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Abstract: Due to their non-centrosymmetric structure, B20-type compounds have intriguing prop-
erties of chiral magnets and are the objects of study of topological spin textures. Among them is a
high-pressure phase MnGe, which demonstrates properties of magnetic skyrmions. We report on the
synthesis of an Mn1−xRexGe solid solution with the B20 structure, which can be prepared without the
application of high pressure. Mn1−xRexGe (x = 0.169(6)) shows unconventional magnetic behavior,
where the Neel temperature is only slightly reduced compared to a chiral-lattice helimagnet MnGe.

Keywords: B20-type structure; manganese monogermanide; magnetic properties; rhenium

1. Introduction

Compounds of the cubic FeSi structure type, also known as B20-type, have attracted
great attention in recent years [1,2]. The interest in this family of compounds is caused
by a special yet simple crystal structure (Figure 1), which leads to intriguing magnetic
properties. The cubic unit cell belongs to the P213 space group, which does not have an
inversion center, rendering the existence of two enantiomeric structures possible. As shown
in Figure 1b, iron atoms that do not lie on the [111] axis form spirals that can twist clockwise or
counterclockwise, whereas silicon atoms form similar spirals with an inverted rotation. Single
crystals of B20-type compounds have enantiomorphic purity, while both forms are present
in powdered samples. This group includes monosilicides and monogermanides of various
transition metals including chromium, manganese, iron, and cobalt, as well as silicides RuSi,
OsSi, RhSi, ReSi, and some other compounds, for example PdE and PtE (E = Al, Ga). Of
particular interest are the 3d transition metal derivatives capable of exhibiting magnetism in
the non-centrosymmetric B20 structure that leads to the appearance of a nontrivial magnetic
order–helical magnetic structure, due to the Dzyaloshinsky-Moriya interaction.
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we note that the replacement of silicon by heavier germanium in FeSi also leads to the 
collapse of the band gap and, as a consequence, metallic conductivity. MnGe exhibits me-
tallic properties, however, a transition to the semiconducting state is observed, when man-
ganese is substituted by rhodium Mn1−xRhxGe in the concentration range of 0.3 ≤ x ≤ 0.7 
[20]. 

In this work, we show that the high-pressure compound, MnGe, can be stabilized at 
the ambient pressure by the partial substitution of rhenium for manganese, which leads 
to the Mn1−xRexGe solid solution with a narrow homogeneity range of 0.16(2) < x < 0.20(2). 
We report on the synthesis, crystal structure, and magnetic properties of the new solid 
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2. Materials and Methods 
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All syntheses were carried out using manganese (99.95%, Alfa Aesar (Ward Hill, MA, 
USA)), rhenium (99.99%, Alfa Aesar), and germanium (99.999%, Sigma-Aldrich (Burling-
ton, MA, USA)) powders. Powders of metals and germanium were placed in corundum 
crucibles, which were enclosed in quartz ampoules. The ampoules were evacuated (resid-
ual pressure of ~1 · 10−3 Torr) and sealed off. Samples with the nominal composition of 
Mn1−xRexGe (x = 0.15, 0.17, 0.2, 0.25, 0.4, 0.75) were obtained in polycrystalline form by 
annealing in the following regime: heating to 950 °C at a rate of ~100°/h for 2 days for 
primary homogenization of reagents, cooling to 750 °C within 6–7 h, and holding for 5 
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There are many studies devoted to chiral magnetism in CrGe [3], MnSi [4,5], CoSi [6,7],
and Co- or other metals doped FeSi with very high anomalous Hall conductivity [8,9].
These discoveries are important for spintronics and lead to an active search for materials
with nontrivial behaviors [8,10]. Such properties of the B20-type members as helimag-
netism, multigap superconductivity, field-induced skyrmion lattices, high-spin to low-spin
transition, quantum phase transitions, and chiral topological fermions are widely dis-
cussed [6,7,11–14]. Particular attention is drawn to magnetic skyrmions, which were first
discovered in MnSi and Fe1−xCoxSi [12,15].

In addition to the studies of transitions between the skyrmion-lattice phase and the
conventional magnetic order towards development of novel memory devices, studies of
transitions between spin textures with different topological order, for example, between
the skyrmion and hedgehog-lattices in MnSi1−xGex, are gaining popularity [14]. MnGe
and solid solutions on its base are particular materials in the ocean of the B20-type com-
pounds. They demonstrate real-space short-period lattice of skyrmions, transformable
antiskyrmions, topological transitions between skyrmion- and hedgehog-lattice states,
long-period helical structures and twist-grain boundary phases [14–26].

However, MnGe and its substituted analogs, as well as some other compounds of the
B20 structure type, for instance CoGe or RhGe [27,28], can be obtained exclusively under
high pressure conditions.

When discussing the transport properties of compounds, the possibility of applying
the 18-n rule [29], should be mentioned. Each atom of the transition metal in the B20 crystal
structure has six contacts with the same atoms, which provides the valence electron count
equal to VEC = 18 − 6 = 12, necessary for the implementation of semiconducting properties.
Indeed, group eight metal silicides, FeSi, RuSi, and OsSi, exhibit non-metallic properties,
while a deviation from the VEC = 12 induces a metallic state [30]. Separately, we note
that the replacement of silicon by heavier germanium in FeSi also leads to the collapse
of the band gap and, as a consequence, metallic conductivity. MnGe exhibits metallic
properties, however, a transition to the semiconducting state is observed, when manganese
is substituted by rhodium Mn1−xRhxGe in the concentration range of 0.3 ≤ x ≤ 0.7 [20].

In this work, we show that the high-pressure compound, MnGe, can be stabilized at the
ambient pressure by the partial substitution of rhenium for manganese, which leads to the
Mn1−xRexGe solid solution with a narrow homogeneity range of 0.16(2) < x < 0.20(2). We
report on the synthesis, crystal structure, and magnetic properties of the new solid solution.

2. Materials and Methods
2.1. Synthesis

All syntheses were carried out using manganese (99.95%, Alfa Aesar (Ward Hill, MA,
USA)), rhenium (99.99%, Alfa Aesar), and germanium (99.999%, Sigma-Aldrich (Burlington,
MA, USA)) powders. Powders of metals and germanium were placed in corundum
crucibles, which were enclosed in quartz ampoules. The ampoules were evacuated (residual
pressure of ~1 · 10−3 Torr) and sealed off. Samples with the nominal composition of
Mn1−xRexGe (x = 0.15, 0.17, 0.2, 0.25, 0.4, 0.75) were obtained in polycrystalline form by
annealing in the following regime: heating to 950 ◦C at a rate of ~100◦/h for 2 days for
primary homogenization of reagents, cooling to 750 ◦C within 6–7 h, and holding for 5 days
at this temperature. After cooling in the shut-off furnace, the ampoules were unsealed,
and the resulting samples were carefully ground in an agate mortar, then pressed into
cylindrical pellets, which were placed in quartz ampoules and sealed off. The secondary
annealing was carried out by heating up to 750 ◦C and holding for one week. The samples
obtained after the second annealing were also ground into fine powders, which were used
for further investigation.

2.2. Characterization

Phase composition of all powdered samples was determined by powder X-ray diffrac-
tion (PXRD) analysis using a Huber G670 Guinier Camera (Cu Kα1 radiation, Ge monochro-
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mator, λ = 1.5406 Å). The data were collected by scanning the image plate 4 times after an
exposure time of 2400 s at room temperature.

Elemental composition of the samples was determined on the pellets using a scanning
electron microscope, JSM JEOL 6490-LV, equipped with an energy dispersive X-ray (EDX)
analysis system, INCA x-Sight. The accelerating voltage was 30 kV. The uncertainty of the
measurements for each element was about 1%.

2.3. Crystal Structutre Investigation

Crystal structure was investigated by PXRD (Figure 2) on a BRUKER D8 Advance
diffractometer (Cu Kα radiation, λ = 1.540593, 1.544427 Å). The crystal structure of the
main cubic phase of samples Mn1−xRexGe with the nominal composition of x = 0.17 and
0.20 was refined using the Rietveld method in the Jana2006 program [31]. Crystallographic
data and crystal structure refinement details are shown in Tables 1 and 2.
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Sample Mn1−xRexGe 
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Figure 2. Powder X-ray diffraction patterns of Mn1−xRexGe (xnominal = 0.17 (a) and 0.20 (b), which
correspond to the refined compositions xrefined = 0.169(6) (a) and 0.177(7) (b)). The upper black line
represents the experimental diffraction patterns, the ticks show peak positions, and the lower black
line is the difference between the experimental and calculated patterns.
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Table 1. Crystallographic data and structure refinement parameters for the Mn1−xRexGe
powder samples.

Sample Mn1−xRexGe

Nominal composition Mn0.83Re0.17Ge Mn0.80Re0.20Ge
Refined composition Mn0.831(6)Re0.169(6)Ge Mn0.823(7)Re0.177(7)Ge

Formula weight, g·mol−1 149.73 150.79
Structure type c-FeSi
Space group P213

a, Å 4.82561(7) 4.82734(4)
V, Å3 112.372(5) 112.493(3)

Z 4
dcalc, g·cm−3 8.851 8.903

Temperature, K 293
Radiation, λ, Å CuKα, 1.540593, 1.544427

2θ range, ◦ 20.0–99.999 8.0–90.001
No. of refined parameters 23 39

R1 0.0290 0.0273
wR2 0.0308 0.0417
GoF 1.27 1.26
Rprof 0.0309 0.0261

wRprof 0.0400 0.0337
Impurity Ge “Re4Ge7”

Table 2. Atomic coordinates and thermal displacement parameters for the Mn1−xRexGe
powder samples.

Atom Wyckoff
Site x/a y/b z/c Uiso, Å2 Occupancy

Mn0.831(6)Re0.169(6)Ge

M1 4a 0.8655(3) 0.8655(3) 0.8655(3) 0.0051(19) 0.831(6) Mn
+ 0.169(6) Re

Ge1 4a 0.1575(3) 0.1575(3) 0.1575(3) 0.0098(17) 1
Mn0.823(7)Re0.177(7)Ge

M1 4a 0.8654(2) 0.8654(2) 0.8654(2) 0.0056(13) 0.823(7) Mn
+ 0.177(7) Re

Ge1 4a 0.1589(3) 0.1589(3) 0.1589(3) 0.0080(11) 1

2.4. Magnetic Properties

Magnetization of the Mn0.831(6)Re0.169(6)Ge powdered sample was measured using a
Magnetic Properties Measurement System (MPMS-XL5 SQUID, Quantum Design). Mea-
surements were carried out in the zero-field-cooling (ZFC) and field-cooling (FC) conditions
in the temperature range of 2–300 K in magnetic fields of 10 mT, 0.1 T, 1 T, and 5 T. Field-
dependent magnetization was measured in the ZFC conditions at different temperatures
by sweeping magnetic field between −5 T and 5 T.

3. Results and Discussion
3.1. Synthesis, Phase Equilibria, and Crystal Structure

All samples with the nominal composition of Mn1−xRexGe (x = 0.15, 0.20, 0.25, 0.4,
and 0.75) obtained after the second annealing were examined by PXRD. According to the
phase analysis, in all samples, the presence of a title compound is observed, the reflections
of which are indexed in the P213 space group. However, the content of this phase decreases
as the rhenium content increases. The most representative diffraction patterns are shown
in Figure 3 for the samples with a nominal rhenium content of x = 0.15, 0.20, and 0.40.
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Figure 3. PXRD patterns of the Mn1−xRexGe polycrystalline samples with nominal x = 0.15, 0.20,
and 0.40.

At xnominal = 0.15, three phases are in equilibrium–the new cubic compound and
elemental manganese and germanium. Here, Mn1−xRexGe is the main phase. With a
further increase of the rhenium content, xnominal ≥ 0.2, the reflections corresponding to
germanium and manganese disappear, but a large set of reflections arises, which, in addition
to elemental rhenium, we attribute to a previously unknown compound that is a derivative
of the Re4Ge7 Nowotny chimney ladder phase. Further studies will be devoted to the
detailed analysis of “Re4Ge7” phase.

Three powder samples, Mn1−xRexGe with the nominal composition of x = 0.15, 0.20,
and 0.40 were pressed into pellets and their elemental composition was studied (Figure 4).
It should be noted that according to the EDX analysis results the composition of the title
phase is virtually the same for all samples: Mn:Re:Ge = 43:8:49 at. % (xnominal = 0.15)
Mn:Re:Ge = 42:9:49 at. % (xnominal = 0.20) and Mn:Re:Ge = 41:10:49 at. % (xnominal = 0.40),
that corresponds to Mn1−xRexGe with x = 0.16(2) − 0.20(2). Mapping of the elements across
the surface reveals their homogeneous distribution in the case of xnominal = 0.20, whereas
for xnominal = 0.15 and 0.40, a phase contrast is present, which corresponds to the impurity
phases, in agreement with the PXRD results. From the results of PXRD and EDX analyses,
one can conclude that there is a Mn1−xRexGe solid solution with a narrow homogeneity
range of 0.16(2) < x < 0.20(2).

We note that this is the first example of the formation of a hp-MnGe-based solid
solution, which, however, was synthesized without the use of high pressure. All syntheses
were carried out at the ambient pressure, and the samples after synthesis remain stable in
humid air for an arbitrarily long time.

The main reason of the stability of the new solid solution under normal conditions
seems to be the difference in sizes of manganese and rhenium. On the one hand, when
replacing manganese with rhenium, we do not violate the formal electronic state, since both
elements are in the 7th group of the Periodic Table; on the other hand, the radius of rhenium
is much larger than the radius of manganese. However, despite the formal isoelectronic
configuration of rhenium and manganese, the 5d-orbitals of rhenium are more diffuse and,
as a rule, rhenium compounds do not exhibit magnetic ordering. It is interesting to study
how such a “dilution” of the manganese matrix with rhenium atoms affects the magnetic
properties of the solid solution. When discussing the electrically conductive properties
of the Mn1−xRexGe solid solution, we should note that the substitution of manganese for
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rhenium does not change the formal valence electron count in any way: Thus, it should be
assumed that the Mn1−xRexGe conductivity remains metallic, as in the parent compound.
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The Mn0.80Re0.20Ge sample (xrefined = 0.177(7)) with a minor impurity and the newly
synthesized sample with xnominal = 0.17 (xrefined = 0.169(6)) were studied to refine the crystal
structure of Mn1−xRexGe. As expected, Mn1−xRexGe crystallizes in the cubic FeSi structure
type (Space group P213). In this case, we do not observe any peaks responsible for the
formation of a superstructure due to the potential ordering of manganese and rhenium.
There are two independent positions in the crystal structure: one for the transition metal
(M1) and one for germanium. For the M1 position, the joint population of manganese
and rhenium was refined, which turned out to be almost the same in both samples. The
crystal lattice parameters for both compositions are also close (see Tables 1 and 2). Also,
no anomalies are observed in the values of interatomic distances (see Table 3). They are
in the typical range for distances in manganese and rhenium germanides, and marginally
increase with increasing rhenium content in the Mn1−xRexGe solid solution sample.

Table 3. Selected interatomic distances in Mn1−xRexGe.

Atom Atom
Distance, Å

Mn0.831(6)Re0.169(6)Ge Mn0.823(7)Re0.177(7)Ge

M1 M1 (×6) 2.958(2) 2.959(1)
M1 Ge1 (×1) 2.441(3) 2.454(2)
M1 Ge1 (×3) 2.514(3) 2.506(2)
M1 Ge1 (×3) 2.718(3) 2.723(2)
Ge1 Ge1 (×6) 2.988(2) 2.992(2)

3.2. Magnetic Properties Investigation

Magnetic susceptibility of Mn1−xRexGe (x = 0.169(6)) measured in various magnetic
fields is shown in Figure 5a. It exhibits a broad magnetic peak below the characteristic
temperature of TN = 145 K, which was determined using the first-order derivative curve.
This peak is gradually suppressed by an increasing magnetic field. The ZFC and FC
curves show a bifurcation at low temperatures, where the derivative curve also indicates a
minimum at 35 K. Magnetic susceptibility in the paramagnetic state follows the Curie–Weiss
behavior (Figure 5b). Fitting the data measured in 1 T magnetic field by the modified Curie–
Weiss law χ(T) = χ0 + C/(T − θ), where χ0 is the temperature-independent contribution,
C—Curie–Weiss constant, and θ—Weiss temperature, yields χ0 = −0.0067(1) emu/mol,
C = 3.03(2) emu K/mol, and θ = 148.6(3) K. Similar results were obtained in 5 T magnetic
field. The obtained value of Curie–Weiss constant corresponds to the effective moment of
Meff = 5.40(1) µB per Mn atom. This value is between those of the Mn2+ and Mn3+ species,
which possess the spin moment of 5.92 µB and 4.91 µB, respectively. The Weiss temperature
of θ = 148.6(3) K is in agreement with the position of the magnetic peak, and its positive
value indicates the ferromagnetic exchange between the magnetic centers.

Field-dependent magnetization of Mn1−xRexGe (x = 0.169(6)) is shown in Figure 5c.
At temperatures above TN, no remnant magnetization is observed in agreement with
the paramagnetic behavior of the compound. Below TN, magnetization shows a soft
ferromagnetic hysteresis with the absence of saturation even at the lowest measured
temperature in the highest magnetic field of 5 T. At T = 2 K, the coercive field of 531 mT is
observed accompanied by the magnetization of more than 0.7 µB per f.u. in 5 T magnetic
field. The soft low-field ferromagnetic hysteresis and its similarity with that of other B20
compounds [32,33], is consistent with, but not sufficient to determine, a helimagnetic
ordered state in Mn1−xRexGe (x = 0.169(6)).

It should be noted that the magnetic properties of Mn1−xRexGe with x = 0.169(6) are in
good qualitative agreement with those of MnGe [11,34–36], which has the Neel temperature
of TN = 170 K. TN is slightly reduced in the case of Mn1−xRexGe solid solution due to the
mixing of Mn and Re atoms in the crystal structure. Notably, similar reduction of TN was
observed for the Mn1−xFexGe solid solution, which shows signatures of a helimagnetic
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ordering at low temperatures [36]. The newly discovered Mn1−xRexGe solid solution may
exhibit the helimagnetic properties, too, that fosters its further investigation.
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4. Conclusions

In summary, a solid solution based on MnGe (B20-type) was synthesized for the first
time by substituting part of manganese atoms by rhenium. Unlike previous studies on
hp-MnGe and its solid solutions, Mn1−xRexGe is synthesized under ambient pressure con-
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ditions. The solid solution shows a narrow region of homogeneity (0.16(2) < x < 0.20(2)),
which is confirmed by a complex of studies including X-ray phase analysis and crys-
tal structure refinement and EDX. An examination of the magnetic properties of the
Mn1−xRexGe (x = 0.169(6)) sample shows unusual magnetic behavior similar to the par-
ent compound, indicating possible helimagnetism. However, further studies, including
neutron diffraction experiments, are required to accurately establish the nature of the
magnetic transition.
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