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Abstract: The present work focuses on the prediction of the hot deformation behavior of thermo-
mechanically processed precipitation hardenable aluminum alloy AA7075. The data considered
focus on a novel hot forming process at different tool temperatures ranging from 24 ◦C to 350 ◦C
to set different cooling rates after solution heat-treatment. Isothermal uniaxial tensile tests in the
temperature range of 200 ◦C to 400 ◦C and at strain rates ranging from 0.001 s−1 to 0.1 s−1 were
carried out on four different material conditions. The present paper mainly focuses on a comparative
study of modeling techniques based on Machine Learning (ML) and the Zerilli–Armstrong model
(Z–A) as reference. Related work focuses on predicting single data points of the curves that the model
was trained on. Due to the way data were split with respect to training and testing data, it is possible
to predict entire stress–strain curves. The model allows to decrease the number of required laboratory
experiments, eventually saving costs and time in future experiments. While all investigated ML
methods showed a higher performance than the Z–A model, the extreme Gradient Boosting model
(XGB) showed superior results, i.e., the highest error reduction of 91% with respect to the Mean
Squared Error.

Keywords: machine learning; eXtreme Gradient Boosting; Zerilli–Armstrong; flow stress; AA7075

1. Introduction

Lightweight parts of aluminum (Al) alloys are widely used in the automotive industry
to replace heavy steel parts in order to reduce the weights of components. This design
concept allows for a reduction in fuel consumption and carbon dioxide emissions [1,2].
Among precipitation-hardenable, high-strength aluminum alloys, AA7075-T6 alloy with its
high ultimate strength (UTS) was found to be a promising candidate to be a steel substi-
tute [3,4]. Recently, the combination of AA7075 with hot forming processes led to promising
results [5–7]. However, the desire for trustworthy data to be employed for estimation of the
necessary forces implemented during hot forming of AA7075 alloy has prompted interest
in its elevated temperature behavior, especially its flow stress behavior [4,8–11]. These
data can be obtained via experiments such as tensile tests at elevated temperatures, but due
to the numerous parameters (strain rate, deformation temperature, atmospheric conditions,
etc.) affecting the resulting mechanical properties, these experiments are time consuming
and expensive. To reduce the number of experiments, and time and cost, researchers and
engineers have been trying to predict the flow stress behavior in the form of stress–strain
curves for decades, focusing on different deformation conditions (i.e., various temperatures
and strain rates) [4,12–18]. Techniques for the prediction of the flow stress behavior of
alloys at elevated temperatures can be classified as physically-based [12,13,15], phenomeno-
logical [16] and data-driven [17–21]. All three modeling approaches were used to predict
the mechanical behavior of different Al alloys at elevated temperatures [4,7,17,18].
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Physically-based models predict the behavior of materials based on changes in their
microstructure imposed by the deformation at elevated temperatures. The prediction of
stress–strain curves of materials via physically-based modeling techniques with high accu-
racy is challenging due to the high number of micro- and macroscopic parameters needed
to predict the flow behavior of the material. Forming AA7075 at elevated temperatures may
lead to the occurrence of softening mechanisms, i.e., dynamic recovery (DRV) and dynamic
recrystallization (DRX) [6,8]. Additionally, the occurrence of necking should also be taken
into account for the prediction of flow stress curves under tensile loading. Therefore, an
accurate modeling with a physically-based modeling technique is very complex. In order
to evaluate an alternative approach, the focus of the present work is data-driven Machine
Learning (ML) based models.

Phenomenological and empirical models such as the Johnson–Cook (J–C) equation,
the Zerilli–Armstrong (Z–A) and the Arrhenius-type models only take macroscopic defor-
mation factors into account [16]. Thus, these models do not consider the microstructural
evolution of materials such as changes in the dislocation densities during the tensile test.
Similar to the physically-based models, the prediction of stress–strain curves of materials
via those modeling techniques is challenging when high accuracy is desired. The J–C
equation was used to simulate the mechanical properties of AA7075 in T6 condition at
temperatures ranging from 25 ◦C to 600 ◦C and strain rates of 5 × 10−4 s−1 to 800 s−1 [4].
In another study, a modified J–C model was utilized to predict the flow stress response of
AA7075 alloy at 350 ◦C to 450 ◦C and at strain rates of 0.001 s−1 to 0.1 s−1 [7]. The results
of both studies revealed that J–C can simulate the mechanical behavior of AA7075 alloy
with acceptable accuracy.

Due to the steady increase in computing power in recent years and the versatility of
ML methods, data-driven models have also been used to predict the behavior of materials
at elevated temperatures [17–21]. The main concept of data-driven modeling is to find
correlations between variables of system state (input and output) without having an explicit
understanding of the physical behavior of the system. Among other data-driven models
Artificial Neural Networks (ANN), e.g., the Multi-Layer Perceptron (MLP) were found
to be capable of modeling the mechanical properties of alloys at high temperatures with
high accuracy [22–26]. In the study of Li et al. [18], an MLP model resulted in the lowest
error compared to other models such as a phenomenological Arrhenius-type model and the
physically-based Estrin and Mecking equation employed for the prediction of stress–strain
curves of homogenized AA6082 alloy at temperatures of 380 ◦C to 530 ◦C and strain rates
of 0.01 s−1 to 10 s−1. Moreover, Haghdadi et al. [17] studied the accuracy of MLP modeling
for the hot deformation of a cast A356 aluminum alloy at 400 ◦C to 540 ◦C under strain
rates of 0.001 s−1, 0.01 s−1 and 0.1 s−1.

Besides MLP, other ML methods were used in some recent studies to predict flow stress
behavior. Song [22] and Desu et al. [27] predicted the flow stress of austenitic stainless steels
based on the inputs of strain, strain rate, and deformation temperature using Support Vector
Machines (SVM). The SVM outperformed not only classical mathematical models but also
ANN in terms of reliability, predictability, and speed [22,27]. Song [28] also carried out an
investigation on stainless steels during hot deformation at temperatures of 700 ◦C to 900 ◦C
under strain rates from 0.0002 s−1 to 0.02 s−1 using the Random Forest (RF) approach. All
studies mentioned above have in common that no predictions of complete stress–strain
curves have been made. This means that the ML models were used to predict single data
points of trained curves. This has the consequence that the models generalization capability
is poor, i.e., a transfer to new and so far unknown curves is not possible.

The present study aims to provide a model that predicts the flow stress behavior of
thermo-mechanically processed AA7075 alloy for curves, which are explicitly not in the
training dataset available. The thermo-mechanical process used in the present study is a
novel hot forming process combining solution heat-treatment, forming and die quenching.
The process leads to unique mechanical properties of the AA7075 alloy [5,29]. At first, this
study investigates if it is generally possible to model the hot deformation behavior of the
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thermo-mechanically processed precipitation-hardenable aluminum alloy AA7075 with
reasonable accuracy. For this purpose, the empirical Z–A model is compared to different ML
methods. Moreover, it was investigated whether it is feasible to use ML methods to predict
true stress–strain curves with parameter combinations outside the training parameter space.
The objective of the ML methods employed is to predict complete curves with parameter
combinations that are unknown to the model. Providing models that can predict curves
outside the training parameter space allows addressing practical, real-world challenges to
reduce the number of tensile tests required and still predict the flow stress behavior over a
wide range of parameters.

2. Materials and Methods

In this section, the data used for assessment are presented. Moreover, the modeling
approach employed for the prediction of the flow stress behavior is explained. To allow for
meaningful comparison, the mathematical derivation of the empirical based Z–A model
is shown in detail. In addition, the evaluation procedure further referred to as “data
processing pipeline” is explained. The different ML-methods used in the data processing
pipeline will be briefly introduced at the end of this chapter.

2.1. Data and Experimental Setup

To model the flow stress behavior, data of tensile tests at elevated temperatures of
thermo-mechanically processed samples of AA7075 alloy were used. The samples were
produced using different thermo-mechanical treatments and the tensile experiments were
performed under different deformation temperatures T and strain rates ε̇. The thermo-
mechanical treatments, the corresponding microstructural evolution and the results of the
tensile experiments are comprehensively explained in a previous work published by some
of the authors of the present paper [5,29–31]. As initial condition sheets of AA7075 alloy
with the chemical composition listed in Table 1 were used.

Table 1. Chemical composition of investigated AA7075 alloy experimentally determined using optical
emission spectroscopy (OES).

Element Si Fe Cu Mn Mg Cr Zn Ti Zr Al

AA7075 (Wt.- %) 0.10 0.11 1.59 0.03 2.38 0.20 5.57 0.03 0.04 Balanced

The production of samples for tensile experiments was performed in subsequent steps
as shown in Figure 1. As displayed in Figure 1a, the roller hearth furnace was employed
for the solution heat-treatment of the AA7075 sheets. The heatable forming tool used in
the present study can be seen in Figure 1b. After solution heat-treatment at 480 ◦C for
5 min, the sheets of AA7075 alloy were formed in tools at temperatures of 24 ◦C and 350 ◦C,
respectively. Using two different tool temperatures, the impact of tool temperature on the
hot deformation characteristics and modeling of flow curves could be assessed. Following
this forming process, all produced profiles were subsequently aged at 120 ◦C for 24 h to
avoid any subsequent natural aging.

In total, four different conditions were considered in the tensile tests: as received
(referred to as T6 in the following), solution heat-treated, solution heat-treated subsequently
formed in a tool with a temperature of 24 ◦C (referred to as Tool 24 ◦C in the following) and
solution heat-treated subsequently formed in a tool with a temperature of 350 ◦C (referred
to as Tool 350 ◦C in the following). Tensile samples with a gauge length of 40 mm were cut
from the bottom of the produced profiles of all four conditions using electrical discharge
machining (EDM). Grinding was employed to remove any residue stemming from EDM
before tensile testing. Tensile experiments were carried out at deformation temperatures
of 200 ◦C, 250 ◦C, 300 ◦C, 350 ◦C and 400 ◦C under strain rates of 0.001 s−1, 0.01 s−1 and
0.1 s−1. In consequence, 15 curves are available for each of the examined conditions and
therefore a total of 60 curves are provided for the basis of the present study. During the
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experiments, temperatures and elongation were controlled utilizing thermocouples and
extensometers, respectively. The resulting stress–strain curves are shown in Figure 2 and
will be explained in the following.

Figure 1. (a) Roller hearth furnace and (b) forming tool used for sample production [5].
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Figure 2. Results of the tensile tests of the conditions: (a) T6 as-received, (b) Solutions heat-treated,
(c) Tool 24 ◦C and (d) Tool 350 ◦C [5]. The color represents the temperature and the line style
represents the strain rate respectively.

2.1.1. Condition 1: T6 As-Received (Figure 2a)

The mechanical properties of AA7075 in the T6 condition are very sensitive to the
deformation temperature and strain rate. With an increase in the deformation temperature
or reduction in the strain rate, the strength of the T6 condition is significantly reduced,
revealing the occurrence of softening mechanisms at elevated temperatures [5].

2.1.2. Condition 2: Solution Heat-Treated (Figure 2b)

Flow stress levels of solution heat-treated samples were also sensitive to deformation
temperature and strain rate. However, a noticeable work hardening can be seen for the
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solution heat-treated samples deformed at 200 ◦C and 250 ◦C. This can be rationalized by
the onset of dynamic precipitation in the thermally unstable condition. Further heating and
simultaneous forming of the solution-heat-treated samples during elevated temperature
tensile testing eventually leads to the formation of second phase precipitates and subsequent
growth of those features [5].

2.1.3. Condition 3: Tool 24 ◦C (Figure 2c)

The parts formed and quenched in the tool with the temperature of 24 ◦C showed
high UTS similar to the T6 conditions [5] due to fine and dispersed precipitates with low
interparticle spacing. These precipitates form during the thermo-mechanical treatment
imposed by the high cooling rate in forming and quenching of the parts, promoting the
evolution of a supersaturated condition being the optimal basis for subsequent aging
treatment. The precipitates interact with moving dislocation upon plastic deformation of
the alloy leading to high UTS [29].

2.1.4. Condition 4: Tool 350 ◦C (Figure 2d)

It was previously reported that hot forming and quenching of AA7075 in the tool
with a temperature of 350 ◦C results in low tensile strength at different temperatures [5].
The reason for this material behavior is linked to the non-optimal precipitate size and
morphology. At this point, the issue is the low cooling rate in forming and quenching of
the parts processed in the hot tool. Coarse precipitates form that do not have a significant
strengthening effect [29].

2.2. Zerilli–Armstrong Model

An empirical model based on the Zerilli–Armstrong (Z–A) constitutive equation [12,15]
is employed to predict the elevated temperature tensile behavior of the AA7075 alloy. Here,
the stress σ is calculated based on the strain ε, the strain rate ε̇, the temperature T and the
material constants B0, n, β0 and β1 using:

σ = B0εnexp(−β0T + β1T ln ε̇). (1)

The above equation can be simplified as:

ln σ = ln B0 + n ln ε − (β0 − β1 ln ε̇)T. (2)

For the sake of brevity, only modeling results of one of the conditions, i.e., thermo-
mechanically processed material in the tool with a temperature of 350 ◦C are reported, as
these have shown the best agreement between the model and experimental data. In order
to obtain B0, a reference strain rate of 0.001 s−1 was considered to simplify the equation in
the beginning and calculate the first material constant.

By consideration of a reference strain rate, the term −(β0 − β1 ln ε̇) can be assumed
to be constant, named C in the following. Hence, C can be calculated from the slopes of
ln σ versus deformation temperature in Kelvin at a given strain as shown in Figure 3. Here,
it can be deduced that C is independent of strain since the fitting lines are parallel with
each other and their slopes hardly vary with changes in strain values. The average value of
the slopes was found to be −0.0101 K−1. According to Equation (2), the n values can also
be determined from the slope of ln σ versus ln ε at a constant temperature as displayed in
Figure 4. The average n value was obtained to be 0.025 MPa. Furthermore, the intercepts of
fitted lines in the plot ln σ versus ln ε are equal to ln B0 + 0.0101T. So, the B0 values can
be obtained at each deformation temperature. The average value B0 was calculated to be
19,250.144 MPa.
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Figure 3. Relationship between the logarithmic stress ln σ and the temperature T for the sample
formed in the tool with a temperature of 350 ◦C. The different lines are representing different strain
values. For the sake of brevity and to provide a better overview, only 6 representative lines out of the
originally 21 lines are shown.

As displayed in Figure 5, material constants of β0 and β1 can also be determined
from the intercepts and slopes of fitted lines in the ln σ versus ln ε̇ plot at various strain
values, respectively. The average values for β0 and β1 were calculated as 0.008428 K−1 and
0.000166 K−1, respectively.

By substituting all the material constants in Equation (1), the Z–A constitutive equation
for AA7075 alloy formed in the tool with a temperature of 350 ◦C can be obtained as:

σ = 19250.144ε0.025exp(−0.000166T + 0.008428T ln ε̇). (3)
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Figure 4. Relationship between ln σ and ln ε for the sample formed in the tool with a temperature of
350 ◦C.
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Figure 5. Relationship between ln σ and ln ε̇ at various strain values for the sample formed in the
tool with a temperature of 350 ◦C.

2.3. Machine Learning Methods

Before the ML methods used in this study are introduced, the data processing pipeline
is presented. A pipeline is a procedure for automating the workflows required to build a ML
model. ML pipelines consist of several sequential steps, ranging from data extraction and
preprocessing to model training and deployment. In Figure 6 the schematic representation
of the general data preparation and preprocessing procedure of the data processing pipeline
is shown.

Exclusively supervised machine learning methods are used, which means that an
input to an output is mapped based on a training set consisting of input-output pairs.
As mentioned before, 60 curves were obtained in previous studies by tensile tests [5].
Every true stress–strain curve is referred to as one dataset in the following. Each dataset
has four features: condition, temperature, strain-rate, true strain, and one target value: true
stress. During data cleaning, the experimentally determined datasets are first adjusted to a
uniform number of samples in each dataset. The reason for different dataset sizes is that
the extensometer records data at a constant data acquisition rate. Therefore, the number
of data points recorded varies depending on the time until failure. The dataset with the
least number of data points consisted of 166 points. Therefore, the other 59 datasets are
reduced to this number during the data cleaning step. The points that are kept are selected
to be equidistant considering true strain. Consequently, the actual curve still qualitatively
represents the same, however, using fewer data and lower resolution, respectively.
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Figure 6. Evaluation pipeline employed in the present study.

After data cleaning, the nominal feature condition is one-hot encoded. In one-hot
encoding, the feature is represented in binary form. Since the feature condition has four
attributes, the feature space is increased by three features in order to enable a binary
representation. These features are mutually exclusive.

After feature processing, a leave-one-out analysis is executed. For the leave-one-out
method, a regression method is applied to 59 datasets and tested for each remaining dataset.
This process is repeated 60 times. Therefore, a new model is determined for each dataset.
The quality of the leave-one-out study is evaluated by the mean and variance of the Skill
score of the 60 observations. In this way, it was ensured that for validation the actual testing
data never have been seen by the models before.

To model the elevated temperature tensile behavior, a total of nine model classes from
four different model categories are used in the pipeline. These categories are shown in
Table 2. A classical grid search is used for hyperparameter tuning, which is cross-validated
with ten folds within the training dataset. A grid search is an exhaustive search through
a manually specified set of the hyperparameter space of the learning algorithm. Cross-
validation uses a fixed number of data folds to perform the analysis for each fold, and the
error of each run is averaged to provide an overall error estimate. The model with the
hyperparameters that lead to the best results is refitted on the entire training dataset and
evaluated on the remaining test dataset, the latter consisting of one curve.



Crystals 2022, 12, 1281 9 of 19

Table 2. Hyperparameters of ML methods being used in this present work.

Categories Model Source Hyperparameter Hyperparameterspace

Linear
Regression

LR Sklearn [32] degree 1, 2, . . . , 12

LASSO Sklearn [32]
alpha
degree

0.1, 0.2, . . . , 1.0
1, 2, . . . , 12

Ridge Sklearn [32]
alpha
degree

0.1, 0.2, . . . , 1.0
1, 2, . . . , 12

Kernel SVR Sklearn [32]

epsilon
C
kernel
degree

0.1, 0.2, . . . , 0.5
1, 10, 100, 1000
linear, poly, rbf
2, 3, . . . , 12

Ensemble

AdaB Sklearn [32] no. of estimators 10, 50, 100, 200, 500

RF Sklearn [32]
no. of estimators
max_depth

10, 50, 100, 200, 500
3, 6, . . . , 15

GB Sklearn [32]
learning rate
no. of estimators
max_depth

0.1, 0.3, 0.5
10, 50, 100, 200, 500
3, 6, . . . , 15

XGB XGBoost [33]
learning rate
no. of estimators
max_depth

0.1, 0.3, 0.5
10, 50, 100, 200, 500
3, 6, . . . , 15

Neural Network MLP PyTorch [34]

learning rate
dropout rate
n_layer
size_layer

0.001, 0.01, 0.1, 0.2
0.05, 0.1, 0.2
2, 3, 4
16, 32, 64, 128, 256

The computational effort per model within the pipeline consists of the product of
possible candidates per hyperparameter multiplied by 10 (cross-validation) and multiplied
by 60 (leave-one-out analysis).

To rate the model performance, the time to refit the model and the mean squared error
(MSE-score) is calculated to ensure comparability. The MSE-score (Equation (4)) assesses
the average of the squared difference between the target and the stress value predicted by
the regression model.

MSE =
1
n

n

∑
t=1

(σt − σpred)
2. (4)

The Skill is introduced in Equation (5). This metric is used to obtain a more inter-
pretable comparative value based on the MSE-score with the results of the Z–A model as a
reference. The Skill is 1 reduced by the ratio of the MSE (from the selected ML model and
the Z–A model).

Skill = 1 − MSEML model
MSEZ–A model

. (5)

The Skill metric can be used as a comparison between two models to determine which
model is performing in a superior fashion. A Skill of 0 denotes identical performance of
the two models, a negative Skill denotes that the Z–A model is better, and a positive value
tending towards 1 denotes that the respective ML model is performing better.

To determine whether the results of the different model classes are significantly dif-
ferent from one another, a Wilcoxon signed-rank test was performed based on the Skill
score. This is a non-parametric paired statistical hypothesis test. It was used because the
results of the different models were not normally distributed. The approach is known to be
more robust than the classical paired samples t-test. The null hypothesis chosen assumed
that there is no difference between the two results of the models that were compared and
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that any variation was due to noise or chance. The test indicates whether or not the null
hypothesis, i.e., that there is no difference, should be rejected. For this, the p-value was used.
This value measures the evidence against the null hypothesis: the stronger the evidence
against the null hypothesis, the smaller the p-value. In case the p-value with a selected
threshold is small enough, this is considered evidence to reject the null hypothesis.

In Table 2, a summary of the supervised ML methods employed to perform the
experiments in the present work is provided. In particular, this comparison provides an
overview of the methods used, the model classes, the source of the model classes, and their
hyperparameters, which were optimized using grid search in the proposed processing
pipeline. The regression models in this study can be divided into four model categories,
ordered by increasing complexity: Linear Regression, Kernel-based methods, Ensemble
Learning, and Artificial Neural Networks. These model categories are briefly introduced in
the following.

2.3.1. Linear Regression

In Linear Regression (LR), a simple model with linear weights is fitted to given true
stress values by minimizing the residual sum of squares between the true stress target
values and predicted true stress. A linear model can also be fitted by applying a penalty to
weights of the ordinary least squares cost function to avoid overfitting. Ridge Regression
was used, where an L2-regularization is applied as a weight penalty as well as the LASSO
(least absolute shrinkage and selection operator) approach, where an L1-regularization is
applied as a weight penalty. The LR models were imported from the scikit-learn library [32].
The hyperparameters of LR are the degree of the polynomial and in the case of the LASSO
and the Ridge regression the weight alpha, which determines how strong the respective
regularization term is considered to be.

2.3.2. Kernel Methods

Support Vector Regression (SVR) is a slightly less popular modification of the classical
Support Vector Machine (SVM) for classification. SVMs in general are the most used
kernel learning algorithms being characterized as non-parametric models [35,36]. The
kernel is used to find a hyperplane in higher dimensional space to also solve non-linear
problems [22,37,38]. SVR is characterized by the fact that not the training error between the
true stress target values and predicted true stress is directly minimized, but the generalized
error bound (margin maximized). The SVR model was imported from the scikit-learn
library [32] and the hyperparameters to be optimized during the grid search are the type
of kernel, the regularization parameter C and the soft margin parameter epsilon. The
investigated kernels are polynomials and radial basis functions. In case of the polynomial
kernel the degree is an additional hyperparameter that has to be optimized.

2.3.3. Ensemble Learning

In ensemble regression methods, multiple regression models are combined to enhance
the overall prediction performance of the true stress target values by reducing the likeli-
hood of selecting a poor-performing model [39]. The advantage over using only a single
regression model is that ensemble learning leads to improved accuracy and robustness
of the overall model where poor predictions can be compensated. Therefore, ensemble
learning is applied when even minor errors have an essential impact such that these have
to be compensated in the corresponding application domain [39,40]. Ensemble learning
is usually composed of three consecutive steps: ensemble generation, ensemble pruning,
and ensemble integration. In the first step, a set of models is generated. In the second step,
redundant models are removed from the first process step and only a subset of models is
selected for the third step, where a strategy for combining the predictions of the models
is established [39]. Additionally, ensemble methods can be divided into two major areas:
bagging and boosting. Bagging methods train the weak learners of the model-subset inde-
pendently from each other in parallel and combine them with a deterministic averaging
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process. Boosting methods train their weak learners sequentially in an adaptive way (a base
model depends on the previous ones) and combine them in the subsequent combination
strategy. In this study, tree-based ensembles were considered: AdaBoost (AdaB), Gradient
Boosting (GB) and eXtreme Gradient Boosting (XGB) from the group of boosting ensem-
bles and Random Forest (RF) from the group of bagging ensembles. The hyperparameter
number of weak learners (no. o f estimators) is applied in each of the ensemble model
classes. In the case of RF, the maximum depth (max_depth) per tree is added. For GB and
XGB, the learning rate is additionally taken into account. The models were compiled from
scikit-learn [32] with the exception of the XGB [33], which is a standalone Python package.

2.3.4. Neural Networks

The application and theory of neural networks has been sufficiently presented in
related studies [17,19,20,22–26]. Therefore, a detailed description will be omitted here,
and only the most important model properties are presented in the following. The neural
network used in the present work is initially based on the models presented by the authors
of related work mentioned before [17,19,20,22–26]. The number of hidden layers and the
number of neurons per layer were part of the grid search as well as the learning rate,
dropout rate and the type of activation function. ReLU (Rectified Linear Units [41]) and
ELU (Exponential Linear Unit [42]) were considered activation functions. The optimization
algorithm ADAM was chosen, which is based on the Stochastic Gradient Descent which
has proven to be successful in error back-propagation [43]. Dropout and weight decay were
used to avoid overfitting and to ensure high generalization capability. As mentioned, many
prior studies focused on MLPs predicting the flow stress behavior. For that reason, the
hyperparameters have been studied very carefully despite the high computational cost. To
make the learning process more efficient, an early stopping procedure was used, which
terminates the training process as soon as the validation error has not decreased over
five epochs. The weights that provided the lowest error on the validation data were then
restored using a saved checkpoint. The MLP was developed using PyTorch [34], as this
package is flexible in its use by allowing the application of arbitrary complex techniques.
In addition, PyTorch supports the use of CUDA, which allows us to run the training on the
latest high-performance GPUs.

For a more in-depth understanding of the methods used in this work, details can be
found in the cited references.

3. Results and Discussion

In this section, the results of the different model predictions are discussed and compared.

3.1. Results of the Zerilli–Armstrong Model

The true stress values σ can be obtained at a given true strain for various deforma-
tion temperatures and strain rates using the Z–A model. The comparison between the
experimental data and the modeling results are shown in Figure 7.

The results depicted in Figure 7 clearly indicate that the predicted data are not in a
satisfactory agreement with the experimental results. The average MSE-score is 2307 MPa2

as can be seen in Table 3. However, it is worth noting that at higher deformation temper-
atures, the MSE of the Z–A model is lower. The main reasons for the differences in the
MSE can be linked to the basic model assumptions. The classical Z–A model is mostly
employed for the prediction of hot compression experiments, where necking does not take
place. Since necking occurs at lower deformation temperatures (also in the present study),
the corresponding data could not be reproduced with high accuracy. Thus, the classical
Z–A equation as an empirical modeling technique is not able to predict the deformation
behavior of AA7075 with low MSE for all parameter combinations. Modified Z–A models
(e.g., [44]) can be used in order to take the effect of necking into account and reduce the
MSE values. In-depth assessment, however, is beyond the scope of the present study.
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Figure 7. Experimental data and Z–A modeling results depicting stress–strain curves of AA7075 sam-
ples formed in the tool with a temperature of 350 ◦C for testing temperatures of (a) 200 ◦C, (b) 250 ◦C,
(c) 300 ◦C, (d) 350 ◦C and (e) 400 ◦C; Experimental data are shown by dashed lines, whereas, predicted
data are highlighted by solid lines.

Generally, the impacts of the temperature, deformation rate and deforming process on
the flow behavior were considered to modify the Z–A model. Modifying Z–A equations
could enhance the accuracy of this empirical model. A follow-up study focusing on the
improvement of predicting flow stress behavior of the AA7075 alloy by the employment of
modified empirical models will be conducted.

3.2. Comparison to ML Based Approaches

The results of the different models are summarized in Table 3. The regression perfor-
mance is represented by the Skill score.

Table 3. Results obtained allowing for assessment of the considered models.

Z–A SVR LR Ridge LASSO AdaB MLP RF GB XGB

Mean MSE [MPa2] 2347 1830 1704 1659 1683 1204 421 295 242 201

Skill [-] 0 0.220 0.274 0.293 0.283 0.487 0.821 0.874 0.897 0.914

Std Skill [-] 0 0.878 0.789 0.787 0.850 0.740 0.468 0.200 0.124 0.124

Training time [s] 0.1 160 10 376 25 217 1419 89 184 43
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In addition to the table, the results are visualized with the help of a boxplot per model
class in Figure 8. It can be clearly seen that all ML methods are capable of predicting the
flow stress of the AA7075 alloy with higher Skill on average compared to the Z–A model.

−2 −1.5 −1 −0.5 0 0.5 1

XGB

GB

RF

MLP

AdaB

LASSO

Ridge

LR

SVR

Skill [-]

Figure 8. Results of the predictions of the ML model classes visualized by boxplots. Evaluations with
a higher Skill (or a lower MSE) compared to the Z–A model are highlighted by the gray shaded area
in the graph.

As described in the previous sections, the LR model is the ML model with the low-
est complexity. It is noticeable that Support Vector Regression (SVR), AdaBoost (AdaB),
LASSO and Ridge Regression show a rather similar performance regarding MSE and Skill.
In contrast, the MLP shows a significantly higher mean Skill with a reduced standard
deviation. The average Skill is increased further by the Random Forest model, but there
are some poor performing outliers, directly indicated by the relatively high standard devia-
tion. The Gradient Boosting (GB), as well as eXtreme Gradient Boosting (XGB), show the
highest mean Skill performance and the lowest variance between the results. Comparing
the absolute values, it is noticeable that the mean Skill of the XGB model is around 2%
higher, while the standard deviations for both methods are nearly the same and the lowest
of all investigated models. To support these findings, the Wilcoxon signed-rank test was
performed. The Skills of all model classes were tested for statistical significance and their
p-values are compared in Figure 9. The p-value is a measure of the probability that an
observed difference in the Skill scores of the model could have occurred just by random
chance. The lower the p-value, the more pronounced the statistical significance of the
observed difference and vice versa. The Skills of all models were tested against each other.

In Figure 9 it can be seen that the results of some ML model classes with inferior
performance (SVR, LR, AdaB, LASSO, Ridge) do not significantly vary (p > 0.05). The
superior methods, i.e., GB and XGB, are not significantly different, but when compared
to the other models, they are. In order to select a model for further investigations, the
next step of the evaluation procedure takes the computation time into account, i.e., the
time that each model class needed to run through an entire leave-one-out training loop. In
Figure 10, the Skill of the different model classes is shown over the computation time on a
logarithmic scale.

As shown in Figure 10, the LR, Lasso and, Ridge models do not show a clear difference
in their Skills. By regularization, LASSO and Ridge Regression are able to make small
improvements in their prediction performance only at the cost of a higher computational
effort. The MLP needs by far the highest computation time. For this comparison, it is
important to mention that the training was conducted with the same hardware using a
total of 16 cores. The MLP was trained on an Nvidia Tesla V100 GPU in addition to the
existing CPUs. This further reveals that the three ensemble methods RF, GB and XGB
show not only the highest performances but also a relatively low computational cost in
the present work. In the previous step, the GB and the XGB model classes could be found
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to perform significantly better. By directly comparing the data displayed in Figure 10, it
can be concluded that elevated temperature modeling of the AA7075 alloy using the XGB
model can be performed 4.3 times faster compared to the GB method. For this reason, the
results presented in the following sections consider the XGB model only.
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O Ridg

e
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p

Figure 9. p values as obtained from the Wilcoxon signed-rank test for the results of the investi-
gated models.
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Figure 10. Comparison of the average test performances with respect to all 60 curves of the different
models in relation to their required training time. The color represents the defined model categories.
See text for details.

3.3. Results of the eXtreme Gradient Boosting

The 60 individual results of the evaluation using the XGB model are visualized in
Figure 11.
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Figure 11. All 60 test Skill values obtained for the XGB model, shown in relation to temperature. The
color represents the strain-rate (SR), the marker and line style are representing the condition.

Considering the results shown in Figure 11, it can be seen that there is no trend or
pattern that allows deducing dependencies between the Skill values and the conditions,
temperature, or strain rate. In the case of the other model classes, no trend is recognizable
(for brevity a detailed visualization for the other methods is omitted). The following
Figure 12 shows an example of the two best predicted curves regarding the Skill value
compared with the prediction of the Z–A model. It can be seen that the experimental test
data can be predicted with high Skill using the XGB model. The Skill values of the XGB
are 0.9964 for Figure 12a and 0.9958 for Figure 12b.
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Figure 12. The two curves being characterized by the highest test performance when applying the
XGB model as directly compared to predictions made by the Z–A model. Subfigure (a) shows the
T6 as-received condition at a strain rate of 0.01 s−1 at 200 ◦C whereas in (b) the Tool 24 ◦C condition
at a strain rate of 0.1 s−1 at a temperature of 200 ◦C can be seen

The outliers of XGB in Figures 8 and 11 respectively, demonstrate that also the XGB
method is not capable of predicting all different curves with similar Skill performance. For
this reason, the two curves with the poorest Skill values are shown in Figure 13. The Skill
values of the XGB are 0.5289 for Figure 13a and 0.3952 for Figure 13b. These Skill values are
rather low, however, they are still positive, meaning better than the Z–A reference model.
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It can be assumed, that the performance can be improved by using additional datasets of
other temperatures, strain rates, or conditions allowing a more consistent prediction Skill
to be realized. Based on the error during training, the model is able to retrieve the training
curves of the AA7075 alloy for all four considered conditions: T6, solution heat-treated,
Tool 24 ◦C, and Tool 350 ◦C. Therefore, both the Z–A and the ML models considered in the
present work can be further used for finite element analysis (FEA) applications as proposed
by Li et al. in [3].
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Figure 13. The two curves with the lowest test performance when applying the XGB model compared
with model predictions of the Z–A model. Subfigure (a) shows the Tool 350 ◦C condition at a strain
rate of 0.001 s−1 at 300 ◦C whereas in (b) the Solution heat-treated (SHT) condition at a strain rate of
0.001 s−1 at a temperature of 250 ◦C can be seen

It is very important to note that, with the developed model, it is possible to make pre-
dictions for unknown parameter combinations based on the testing error. Other researchers
and application engineers will be able to generate estimations for similar parameters, and
in order to increase the generalization capability, even extend the existing model using data
that are available for them. The results, material constants, and models obtained herein
can be employed to simulate the true stress–strain curves at the deformation temperatures
evaluated here. Eventually, the approaches and results shown will reduce the number of
experiments needed for evaluating the forces required to be applied in the hot deformation
of the alloy in focus. Such a reduction in the number of experiments will considerably save
time and decrease costs.

As mentioned earlier, the occurrence of necking during tensile testing and softening
mechanisms, i.e., DRV and DRX, render the modeling and prediction of material behavior
difficult. However, attempts have been made to smooth the curves using a Savitzky–Golay
filter [45]. This smoothing is based on higher degree linear regression in combination with
a moving window. Due to the small number of samples per dataset, it is necessary to
choose a very small window width in order to prevent excessive smoothing in the area
of the transition from linear to non-linear flow behavior, in which case the smoothing in
the posterior part of the curve is too weak. Obviously, a monotonically decreasing curve
cannot be seen in all datasets. Therefore, smoothing of curves is beyond the scope of the
present work and, hence, will be addressed in a follow-up study.

The results obtained in the present study are discussed with the literature in order
to understand the accuracy of the models used. A strain-compensated Arrhenius model
and an ANN model were found to be capable of predicting flow curves of AA7075 alloy
obtained from compression experiments at elevated temperatures [25,46,47]. The error
values reported are similar to the values calculated in the present study. However, due
to the absence of necking during compression, the prediction of flow stress curves is less
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challenging compared to those obtained from tensile experiments. A modified J–C model
was employed to predict the flow behavior of AA7075 alloy during tensile deformation
at various temperatures and strain rates [48]. Although the modified J–C could generally
predict the flow stress curves, disagreements between the experimental data and calculated
points were considerable. Due to the difficulty of predicting the flow stress curves during
tensile deformation, a physical plane-stress model was employed elsewhere to result in a
lower level of mean average absolute relative error (AARE) [46]. The physical plane-stress
model could slightly reduce the level of AARE compared to that of phenomenological
ones. The present study reveals that the application of ML methods can also improve
the accuracy of predicted flow stress curves, similar to the modified and physical-based
models, and, hence, this modeling technique is suitable for the prediction of the tensile
deformation behavior at elevated temperatures.

4. Conclusions

In the present work it was shown that it is possible to predict the flow stress behavior
of aluminum alloy AA7075 at different temperatures and strain rates in tensile tests (in form
of true stress–strain curves with low error) using ML methods taking different material
conditions into account. It was also shown that the prediction of the flow stress using ML
methods has a lower error compared to the classical Z–A approach. This could be due
to the fact that the classical Z–A model could not reproduce the occurrence of necking at
parameter combinations with low deformation temperatures. Even simple linear regression
showed a lower mean MSE compared to the conventional empirical model. The Random
Forest, Gradient Boosting, and eXtreme Gradient Boosting models performed similarly
well in terms of the Skill score. The statistically significant difference in the Skill scores
of the models was confirmed using the Wilcoxon signed-rank test. XGB showed clear
computational advantages compared to other high-performing models.

Many previous studies have been limited to MLPs, which have performed worse
compared to the model classes assessed in the present work. The results obtained indicate
that more complex models do not necessarily provide a higher performance, which should
convince the community not to focus exclusively on MLPs but also to consider less complex
models. A novelty in the work presented is the way of dividing the training and test
data. The models were tested on entire curves with information learned from different,
albeit related, curves. This approach allows for the use of large datasets and to generalize
beyond available data. The presented data and models can be extended and improved
with additional data, eventually allowing to save time and decrease the number of needed
laboratory tests in the future. One possible extension to this is intelligent experimentation,
where only those laboratory experiments that provide the most valuable information for
the model are requested [49]. Another approach for improvement could be the use of
Bayesian methods for modeling uncertainty. Such an approach could be promising due to
the lack of big data being characteristic for the field of materials engineering.
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