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Abstract: Manipulating radiation patterns is challenging, especially at low frequencies. In this paper,
we demonstrate that acoustic metamaterials arranged as an array of quadrupoles remarkably improve
the directionality of acoustic radiation at low frequencies, compared with previous metamaterials
arranged as monopole and dipole structures. The directivity of the acoustic radiation can be adjusted
by changing the characteristic parameter and the symmetry of the structure, which provides a flexible
method of adjusting radiation directions. The directionality can be further improved by constructing
a linear array. Our work establishes acoustic radiation control via quadrupolar metamaterials.

Keywords: acoustic metamaterials; F-P resonance effect; two-dimensional Helmholtz resonator;
linear array; dipole; quadrupole

1. Introduction

An increasing number of researchers are attempting to improve the directivity of wave
propagation. Early studies focused on the effect of periodicity on spatial dispersion to mod-
ulate radiation patterns, which counteracts wave spreading via crystal anisotropy [1–3]
and band-edge states [4–6]. Recently, transformation optics (acoustics) has been used
to modulate waves in cylindrical coordinates, where an omnidirectional line radiation
source is modulated to specified patterns and directions [7]. Work has also been done on
phonon crystals and topological acoustics [8,9]. Song et al. devised a class of anisotropic
metamaterials that enhance directional acoustic emission [10]. Jun also designed enhanced
directional emission (EDE) based on an anisotropic metamaterial [11]. However, these
designs rely on bulk materials or structures that provide multiple reflections; thus, they
are usually bulky, lossy, and difficult to fabricate at low frequency. To solve this prob-
lem, Tong et al. proposed and demonstrated acoustically enhanced directional radiation
with topological interface states in a specially designed acoustic waveguide with a sub-
wavelength width and no additional structure for multiple reflections [12]. However, this
design cannot achieve intense radiation without sidelobes. In addition to adjusting the
material properties, Quan et al. proposed an effective way to modulate radiation patterns
by adjusting the surface impedance [13]. They designed a kind of metamaterial using
Fabry–Perot resonance [14] and the resonance of two-dimensional Helmholtz resonators
(HRs). When the incident acoustic wave frequency is near the resonance frequency of an
HR, the impedance interface is converted to a soft boundary. This structure is equivalent
to a quasi-dipole source [13]. Ciaburro Giuseppe achieved good sound absorption by
combining the advantages of membrane resonance absorption and cavity resonance [15].
Furthermore, a linear array of point sources can be used to generate acoustic transmission
with high directivity. A Yagi–Uda nano antenna array has been designed to improve and
redirect the radiation of oscillating point dipoles in the electromagnetic domain [16]. Ding
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used a dipole array to enhance the directionality of sound waves by adjusting the distance
between structural units [17].

To achieve better directionality and ensure that the component size is not too large, we
propose a new structure to obtain a radiation pattern using a quadrupole unit with high
directivity without any sidelobe in a broad frequency band, and verify it through numerical
simulations and experiments. This structure is based on the work of Quan et al. [13].
Different radiation properties are obtained by adjusting the acoustic parameter, and the
properties of this structure are completely determined by the structure itself instead of
the material. Our results show that this structure strongly controls the sound field, real-
izing functions that natural materials cannot complete. This provides a new approach to
controlling acoustic radiation using quadrupolar metamaterials.

In the second section, the quadrupole structure is introduced, and a simulation and
experiment are carried out to verify the theoretical analysis. In the third section, a structure
is proposed that can be used to adjust the radiation direction, and the theory is verified
by simulations. The fourth section proposes a structure with a linear quadrupole array to
produce strong directional radiation, and the theoretical results are verified by simulations
and experiments. In the fifth section, the summary and prospects are given.

2. Theoretical Derivation and Verification
2.1. Theoretical Analysis

A quadrupole has better ability to control radiation direction than a dipole, and
the structure designed by Quan et al. provides a way to obtain the equivalent dipole
radiation [13]. On this basis, we propose the structure for equivalent quadrupole radiation
shown in Figure 1a. This structure controls the radiation pattern using the boundary rather
than the entire propagation region, which greatly reduces the complexity of pattern control
and expands the application of wave modulation. Our system is similar to that of a single
slit surrounded by finite, periodically perforated grooves. The horn has an opening angle of
2α. The two surfaces of the structure are etched with a certain number of HRs. This method
has a wider working broadband [9] than the directional beam setup of Zhou et al. [18].
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Figure 1. Mechanism for realizing a quadrupolar resonance. (a) Schematic of the structure. (b) Equiv-
alent schematic of the structure, implying a quadrupolar resonance, the positive sources are red and
negative sources are blue.

When |Zs/ρ0c0|→ 0 or |Zs/ρ0c0|→ ∞ , the boundary can effectively function as a soft
or rigid boundary, respectively. Therefore, a surface etched with HRs can function effec-
tively as a soft boundary when an HR resonates. Using Fabry–Perot resonance theory [8],
we design a slit with an appropriate length that guarantees high radiation efficiency. In this
case, the radiation may be regarded as an effective quadrupolar source under the mirror
principle, which is shown in Figure 1b. Each red point represents a point sound source
of positive phase, and each blue point represents a point sound source of negative phase
induced by the soft boundaries; l1 and l2 are the structural interfaces. By changing α, we can
distribute the four effective point sound sources at the four vertices of the rhombic shape.

The velocity potential at a point P in the far field due to a point sound source can be
written as

ΦP =
4

∑
i=1

Φi =
4

∑
i=1

(−1)i+1 A
ri

ej(ωt−kri). (1)
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The positive and negative sound sources are symmetric about the structural boundary.
According to the above relation and the far-field approximation,

r1 = r + d sin θ, r3 = r− d sin θ, r2 = r + d
tan α sin θ, r4 = r− d

tan α sin θ,
1
ri
≈ 1

r , (i = 1, 2, 3, 4).
(2)

The velocity potential at the point P is

ΦP = 2
A
r

ej(ωt−kr)[cos(kd sin θ)− cos(
kd

tan α
cos θ)]. (3)

Because kd << 1, this can be written as

ΦP =
k2d2 A

2r sin2 α
ej(ωt−kr) cos(θ − α) cos(θ + α). (4)

Here, the theoretical directivity of the structure, DP(θ), is

DP(θ) =|cos(θ − α) cos(θ + α)|. (5)

The radiation is limited by the boundaries at both ends of the structure, thus θ is
limited to [π

2 − α, π
2 + α].

2.2. Numerical Simulation

To validate the theory, the directivity diagram and sound pressure diagram were
simulated using COMSOL Multiphysics® 5.5 for |Zs/ρ0c0|≈ 0 , α = 30◦, α = 45◦, and
α = 60◦, as shown in Figure 2a–f. Acoustic modules were simulated in two dimensions
for a slit width of 2 mm and slit length of 25 mm in each structure. Each structure covered
28 periodical HRs, with each side containing 14 HRs. The cavity size was 5 mm × 6 mm,
the neck size was 1 mm × 1 mm, and sound waves with a frequency of 6650 Hz were
incident from the slit into the free space ahead. Each structure was made of resin material,
and the rest of the space consisted of air. All boundaries in contact with the material were
set as hard boundaries, and the rest were set to plane wave radiation. The simulation page
is provided in Figure A1.
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Figure 2. Simulation and experimental verification of directional radiation. Theoretical, simulated,
and experimental normalized directivity diagram for |Zs/ρ0c0|≈ 0 and (a) α = 30◦, (b) α = 45◦, and
(c) α = 60◦; the pink line in (a) is the simulation result for the structure with only one slit. Simulated
sound pressure map for |Zs/ρ0c0|≈ 0 and (d) α = 30◦, (e) α = 45◦, and (f) α = 60◦. Experimental
sound pressure map for |Zs/ρ0c0|≈ 0 and (g) α = 30◦, (h) α = 45◦, and (i) α = 60◦.
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The directivity maps based on Equation (5) are plotted in Figure 2a–c. The simulation
result for the structure with only one slit is also drawn in Figure 2a.

2.3. Experimental Results

The theory was further verified through experiments. As shown in Figure 3a, the
element was stretched by the two-dimensional resin structure. The unit thickness was
2.7 cm, both sides were sealed with a 4 mm-thick resin plate, and the total thickness of
each element was 35 mm. The width of the central slit was 2 mm, and the elements had α
values of 30◦, 45◦, and 60◦. Detailed data for these structures are presented in Table 1. The
experiment was carried out in an anechoic chamber to eliminate the influence of reflected
waves. The full range of the intensity pattern was mapped within an acoustic plane
wave normally incident on the unit. When the relative effective boundary impedance is
|Zs/ρ0c0|≈ 0 , the frequency of the acoustic incident plane wave is approximately 6650 Hz.
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source. (e) Test environment.

Table 1. Characteristics of the structures used in the experiment.

Structural
Types Material Width

(mm)
Height
(mm)

Thickness
(mm)

Slit Width
(mm)

Slit Length
(mm)

α = 30◦ resin 104 99 34 2 25
α = 45◦ resin 132 87 34 2 25
α = 60◦ resin 164 68 34 2 25

The experimental system diagram is shown in Figure 3b,e. The experimental device
was placed between two wave guide plates, and the space around it was filled with sound-
absorbing cotton. The plane wave was generated by a speaker array [Figure 3d], and the
sample was placed in the front [Figure 3a]. The speaker array in this experiment was
custom-made, each unit could make sounds in the range 20–20,000 Hz, and there were
12 units in total. The travelling microphone [Figure 3c] was driven by a stepping motor
to collect the sound signal in front of the sample. The stepping motor C-scanned an area
of 40 cm × 38 cm, and each step was 2 cm with a precision of 1 mm. The instrumental
parameters are provided in Tabel A2. During the experiment, the travelling microphone
collected the average sound pressure at the nearest front end in real time, and the data
were recorded by the computer. The sound pressure maps are plotted in Figure 2g–i. The
experimental normalized directivity maps are drawn in Figure 2a–c to better compare the
experimental and theoretical results.
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2.4. Results and Discussion

In the directivity map, we took the width of the main lobe as the evaluation criterion;
the directionality worsens with increasing width. Second, the accuracy of the theory was
judged by comparing the theoretical and experimental directivity diagrams. Figure 2a
shows that for the structure proposed in this paper, the width of the main lobe is much
smaller than the structure with only one slit, and the directivity of the sound wave passing
through the slit is significantly improved. The theoretical results in Figure 2 are consistent
with the simulation results. Quadrupole-like radiation patterns are obtained from the
experiment, which is in line with the numerical simulations and theoretical predictions.
Overall, the experimental results agree well with the theoretical results. This structure
significantly improves plane wave directivity without any sidelobe. Moreover, the radiation
properties can be adjusted by changing the parameter α.

As α increases in Figure 2a–c, the radiation properties of the structures approach those
of a dipole. However, if α is too small, the difference between the interface and the slit
will be small, and the acoustic energy will be bound inside the structure. The numerical
simulation produces the result in Figure 4c when |Zs/ρ0c0|≈ 0 and α = 10◦.
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3. Asymmetric Structure
3.1. Theoretical Analysis

On the basis of the above results, the structure can be changed to asymmetric, as
shown in Figure 5a. The angle between the left and right interfaces is β + γ. This structure
is equivalent to the original structure, with α = β+γ

2 and deflection ∆α = |β−γ|
2 . In the same

coordinate system as before, the directivity formula can be written as

DP(θ) =|cos(θ + ∆α− α) cos(θ + ∆α + α)|. (6)
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Figure 5. (a) Schematic of the structure. (b) Simulated sound pressure for |Zs/ρ0c0|≈ 0 . (c) Theoreti-
cal and simulated sound fields induced by the structure.

3.2. Numerical Simulation

When HRs resonate, |Zs/ρ0c0|≈ 0 , and a quadrupole-like radiation pattern with a
certain deflection angle is obtained, as shown in Figure 5b. Figure 5c shows the simulated
and theoretical results for |Zs/ρ0c0|≈ 0 , β = 30◦, and γ = 45◦, with 31 HRs in total,
14 units on the left, and 17 units on the right.
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3.3. Results and Discussion

From Figure 5b,c, the numerically simulated deflection angle is mostly consistent with
the theoretical result of ∆α = |β−γ|

2 = 7.5◦. The theory is basically correct. Therefore, we

can adapt the radiation direction according to |β−γ|
2 . Theoretically, the maximum difference

between β and γ is 90◦, thus the structure can deflect the radiation direction by at most 45◦.

4. Linear Array of Quadrupole Sources
4.1. Theoretical Analysis

A linear array structure with quadrupole sources is proposed to obtain better acoustic
directivity, as shown in Figure 6b. As seen from Figure 6b, the structure consists of multiple
quadrupoles arranged horizontally. We assume that all the quadrupole sources have the
same phase and volume velocity when |Zs/ρ0c0|≈ 0 . One benchmark unit is selected from
the linear quadrupole array, its center is used as the starting point, and the unit is arranged
at both ends with the same array distance. There are m units on the left and n units on
the right, assuming that all units have the same pointing angle θ in the far field when the
number of structural units is not large. The velocity potential at the observed point P can
be approximated as

ΦP =
k2d2 A

2r sin2 α
ej(ωt−kr) cos(θ − α) cos(θ + α)

m

∑
i=−n

ejki∆l cos θ (7)
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experimental and simulated results at “Line”.

Assuming k2d2 A
2r sin2 α

ej(ωt−kr) = K, the expression for the velocity potential at the observed
point is obtained as

ΦP = Ke
1
2 jk(m−n)∆l cos θ cos(θ − α) cos(θ + α)

sin[ 1
2 k(m + n + 1)∆l cos θ]

sin( 1
2 k∆l cos θ)

. (8)

Here, the directivity of the linear array with quadrupole sources can be written as

DP(θ) = | cos(θ − α) cos(θ + α)
sin[π ∆l

λ (m + n + 1) cos θ]

sin
(

π ∆l
λ cos θ

) |. (9)
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4.2. Numerical Simulation and Experiment

The chosen number of linear array units was four, the distance between units was 2λ,
the incident sound frequency was 6650 Hz, and α was 30◦. The theoretical and simulated
results are shown in Figure 6a,c. The experimental sound pressure map is also presented
in Figure 6d. The experimental method and environment are the same as in Section 2.3.
To better compare the experimental and simulated results, we selected the position “Line”
labelled in Figure 6c,d, and plotted the relationship between the normalized sound pressure
and position, as shown in Figure 6e.

4.3. Comparison between Quadrupole and Dipole Linear Arrays

We also studied the effect of array distance on directivity for the quadrupole and dipole
linear arrays. Owing to the size limitations of the quadrupole array, we took ∆l/λ = 2,
∆l/λ = 2.5, and ∆l/λ = 3 for α = 30◦, m + n + 1 = 5, and f = 6650 Hz to ensure that each
unit could maintain equivalent quadrupole characteristics. The directivity diagrams are
drawn in Figure 7a–c.
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4.4. Results and Discussion

Figure 6a shows some differences between the theoretical results and the simulations,
although the main lobe is almost the same. This difference is mainly in the sidelobe. The
lateral lobe close to the main lobe is smaller in the theoretical result than in the simulation,
and the sidelobe away from the main lobe is larger. The reason is that we have assumed the
radiation angle selected by each unit is the same as the benchmark unit, when, in fact, the
angles of other units are not exactly the same, except when the angle of the benchmark unit
is θ. The radiation angle of the units left of the benchmark unit is actually larger, while the
radiation angle right of the benchmark is actually smaller, and the radiation angle deviation
increases with greater distance between each unit and the benchmark unit. When the
number of structural units is large, the difference in the radiation angle of each unit should
be considered. In contrast, the number of structural units is not large, and the pointing
angle of each unit is almost the same. However, the error is much larger when the angle is
close to 0◦ or 180◦. The experimental results are very consistent with the numerical results
[Figure 6a,e], which verifies our theoretical predictions. In Figure 6, it is obvious that the
main lobe of the linear array becomes narrower and the directivity is better than that of
Figure 2.

Figure 7 shows that the main lobe of the quadrupole linear array is approximately the
same as that of the quasi-dipole linear array for a suitable element distance, while the side-
lobe peak of the quadrupole array is smaller than that of the quasi-dipole array. Moreover,
the sidelobe becomes larger as the distance between array elements increases. The peak
value of the sidelobe gradually approaches that of the main lobe, and the directivity of the
linear array worsens.
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5. Conclusions

We have produced a type of metamaterial that can achieve radiation in a single
direction, has a simple configuration, and is easy to fabricate. The directivity of the acoustic
radiation at low frequency can be enhanced by equivalent quadrupolar sources with
acoustic metamaterials. Compared with a dipole, this metamaterial produces radiation
with higher directivity and higher efficiency. The numerical and experimental results agree
well with the theoretical predictions, thus providing a new scheme for modulating acoustic
waves. The asymmetric structure based on this mechanism provides a flexible method of
adjusting radiation directions. Moreover, the linear array of quadrupole sources in this
structure achieves better directivity than that of a dipole.

It is noteworthy that the quadrupole-like radiation has high efficiency and relatively
wide bandwidth. Moreover, the quadrupole-like radiation does not have any sidelobe. This
mechanism for achieving directional radiation can used in devices, such as high-gain loud
speakers and ultrasonic medical instruments. In the future, we hope to apply this structure
to sound localization and other functions.
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Appendix A

Table A1. Symbols in paper and their meanings.

Symbol Meaning Symbol Meaning

ρ0 The density of the medium. c0 Sound velocity of the medium.

Zs
The acoustic impedance of the

structural interface. θ
The angle of the OP and the

horizontal plane.

2α
The angle between the left and right

interfaces of proposed structure. ri(i = 1, 2, 3, 4) The distance between each point sound
source and point P.

Φi(i = 1, 2, 3, 4) The velocity potential of each point
sound source at the point P. ΦP

The total velocity potential at point P
(Radiation angle).

A The amplitude of the velocity potential of
each point sound source. k The wave number of the

incident sound.
ω The angular frequency. λ The wavelength.

j The imaginary unit. 2d The distance between the two
positive source.

r The distance from O to P. DP(θ) The theoretically directivity.

β
The angle between the left interface and

the central axis of the
asymmetric structure.

γ
The angle between the right interface

and the central axis of the
asymmetric structure.

f Frequency of acoustic waves. ∆l Distance between the array units.

m The number of units on the left of
benchmark unit. n The number of units on the right of

benchmark unit.

https://www.mdpi.com/ethics
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Table A2. Detailed information of the experimental instrument.

Instrument Detailed Information

Stepping motor Made by Nanjing Stepping Motor Factory and the scan
accuracy is 1 mm

Digital Storage oscilloscope InfiniiVision DSO-X 3034A

Travelling microphone

Beijing AcousticSensing Technology, 1/2′′

Microphone.Type:CHZ-213 + YG-201
OPen-circuit Sensitivity Level: −27.6dB re 1 V/pa

or 41.6 mV/Pa

Speaker array Particularly custom-made, each unit can make sounds in the
range of 20–20,000 Hz
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