and provided information on
the Sn–Te chemical bonds. We can see a conspicuous nanostructuration in layers below
30 nm thickness in the SEM images, which contributes to the reduction of the thermal
conductivity down to 2.5 W/mK at 800 K. The Seebeck coefficient, reaching 60 µV/K at
700 K, is considerably improved after an SPS treatment, as do the weighted mobility and
the figure of merit. We can conclude that the reduction of the vacancies associated with
the SPS treatment applied to the arc-melted SnTe is an effective way to enhance the overall
thermoelectric performance.
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