
Citation: Sasaki, N.; Takayama, S.;

Sasai, R.; Uraoka, Y. Isotropic TFT

Characteristics in the {100}-Oriented

Grain-Boundary-Free

Laser-Crystallized Si Thin Films.

Crystals 2023, 13, 130. https://

doi.org/10.3390/cryst13010130

Academic Editors: Dah-Shyang Tsai

and Andreas Thissen

Received: 4 December 2022

Revised: 31 December 2022

Accepted: 7 January 2023

Published: 11 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

crystals

Article

Isotropic TFT Characteristics in the {100}-Oriented
Grain-Boundary-Free Laser-Crystallized Si Thin Films
Nobuo Sasaki 1,2,* , Satoshi Takayama 2 , Rikuto Sasai 2 and Yukiharu Uraoka 2

1 Sasaki Consulting, Kawasaki 212-0012, Japan
2 Division of Materials Science, NAIST, Ikoma 6330-0192, Japan
* Correspondence: sassasaki@yahoo.co.jp

Abstract: Isotropic TFT characteristics are realized in the {100}-oriented grain-boundary-free 60 nm
thick Si film obtained by the continuous-wave laser lateral crystallization, where the grain- and
sub-boundaries are defined as the crystallographic boundaries having misfit angles of θ > 15◦ and
θ < 15◦, respectively. Sub-boundaries are observed in the film parallel to the scan directions; the
misfit angles were 5–10◦ and the sub-boundary density was 0.02956 µm−1. Sub-grains, joined by
the sub-boundaries, have widths of 8 ~ 69 µm. The cumulative distributions of mobility, threshold
voltage, and subthreshold swing agree well between the parallel and perpendicular TFTs in the film,
where parallel or perpendicular means the source-to-drain directions to the laser scan direction. The
maximum mobilities of the parallel and perpendicular TFTs are 695 and 663 cm2/Vs, respectively.
The trap-state density NT in the sub-boundaries estimated from the product of the bond efficiency
η and the dangling bond density decreases by two decades from those of the grain boundaries. A
new carrier transport model of the current flow across the sub-boundary is proposed instead of the
thermionic emission model for the grain boundaries.

Keywords: sub-boundary; isotropic mobility; CW laser crystallization; TFT; trap-state density

1. Introduction

As is well known, various semiconductor materials for thin-film-transistors (TFTs)
have been studied, such as amorphous-Si, organic semiconductors, oxide semiconduc-
tors, laser-crystallized Si, etc., in order to realize flat panel displays (FPDs) [1], smart
sensors [2] and wearable devices [3,4] on glass or flexible substrates. The mobility of
the laser-crystallized TFTs is >200 cm2/Vs, and those of other TFTs are <60 cm2/Vs [4,5].
The laser-crystallized Si TFTs have another advantage in making CMOS circuits, enabling
low standby power consumption. Pulse excimer laser annealing (ELA) was developed to
crystallize amorphous-Si films on SiO2-coated glass for application in flat panel displays
(FPDs) [6,7]. Continuous-wave laser lateral crystallization (CLC) has also been developed
for SiO2-coated glass [8–11]. ELA has been the sole commercialized technology of laser
crystallization thus far. CLC has been a candidate for high-end applications, such as
monolithic three-dimensional integrations, high-speed smart sensors, and systems on FPDs
because thin-film-transistors (TFTs) on CLC films show a potential to realize high mobilities
comparable to those of bulk field-effect transistors (FETs), even with the crystallization on
insulating substrates at room temperature. However, the film obtained by the conventional
CLC with the elliptic line-beam comprised grain boundaries (GBs) of a misfit angle θ > 15◦,
where randomly oriented narrow grains were observed longitudinally extending along the
scan having surface orientations of both {100} and {110} in the crystallized film [9]. It is
required to obtain GB-free CLC films to realize isotropic-high mobility in TFTs comparable
to those of bulk FETs.

The maximum parallel TFT mobility of 925 cm2/Vs but the low perpendicular TFT
mobility of 480 cm2/Vs were observed for the film crystallized with the six-times over-
lapped CLC [12], where parallel or perpendicular means the source-to-drain directions of
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TFTs to the laser scan direction. The title of the paper claimed that the TFTs were fabricated
on the film comprising low-angle GBs, but the EBSD picture in the paper clearly shows
that this film contained GBs with 15◦ < θ < 180◦ as well [12]. The reported small ratio of the
perpendicular to parallel mobilities of 0.52 [12] suggests the existence of large-angle GBs in
their film.

The remaining GBs in the conventional CLC elongated parallel to the scan direction
results in anisotropy in the electrical characteristics of TFTs. The mobilities of the per-
pendicular TFTs were 60–70% of those of the parallel TFTs in the conventional CLC films,
with GBs of θ > 15◦ [9]. It is required to remove the GBs from the active region of the
TFT in order to realize the isotropic electrical characteristics of the TFTs and to increase
mobility further.

The CLC crystallization, using a micro-chevron-laser-beam [13], made narrow stripes
of 5–10 µm width and a few mm in length. The surface orientation of the stripe tended to
rotate continuously with the scan travel, although GBs (5◦ < θ < 65◦) were not detected;
however, twin boundaries of Σ3 with a θ of 60.0 or 70.5◦ across the stripes were frequently
observed as the scan travel at a period of 50 µm [13,14]. The mobility of the parallel TFT
was 548 cm2/Vs, but the perpendicular TFT was not reported in this narrow stripe. We use
the terminologies GBs and sub-boundaries (sub-Bs) [15] and define GBs as the boundaries
having θ > 15◦ and sub-Bs having θ < 15◦, according to the generally accepted criterion of
θ = 15◦ [16].

Recently a GB-free stripe of 80–200 µm width having 99.8% {100} surface orientation
within 10◦ has been obtained by a single scan of CLC at room temperature substrates of
quartz [11,17–22] and glass [23] in air. A highly uniform line beam was scanned at an
optimized laser power around the threshold of lateral growth. These films have the {100}
orientations in the scan and transverse directions, as well as surface normal. These wide
{100}-oriented GB-free stripes extend stably to more than 3 mm [21] or 10 mm [22] in length,
so long as the scan continues. The {100} surface texture was obtained by CLC on polyimide
substrates as well [24]. Selective CLC crystallization of the TFT-active area is effective
in reducing energy consumption and improving the throughput of crystallization [8,18]
because the TFT-active area occupies a tiny portion in the whole LSI or FPD substrate, and
the remaining Si film in the whole substrate is etched off for the wiring and light-emitting
cell areas.

We have observed the isotropic mobility of TFTs fabricated in GB-free films for the
first time [25]. In the present paper, we describe that the effect of the remaining sub-
Bs on the TFT characteristics is negligible. We characterize sub-Bs in the GB-free films
and demonstrate isotropic characteristics of TFTs, including the threshold voltage and
subthreshold swing of TFTs, as well as mobility. Suppressed leakage currents are also
described. The trap-state density at the sub-Bs is estimated by multiplying a dangling bond
efficiency by the calculated dangling bond density, which is smaller than those of GBs by
two orders of magnitude. We propose a new current model across the sub-Bs, which is
different from the conventional thermionic emission model.

2. Experimental

An undoped 60 nm thick a-Si film was deposited on fused quartz by using inductively-
coupled plasma chemical vapor deposition (ICP-CVD) with SiH4 at 250 ◦C and 6.8 Pa.
Then, a 123 nm thick SiO2 cap was deposited by ICP-CVD with tetraethoxysilane at 300 ◦C
and 80 Pa. After the dehydrogenation annealing at 550 ◦C for 1 h in N2, the a-Si was
crystallized by an unseeded single-scanned CLC with a frequency-doubled diode-pumped
solid-state Nd:YVO4 laser at a wavelength of 532 nm, keeping the substrate at room
temperature in air. A highly uniform line beam was used [17–24]. The spot size was
492 µm (long axis) × 8 µm (short axis) with a top-flat beam shape for the long axis and
Gaussian for the short axis, which was generated by utilizing a diffractive optical element
(DOE). The scans were performed perpendicular to the long axis at a 12 mm/s velocity.
The laser power was 4.2 W for the GB-free CLC growth and 4.0 W for the grained CLC
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growth. After the cap removal, the crystal quality was characterized by electron backscatter
diffraction (EBSD). The EBSD was taken at 15 kV and a tilt angle of 70◦ using the Hitachi
SU6600 scanning electron microscope (SEM) equipped with an EBSD module from EDAX.

Top-gate TFTs were fabricated, as shown in Figure 1. The channel region was undoped.
The laser-crystallized Si islands were patterned by plasma etching. A 120 nm thick gate
SiO2 was deposited by ICP-CVD with tetraethoxysilane at 300 ◦C and 80 Pa. The gate
electrodes were formed by 230 nm thick Mo sputtering and photolithography. Phosphorus
ions were implanted at 90 keV to a dose of 4 × 1015 cm−2 at the source and drain regions.
Activation annealing was performed at 550 ◦C for 1 h in N2. Contact holes were opened,
and the source and drain electrodes were formed by 230 nm thick Mo sputtering and lift-off.
Finally, the N2-H2 annealing was performed at 450 ◦C for 1 h. The channel length, L, of the
TFTs was 10 µm, and the width, W, was 5 µm. The TFT characteristics were measured with
a Precision 4156C semiconductor parameter analyzer. The effective field-effect mobilities
µ were derived from the following equation of the linear region assuming a uniform carrier
distribution in the channel even with the sub-boundaries at a sufficiently small drain
voltage, VD, of 0.1 V.

ID = µ Cox (W/L)·(VG − VT) VD (1)

where ID is the drain current, Cox is the gate capacitance per unit area, VG is the gate voltage,
VT is the threshold voltage, and VD is the drain voltage.
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Figure 1. Schematic view of the structure of the fabricated TFT.

3. Results
3.1. The Sub-Grains (Sub-G) and Sub-Boundaries (Sub-B) in the GB-Free Area

Figure 2 shows the misfit boundaries along the laser scan of the {100}-oriented GB-free
film. Figure 2a shows the GBs with a misfit angle of θ > 15◦. A 203 µm wide GB-free stripe
was obtained along the laser scan. Figure 3 shows the GB-Free region is oriented to {100} in
all the three directions of surface normal, scan, and transverse directions simultaneously.
The twin boundaries were occluded in these GB-free regions.

Figure 2b shows all the boundaries with θ > 2◦, including both the sub-Bs and GBs.
Figure 2b shows five straight sub-Bs with a θ of 5 ~ 10◦ in the GB-free region running parallel
to each other and the scan direction. The density of these sub-Bs is 0.02956 lines µm−1.
Sub-grains (sub-Gs) joined by the sub-Bs have widths of 8 ~ 69 µm. A few tiny lineages
with limited length and θ = 2 ~ 5◦ are observed.

In the outside edges of the 203 µm wide {100}-oriented GB-free region, two grained
CLC stripes of 118 or 149 µm in width were observed. The EBSD Inverse Pole Figure (IPF)
analysis showed that these side regions also have a {100} orientation in the surface normal
direction but comprised many grains with different in-plane orientations of {100}, {310},
{210}, {320}, and {110} in the scan or transverse direction, as shown in Figure 3.
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Figure 2. Crystallographic boundaries of the CLC stripe at a laser power close to the threshold
of lateral grain growth. (a) Grain boundaries (15◦ < θ < 65◦); (b) sub-boundaries (−: 2◦ < θ < 5◦,
−: 5◦ < θ < 10◦, and−: 10◦ < θ < 15◦) and grain boundaries (−: 15◦ < θ < 65◦). The path along which
the misfit angle was measured is indicated by an arrow.
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The sub-Bs detected in Figure 2b are tilt boundaries [15] because the surface orientation
is kept uniformly at {100}, as shown in Figure 3. The {100} orientation in the surface normal
is realized by the minimum interfacial energy between Si {100} and SiO2, and the {100} in
the scan direction is by the fastest growth direction of <100> in Si [11]. The {100} in the
transverse direction is fixed uniquely after the orientation determination of the surface
normal and scan directions. The misfit angle θ profiles along the path, indicated by an
arrow in Figure 2b, are shown in Figure 4. The point-to-point curve shows almost the same
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absolute misfit angle θ in each sub-B, and it is obvious that the neighboring sub-Gs tilt
alternately in opposite directions from the point-to-origin curve.
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the starting point.

For the sub-B, the crystallographic structure is described by a dislocation array [15,16]
because of the small misfit angle of θ < 15◦. We have found that there are two types of
sub-Bs in the GB-free films. Figure 5 shows schematic views of the tilt boundaries described
by the edge dislocation arrays. Figure 5a shows the dislocation arrays in the GB-free film.
Neighboring sub-Bs are formed by dislocations with opposite polarities to each other with
the same (100) surface normal axis, resulting in almost the same in-plane orientations
throughout the film, as shown in Figure 3b,c. If all the sub-Bs comprise dislocations with
the same polarities, the orientation in the scan direction of the film bends to one direction
by the dislocation arrays, as shown in Figure 5b.
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uration of tilt boundaries to keep the same in-grain crystal orientations. (b) configuration of tilt
boundaries with the dislocations with the same polarities resulting in the bending of the in-grain
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3.2. TFT Alignment in the Laser Scanned Stripe and Contact Resistance

Figure 6 shows the TFTs’ alignment to the laser scan: (a) just after the island patterning
and (b) after the gate patterning. The parallel and perpendicular TFTs were fabricated
alternately in the same laser scan with a period of 412 µm. The channel regions were
placed in the GB-free stripe having a 203 µm width. The channel length and width were
10 µm and 5 µm, respectively, for both the parallel and perpendicular TFTs. The n+ wiring
and contact regions were placed inside the grained or GB-free CLC stripes with a total
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470 µm width. Good contact characteristics were obtained if the contacts were formed
inside the grained CLC region. The phosphorus activation was carried out by the solid-
phase epitaxial growth from the bottom crystalline Si layer by the 550 ◦C furnace annealing;
the amorphous layer is solely induced by ion implantation near the front surface of the
60 nm Si film.
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Figure 6. Optical micrograph of the TFT fabrication: (a) after the island patterning and (b) after
the gate patterning. The channel length was 10 µm with a width of 5 µm for both parallel and
perpendicular TFTs.

3.3. TFT Characteristics in the GB-Free CLC Region

The measured distributions of the electrical characteristics of TFTs show no difference
between the parallel and perpendicular TFTs. The cumulative distributions of the obtained
effective field-effect mobility, threshold voltage, and subthreshold swing agree well be-
tween the parallel and perpendicular TFTs in the GB-free films, as shown in Figure 7a–c,
respectively. The remaining sub-boundaries in the {100}-oriented GB-free region did not
affect the electrical characteristics of the TFTs. If the sub-boundaries did affect the electrical
characteristics, the obtained cumulative TFT mobilities would differ between the parallel
and perpendicular TFTs. A small SS value of 60 mV/dec around the theoretical limit at
room temperature was obtained. Figure 7a gives

µ ‖ = µ
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Figure 7. Cumulative distributions of electrical characteristics for the parallel and perpendicular TFTs
having channel regions made in GB-free stripes. L = 10 µm, and W = 5 µm. (a) Effective field-effect
mobility, (b) threshold voltage Vth (V), and (c) subthreshold swing SS (V/dec).

Figure 8 shows the electrical characteristics of the parallel and perpendicular TFTs
with the maximum effective mobilities. The maximum mobilities are almost the same
between the parallel and perpendicular TFTs; 695 cm2/Vs was obtained for the parallel
TFT, and 663 cm2/Vs was obtained for the perpendicular TFT. The steep peak observed
in the µ–VG curve is similar to the conventional MOSFETs [26–28]. The ID–VG curve
becomes steeper when the low substrate impurity concentration becomes low following the
universal curve [26,27] and when the trap-state density in the boundary becomes low [28].
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Figure 9 shows the variations in the drain current ID versus gate voltage VG character-
istics and the mobility µ versus VG characteristics in the GB-free TFTs. The characteristics
between the perpendicular and parallel TFTs show the same tendency, including varia-
tions in these characteristics. The observed TFT variations are independent of the current
direction of the scan. The leakage currents of most TFTs are well suppressed below 1 fA,
but some devices accidentally show a larger leakage current of 0.1 pA. The increase in the
leakage current observed at a high negative gate voltage from −20 V to −15 V is due to the
conventional band-to-band tunneling.
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Figure 9. Variations in the characteristics of the drain currents ID and effective mobilities µ on VG in
the measured GB-free samples: (a) the parallel TFTs and (b) the perpendicular TFTs.

Figure 10 shows the drain leakage current dependence on the drain voltage. The
drain leakage current increases with the increasing drain voltage VD. This increase shows
the usual leakage current characteristics due to the band-to-band tunneling current at the
drain. This tendency also confirms that the small leakage current observed at the VD from
−15 V to −5 V is not due to the current inversion. Figure 11 shows the drain current
ID versus drain voltage VD characteristics. No anomaly is observed in these characteristics.
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3.4. TFT Characteristic in the Grained CLC Region

Distributions of the electrical characteristics were also studied for the grained CLC
film, in comparison, which was crystallized at a lower power by 0.2 W than the optimized
power for GB-free crystallization. A preferential {100} surface orientation was obtained, as
shown in Figure 12a. Many small grains existed, having different orientations of {100}, {310},
{210}, {320}, and {110} in the scan directions, as shown in Figure 12b. The corresponding
GBs (15◦ < θ) are shown in Figure 12c, and the sub-Bs (2◦ < θ < 15◦) overlapped to GBs are
shown in Figure 12d. The cumulative distributions of the electrical characteristics in the
grained TFTs differed between the parallel and perpendicular TFTs, as shown in Figure 13.
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large parallel mobility value of 695 cm2/Vs, even with the thin 60 nm thick Si film, as 
shown in Figure 12. The highest parallel mobility was obtained by the six-times over-
lapped CLC on a 150 nm thick Si film [12]; however, the ratio of the TFTs was as low as 
0.5 [12] due to the inferior mobility value of the perpendicular TFTs resulting from the 
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tional CLCs show a ratio of less than 0.5 [9]. The ratio and mobility in the conventional 

Figure 12. EBSD maps of a grained CLC film. (a) IPF-ND map, (b) IPF-SD map, (c) grain boundaries
(15◦ < θ < 65◦), and (d) sub-boundaries (−: 2◦ < θ < 5◦,−: 5◦ < θ < 10◦, and−: 10◦ < θ < 15◦) and
grain boundaries (−: 15◦ < θ < 65◦). Power was 4.0 W, and the scan velocity was 12 mm/s.
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Figure 13. Cumulative distributions of the electrical characteristics in the grained CLC for the
parallel and perpendicular TFTs. (a) Effective field-effect mobility, (b) threshold voltage Vth, and
(c) subthreshold swing SS.

3.5. Comparison of Mobility Ratio Fabricated in the Present GB-Free CLC Film with Those in
Other CLC Films

Figure 14 shows the ratio of the maximum effective mobilities of the perpendicular
TFTs to that of the parallel TFTs. This ratio is a figure of merit for mobility isotropy. The
TFTs obtained in the present GB-free films show the greatest ratio of 0.95 and a relatively
large parallel mobility value of 695 cm2/Vs, even with the thin 60 nm thick Si film. The
highest parallel mobility was obtained by the six-times overlapped CLC on a 150 nm thick
Si film [12]; however, the ratio of the TFTs was as low as 0.5 [12] due to the inferior mobility
value of the perpendicular TFTs resulting from the existence of the grain boundaries and
twin boundaries having a θ > 15◦. All the conventional CLCs with a 50 nm Si thickness
show a ratio of less than 0.5 [9]. The ratio and mobility in the conventional CLC generally
increase with the increasing Si film thickness due to the increase in grain size, as shown
in Figure 14.
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Figure 14. Ratio of the maximum mobility of the perpendicular TFTs to the parallel TFTs as a function
of the maximum mobility of the parallel TFTs. The TFTs with the maximum mobility were compared
in various thin-film crystallization technologies using the scanned crystallization from the melt,
(a) this work, (b–d) in [9], (e) in [12].
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4. Theoretical Considerations and Its Comparison with Experimental Results
4.1. Trap-State Density at the Sub-Boundaries

The tilt sub-B is described by an edge dislocation array aligned in the sub-B. The
distance D between the dislocations is given by

D = b/(2 sin (θ/2)) (3)

~ b/θ (4)

where b is the magnitude of the Burgers vector and θ is the misfit angle of the sub-B in the
radian unit [15]. The dislocation distance D in the present sub-B is 2 ~ 4 nm for θ = 5 ~ 10◦,
as shown in Figure 15. If we define the length s as a projected length of a unit cell along the
dislocation line to the surface normal axis of the film, the dangling bond density per unit
length is given by 2/s, where s is equal to the lattice constant of 0.543 nm. The dangling
bond density in the sub-B is calculated from D and s as

Dangling bond density = 2/(D · s) (5)

= 2θ/(b · s). (6)
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If we assume one trap is generated by one dangling bond, trap-state density NT is
given by the dangling bond density; however, this simple calculation overestimates the state
density because of the bond reconstruction from the perfect dislocations and passivation of
dangling bonds by hydrogen. The trap-state density NT is given by the product of efficiency
η of the dangling bond and the calculated dangling bond density as

NT = η × (dangling bond density). (7)

We estimate η as 1× 10−4, similar to the ratio of the experimentally measured state den-
sity to the calculated dangling bond density at the Si–SiO2 interface of the bulk MOSFETs.
The interface state density Qss was measured as 6× 1010 cm−2 for the (100) surface [29], and
the number of the calculated dangling bonds is 6.8 × 1014 cm−2 for the (100) surface [30].
The NT obtained from Equations (6) and (7) is proportional to θ, as shown in Figure 16. The
effect of sub-B on the TFT characteristics decreases with the decreasing θ.
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4.2. Space Charge Model at the Sub-Boundaries in the Non-Doped Substrate

In the sub-G region without sub-Bs, the channel is formed by the gate-induced carriers
in the undoped n-channel TFT. We assume that the free carrier is induced with the concen-
tration n0 of 1 × 1016 cm−3 in the inverted channel far from the sub-B, which is compatible
with the generally used definition for the inversion layer. As the undoped Si substrate is
floating, the electrostatic potential and the carrier concentration are uniform from the front
to the back interface. From the symmetry, we treat the effect of the sub-Bs in one dimension
with a vertical axis to the sub-B plane. Our model neglects the dislocation core of 0.154 nm
thickness because it is very small [31]. The infinitely thin sub-B plane is assumed to have a
deep trap with a density of NT. The monoenergetic acceptor-like level is assumed and is
ionized when the n-type inversion layer is formed. Due to the charged traps, two depleted
regions of ∆ are formed at both sides of the sub-B, resulting in a potential barrier of a height
qVB, as shown in Figure 17 [32–37], where q is the magnitude of electronic charge.
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Figure 17. Theoretical model of (a) structure and (b) band diagram of the effect of sub-Bs. ∆ is the
width of the depleted region at each side of sub-B induced by the charged sub-B trap states. qVB is
the barrier height of free carriers in the sub-B.

The depleted region ∆ is roughly estimated by the charge neutrality condition as

2∆· n0 = NT, (8)

and
∆ = NT / (2 n0). (9)
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The calculation gives ∆ = 4 ~ 8 nm from (9) and the estimated NT of 0.8 ~ 1.6× 1010 cm−2

for the sub-Bs misfit angle θ of 5 ~ 10◦.
Previous studies [28,33–40] of GBs in the poly-Si film assumed that the current flows

over the potential barrier qVB by the thermionic emission model. The NT of the GBs in the
previous study and the estimated NT of the present sub-B are summarized in Table 1. The
NT of the sub-Bs with θ = 5 ~ 10◦ drops more than two decades from that of GBs. The ∆ of
sub-B decreases by the same orders of magnitude from that of GBs. The depletion width
of the GBs in the previous studies is very large, ∆ ~ 1 µm from Equation (9) if we take
NT = 2.1 × 1012 cm−2 typically.

Table 1. Comparison of trap-state density NT and grain size between the GBs in the previous studies
and the sub-Bs in the present work.

Data Source From NT (cm−2) Grain Size (nm)

Seto, 1975 [33] 3.41 × 1012 23

Baccarani et al., 1978 [34] 3.80 × 1012 30

Lu et al., 1981 [35] 2.10 × 1012 122

Martinez et al., 1981 [38] 1.2 × 1013 1 × 105

Levinson et al., 1982 [36] 3.9 × 1011 40

Fossum et al., 1983 [37] 1.00 × 1012 1 × 103

Proano et al., 1989 [39] 1.1 ~ 2.0 × 1012 100

Yang et al.,1999 [28] 2.5 × 1012 200

Walker et al.,2004 [40] 1.0 × 1013 ——-

This Work 0.8 ~ 1.6 × 1010

(Sub-B)

2.03 × 105 (Perpendicular
Grain Width )

3.38 × 104 (Perpendicular
Sub-G Width )

4.3. Carrier Conduction in the Parallel TFTs

In the parallel TFTs containing one sub-B in the channel, the source-to-drain current
flows mainly in the intra-sub-G region. Some winding current flows in the vicinity of the
sub-B depleted regions, but the current at a distance from the depleted region ∆ of sub-B
will flow directly from the source to drain, as shown in Figure 18, in the same way as the
free carriers in the inversion layer. The sub-B in the parallel TFTs reduces the effective
channel width by an amount of 2∆. Then the effective mobility of the parallel TFT with one
sub-B in the active region is estimated as

µ‖ = µ0 · {1 − (2∆)/W } (10)

where µ0 is the intra-sub-G mobility. Then, µ‖ becomes

µ‖ ~ µ0 (11)

because 2∆ << W; the total sub-boundary depleted width is 2∆ = 8 ~ 16 nm and the channel
width is W = 5 µm.



Crystals 2023, 13, 130 14 of 18

Crystals 2023, 13, x FOR PEER REVIEW 15 of 19 
 

 

In the parallel TFTs containing one sub-B in the channel, the source-to-drain current 
flows mainly in the intra-sub-G region. Some winding current flows in the vicinity of the 
sub-B depleted regions, but the current at a distance from the depleted region Δ of sub-B 
will flow directly from the source to drain, as shown in Figure 18, in the same way as the 
free carriers in the inversion layer. The sub-B in the parallel TFTs reduces the effective 
channel width by an amount of 2Δ. Then the effective mobility of the parallel TFT with 
one sub-B in the active region is estimated as 

μ|| = μ0 · {1- (2Δ)/W }  (10)

where μ0 is the intra-sub-G mobility. Then, μ|| becomes 

μ|| ∼ μ0  (11)

because 2Δ << W; the total sub-boundary depleted width is 2Δ = 8 ~ 16 nm and the channel 
width is W = 5 μm. 

 
Figure 18. Model of the sub-B structure and the current in the parallel TFT. 

4.4. Carrier Conduction in the Perpendicular TFTs 
When a TFT active region contains one sub-B, the effective resistance R┴ of the per-

pendicular TFTs between the source and drain is given by the series resistance of the chan-
nel resistance with a length of (L− Δ )  and the sub-B resistance RB 

R┴ = R0 · (1 − 2Δ/L) + RB  (12)

in the same way as the previous work [27–29], and the intra sub-G resistance R0 is given 
by 

R0 = L / (W·n0·μ0·d) (13)

where d is the Si film thickness, and RB is the sub-B resistance with a length of Δ. On the 
other hand, the effective resistance R‖ of the parallel TFT is given by 

R‖ = R0 / (1 − 2Δ/W).  (14)

From the experimentally obtained isotropic effective mobility given by Equation (2), 

R┴ = R‖.  (15)

Then, as Δ << L, (12) and (14) become 

R┴ = R0 + RB  (16)

and 

Figure 18. Model of the sub-B structure and the current in the parallel TFT.

4.4. Carrier Conduction in the Perpendicular TFTs

When a TFT active region contains one sub-B, the effective resistance R

Crystals 2023, 13, x FOR PEER REVIEW  7  of  19 
 

 

 

Figure 6. Optical micrograph of the TFT fabrication: (a) after the island patterning and (b) after the 

gate patterning. The channel length was 10 μm with a width of 5 μm for both parallel and perpen‐

dicular TFTs. 

3.3. TFT Characteristics in the GB‐Free CLC Region 

The measured distributions of the electrical characteristics of TFTs show no differ‐

ence between the parallel and perpendicular TFTs. The cumulative distributions of the 

obtained effective field‐effect mobility, threshold voltage, and subthreshold swing agree 

well between the parallel and perpendicular TFTs in the GB‐free films, as shown in Figure 

7a–c, respectively. The remaining sub‐boundaries in the {100}‐oriented GB‐free region did 

not affect  the electrical characteristics of  the TFTs.  If  the sub‐boundaries did affect  the 

electrical characteristics, the obtained cumulative TFT mobilities would differ between the 

parallel and perpendicular TFTs. A small SS value of 60 mV/dec around the theoretical 

limit at room temperature was obtained. Figure 7a gives 

 ‖ =         ┴         (2)

where  ‖ and  ┴ are the effective field‐effect mobilities of the parallel and perpendicular 

TFTs, respectively. 

 

of the
perpendicular TFTs between the source and drain is given by the series resistance of the
channel resistance with a length of (L − 2∆ ) and the sub-B resistance RB

R

Crystals 2023, 13, x FOR PEER REVIEW  7  of  19 
 

 

 

Figure 6. Optical micrograph of the TFT fabrication: (a) after the island patterning and (b) after the 

gate patterning. The channel length was 10 μm with a width of 5 μm for both parallel and perpen‐

dicular TFTs. 

3.3. TFT Characteristics in the GB‐Free CLC Region 

The measured distributions of the electrical characteristics of TFTs show no differ‐

ence between the parallel and perpendicular TFTs. The cumulative distributions of the 

obtained effective field‐effect mobility, threshold voltage, and subthreshold swing agree 

well between the parallel and perpendicular TFTs in the GB‐free films, as shown in Figure 

7a–c, respectively. The remaining sub‐boundaries in the {100}‐oriented GB‐free region did 

not affect  the electrical characteristics of  the TFTs.  If  the sub‐boundaries did affect  the 

electrical characteristics, the obtained cumulative TFT mobilities would differ between the 

parallel and perpendicular TFTs. A small SS value of 60 mV/dec around the theoretical 

limit at room temperature was obtained. Figure 7a gives 

 ‖ =         ┴         (2)

where  ‖ and  ┴ are the effective field‐effect mobilities of the parallel and perpendicular 

TFTs, respectively. 

 

= R0 · (1 − 2∆/L) + RB (12)

in the same way as the previous work [27–29], and the intra sub-G resistance R0 is given by

R0 = L / (W·n0·µ0·d) (13)

where d is the Si film thickness, and RB is the sub-B resistance with a length of 2∆. On the
other hand, the effective resistance R‖ of the parallel TFT is given by

R‖ = R0 / (1 − 2∆/W). (14)

From the experimentally obtained isotropic effective mobility given by Equation (2),

R

Crystals 2023, 13, x FOR PEER REVIEW  7  of  19 
 

 

 

Figure 6. Optical micrograph of the TFT fabrication: (a) after the island patterning and (b) after the 

gate patterning. The channel length was 10 μm with a width of 5 μm for both parallel and perpen‐

dicular TFTs. 

3.3. TFT Characteristics in the GB‐Free CLC Region 

The measured distributions of the electrical characteristics of TFTs show no differ‐

ence between the parallel and perpendicular TFTs. The cumulative distributions of the 

obtained effective field‐effect mobility, threshold voltage, and subthreshold swing agree 

well between the parallel and perpendicular TFTs in the GB‐free films, as shown in Figure 

7a–c, respectively. The remaining sub‐boundaries in the {100}‐oriented GB‐free region did 

not affect  the electrical characteristics of  the TFTs.  If  the sub‐boundaries did affect  the 

electrical characteristics, the obtained cumulative TFT mobilities would differ between the 

parallel and perpendicular TFTs. A small SS value of 60 mV/dec around the theoretical 

limit at room temperature was obtained. Figure 7a gives 

 ‖ =         ┴         (2)

where  ‖ and  ┴ are the effective field‐effect mobilities of the parallel and perpendicular 

TFTs, respectively. 

 

= R‖. (15)

Then, as ∆ << L, (12) and (14) become

R

Crystals 2023, 13, x FOR PEER REVIEW  7  of  19 
 

 

 

Figure 6. Optical micrograph of the TFT fabrication: (a) after the island patterning and (b) after the 

gate patterning. The channel length was 10 μm with a width of 5 μm for both parallel and perpen‐

dicular TFTs. 

3.3. TFT Characteristics in the GB‐Free CLC Region 

The measured distributions of the electrical characteristics of TFTs show no differ‐

ence between the parallel and perpendicular TFTs. The cumulative distributions of the 

obtained effective field‐effect mobility, threshold voltage, and subthreshold swing agree 

well between the parallel and perpendicular TFTs in the GB‐free films, as shown in Figure 

7a–c, respectively. The remaining sub‐boundaries in the {100}‐oriented GB‐free region did 

not affect  the electrical characteristics of  the TFTs.  If  the sub‐boundaries did affect  the 

electrical characteristics, the obtained cumulative TFT mobilities would differ between the 

parallel and perpendicular TFTs. A small SS value of 60 mV/dec around the theoretical 

limit at room temperature was obtained. Figure 7a gives 

 ‖ =         ┴         (2)

where  ‖ and  ┴ are the effective field‐effect mobilities of the parallel and perpendicular 

TFTs, respectively. 

 

= R0 + RB (16)

and
R‖ = R0. (17)

By combining Equations (15)–(17)

RB = 0. (18)

The previous works analyzed the current across the GBs with the thermionic emission
model of electrons over the barrier qVG produced by the charged traps [28,33–40]. However,
the thermionic emission model cannot explain Equation (18) because the resistance of sub-B
does not vanish, even for the barrier height qVB = 0. The model is invalid for the small
barrier height qVB corresponding to the small NT of the sub-B because the model was
originally derived under the assumption that

qVB > kT (19)
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where kT is 2.6 × 10−2 eV at room temperature [37]. The barrier height qVB is given by

qVB = (q2·NT
2)/(8·εs·n0) (20)

for the GBs [37], where εs is the permittivity of Si. The barrier height calculated from (20)
and the NT value of the sub-Bs in the present study (shown in Table 1) is a very small value
of qVB = 1.28 ~ 5.2 × 10−4 eV.

In the measured 13 perpendicular TFTs, a single sub-B comprises at least one TFT. The
probability is very high: P = 0.9895, which is calculated from the 10 µm channel length and
the density of sub-Bs per unit length of 0.02956 µm−1 obtained from Figure 2b.

4.5. A New Model of the Perpendicular Carrier Conduction at the Sub-B

The sub-B is no more treated as a potential barrier, such as a wall, but is treated as a
column of space charge cylinders allowing the current to flow between the dislocation space
charge cylinders, as shown in Figure 19. The space charge cylinders are partly overlapped.
The radius r of the space charge cylinder of a single dislocation is roughly estimated by the
charge neutrality condition as follows:

2 η · d/s = π r2·d· n0. (21)

The estimated r is 3.36 nm. This is comparable to the distance D of the dislocations in
sub-B; D = 2 ~ 4 nm for θ = 5 ~ 10◦, as shown in Figure 15. The carriers can go through the
sub-B between the cylinders without the necessity of a high carrier energy surmounting
a potential barrier. The dislocation space charge cylinders affect the negligible effect on
the current, as concluded in (18), due to only one row of space charge cylinders existing
vertically to the current from the source to the drain.
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4.6. Origin of the Variations in Electrical Characteristics

The variations in electrical characteristics shown in Figure 9 are caused by some mech-
anisms independent of the sub-boundary direction because the distributions of parallel
and perpendicular TFTs agree well. Figure 20 shows the correlation between the effective
mobility and threshold voltage Vth. The measured points in Figure 20 gather around two
clusters: in each cluster, there is no relation between parallel (red circle) and perpendicular
(blue square) TFTs. In one cluster, the mobility decreases with the negative shift of Vth.
This cluster suggests the mobility reduction due to the scattering by the charged Si–SiO2
interface states at the front or back interface since the negative shift in Vth means an increase
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in the interface states density Qss. The other cluster shows that the mobility is fixed at a
low value, independent of Vth. This suggests that the mobility in this cluster is affected
by the neutral scattering centers [41], such as surface roughness, and the effect of the
neutral scattering center shields the effect of the Qss fluctuations. The fluctuation of Qss
will be suppressed by the optimization of the gate insulator fabrication process at the low
temperature of 300 ◦C. The surface roughness will be suppressed by optimizing the cap
structure during the crystallization.
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5. Conclusions

Isotropic TFT characteristics have been realized in the {100}-oriented grain-boundary
(GB)-free Si thin films crystallized by continuous-wave laser lateral crystallization (CLC).
The GB-free films comprise sub-boundaries (sub-Bs) with a misfit angle θ of 5 ~ 10◦. The
sub-Bs in the GB-free film extend parallel to the scan direction. The neighboring sub-grains
(sub-Gs) joined by the sub-Bs tilt alternately to opposite directions, resulting in the uniform
{100) in-plane orientation in the scan and transverse directions of the GB-free film. The
density of the sub-Bs is 0.022956 µm−1. The width of the sub-grains is 8 ~ 69 µm. The
estimated trap-state density NT of the sub-B is 0.8 ~ 1.6 × 1010 cm−2, which drops more
than two decades from that of GB. The remaining sub-B does not change the electrical
characteristics of either the parallel or perpendicular TFTs. The cumulative distributions of
the mobility, Vth, and SS are overlapped precisely between the parallel and perpendicular
TFTs. A new current model across the sub-Bs has been proposed instead of the thermionic
emission model of the GBs to explain the negligible impedance across the sub-B.
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