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Abstract: The Griffith crack problem and the interaction between screw dislocation and semi-infinite
crack in cubic quasicrystal piezoelectric materials are studied by using the complex variable function
method. The stress intensity factors and electric displacement intensity factors are obtained. The
effects of the linear force and coupling elastic coefficient on the stress intensity factor of phonon field
and phason fields are discussed in detail. By numerical examples, it is found that the linear force and
the coupling elastic constant have a significant effect on the stress intensity factor.
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1. Introduction

Since solid quasicrystals were reported in 1984, their physical properties have at-
tracted extensive attention. In terms of the piezoelectric effect of quasicrystals, researchers
have also done a lot of research. Hu et al. [1] derived the piezoelectric constants of two-
dimensional (2D) and three-dimensional (3D) quasicrystals using thermodynamics and
group representation theory. Altay and Dökmeci [2] studied the basic equation of qua-
sicrystal piezoelectricity and gave the basic equation of the quasi-static electric effect of
3D quasicrystal elastic materials through differential and variational forms. Li et al. [3]
studied the basic solution of the one-dimensional (1D) hexagonal quasicrystal piezoelectric
problem, and expressed the basic solution by five quasi-harmonic functions using operator
theory and generalized Almansi theorem. Yu et al. [4] derived the governing equations
of each crystal system of 1D quasicrystal piezoelectric materials, and gave the general
solutions of the governing equations by using the operator method and complex method.

Since the establishment of the elastic theory of quasicrystal piezoelectric materials,
although many achievements have been made, most of the research has been focused on
1D and 2D quasicrystal piezoelectric materials [5–13]; there have been few studies on the
fracture of 3D quasicrystal piezoelectric materials. Because the elasticity of quasicrystal
piezoelectric materials is similar to that of quasicrystal materials, the defect problem of 3D
cubic quasicrystal piezoelectric materials can be studied by means of the defect problem
of 3D cubic quasicrystal materials. However, due to the piezoelectric effect, the defects of
quasicrystal piezoelectric materials are more complicated. For cubic quasicrystal materials,
some research results have focused on the defects problem. Zhou et al. [14] studied the
anti-plane problem and mode ш crack problem of cubic quasicrystals, resulting in new
developments in the elastic theory of cubic quasicrystals. Zhang [15] studied the anti-
plane conjugate crack problem; general solutions for the stress and strain of conjugate
cracks in cubic quasicrystal were obtained. Gao et al. [16] studied the elliptical hole or
crack problem, and obtained analytical expressions for both entire and asymptotic fields.
Suo et al. [17] studied the effect of T stress on the cross-type cracks in cubic quasicrystals.
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These studies focused on cubic quasicrystal materials, and the methods involved can
be used to solve the defect problems of cubic quasicrystal piezoelectric materials. For
cubic quasicrystal piezoelectric materials, Zhang et al. [18] studied the free vibration of
plates, producing one of the few research studies focusing on the defect problem of cubic
quasicrystal piezoelectric materials. In this paper, the Griffith crack problem and the
interaction between screw dislocation and semi-infinite crack in 3D cubic quasicrystal
piezoelectric materials are studied. The main factors affecting the stress intensity factor will
be discussed.

2. Basic Equations of Cubic Quasicrystal Piezoelectric Material

In the spatial rectangular coordinate system xi(i = 1, 2, 3), the basic equations of the
anti-plane elasticity problem for cubic quasicrystal piezoelectric materials can be expressed
as follows:

The constitutive equation [19]

σyz
σzx
Hyz
Hzx
Dx
Dy

 =



C44 0 R3 0 −e14 0
0 C44 0 R3 0 −e14

R3 0 K44 0 −d123 0
0 R3 0 K44 0 −d123

e14 0 d123 0 λ11 0
0 e14 0 d123 0 λ11





2εyz
2εzx
2ωyz
2ωzx

Ex
Ey

, (1)

the equilibrium equation (regardless of body force) [20]

σiz,i = 0, Hiz,i = 0, Di,i = 0 (i = x, y, z), (2)

and the geometric equation

εyz =
1
2

∂uz
∂y , εzx = 1

2
∂uz
∂x , ωyz =

1
2

∂wz
∂y ,

ωzx = 1
2

∂wz
∂x , Ex = − ∂Φ

∂x , Ey = − ∂Φ
∂y ,

(3)

where uz represents phonon field displacement, wz represents phason field displacement,
and Φ represents electric potential. The σij, εij represent the stress and strain of phonon
field, respectively; Hij, ωij represent the stress and strain of phason field, respectively;
Dij represents electric displacement; Ei represents electric field strength; C44 is the elastic
coefficient of the phonon field; K44 is the elastic coefficient of the phason field; R3 is
the coupling coefficient between the phonon field and phason field; e14 and d123 are the
piezoelectric constant; and λ11 is the dielectric constant.

By Equations (1)–(3), the governing equations expressed by displacement and electric
potential can be obtained as follows:

C44∇2uz + R3∇2wz + 2e14
∂2Φ
∂x∂y = 0,

R3∇2uz + K44∇2wz + 2d123
∂2Φ
∂x∂y = 0,

2e14
∂2uz
∂x∂y + 2d123

∂2wz
∂x∂y − λ11∇2Φ = 0,

(4)

where ∇2 = ∂2

∂x2 +
∂2

∂y2 is the Laplace operator.
Thus, the anti-plane elasticity problem of cubic quasicrystal piezoelectric materials

is reduced to solving the system of partial differential Equation (4) under appropriate
boundary conditions.
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3. Basic Solution for the Fracture Problem of Cubic Quasicrystal
Piezoelectric Materials

Equation (4) can be rewritten [4] as follows:

AU = 0 (5)

where U = (uz, wz, Φ)T and A is a matrix of differential operators

A =


C44∇2 R3∇2 2e14

∂2

∂x∂y

R3∇2 K44∇2 2d123
∂2

∂x∂y

2e14
∂2

∂x∂y 2d123
∂2

∂x∂y −λ11∇2

. (6)

From Equation (6), the determinant of A can be given as follows:

|A| = a
∂6

∂y6 + b
∂2

∂x2
∂4

∂y4 + b
∂4

∂x4
∂2

∂y2 + a
∂6

∂x6 , (7)

in which

a = λ11

(
R2

3 − C44K44

)
, b = 4

(
2e14d123R3 − d2

123C44 − e2
14K44

)
+ 3λ11

(
R2

3 − C44K44

)
.

Now, we introduce a function F that satisfies the equation

∇2
1∇2

2∇2
3F = 0 (8)

where ∇2 = ∂2

∂x2 + 1
t2
i

∂2

∂y2 (i = 1, 2, 3) and t2
i are the three characteristic roots of equation

at6 − bt4 + bt2 − a = 0.
According to the operator theory, the general solution of Equation (5) can be expressed

as follows:
uz = Ai1F, wz = Ai2F, Φ = Ai3F, (i = 1, 2, 3). (9)

Let i = 2, then the cofactor of the matrix A can be expressed as follows:

A21 = λ11R3
∂4

∂x4 + 2(λ11R3 + 2e14d123)
∂4

∂x2∂y2 + λ11R3
∂4

∂y4 ,

A22 = −λ11C44
∂4

∂x4 − 2
(
λ11C44 + 2e2

14
)

∂4

∂x2∂y2 − λ11C44
∂4

∂y4 ,

A23 = 2(e14R3 − d123C44)
(

∂4

∂x3∂y + ∂4

∂x∂y3

)
.

(10)

Substituting Equation (10) into Equation (9), one has the following:

uz = λ11R3
∂4F
∂x4 + 2(λ11R3 + 2e14d123)

∂4F
∂x2∂y2 + λ11R3

∂4F
∂y4 , (11)

wz = −λ11C44
∂4F
∂x4 − 2

(
λ11C44 + 2e2

14

) ∂4F
∂x2∂y2 − λ11C44

∂4F
∂y4 , (12)

Φ = 2(e14R3 − d123C44)

(
∂4F

∂x3∂y
+

∂4F
∂x∂y3

)
. (13)

Assuming that the form of the complex function F(x, y) is F(x, µy), then µ must satisfy
the following characteristic equation [7]:

aµ6 + bµ4 + bµ2 + a= 0 (14)
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Equation (14) has six pure imaginary roots

µ1 = is1 = i, µ2 = is2 = i
√

b + a +
√

b− 3a
2
√

a
, µ3 = is3 = i

√
b + a−

√
b− 3a

2
√

a
,

µ4 = −µ1, µ5 = −µ2, µ6 = −µ3,
(

i =
√
−1, s1 = 1, µ2µ3 = −1(or s2s3 = 1)

)
According to the properties of the analytic function and Equation (8), the complex

representation of the displacement function F can be given as follows:

F = 2Re
3

∑
k=1

Fk(zk), (15)

where Re represents the real part and Fk(zk) represents three arbitrary analytic functions
with the argument zk = x + µky (k = 1, 2, 3).

By Equations (1), (3), (11)–(13), and (15), the complex representations of the stresses
and electric potential can be obtained as follows:

σyz = −4e14(d123C44 − e14R3)Re
3

∑
k=1

(
µk − µ3

k

)
F(5)

k (zk), (16)

σzx = 4e14(d123C44 − e14R3)Re
3

∑
k=1

(
µ2

k − µ4
k

)
F(5)

k (zk), (17)

Hyz = Re
3

∑
k=1

(
lµk + mµ3

k + nµ5
k

)
F(5)

k (zk), (18)

Hzx = Re
3

∑
k=1

(
n + mµ2

k + lµ4
k

)
F(5)

k (zk), (19)

Dx = 2λ11(d123C44 − e14R3)Re
3

∑
k=1

(
µk − µ5

k

)
F(5)

k (zk), (20)

Dy = −2λ11(d123C44 − e14R3)Re
3

∑
k=1

(
1− µ4

k

)
F(5)

k (zk), (21)

in which
l = 2λ11

(
R2

3 − C44K44
)
− 4d2

123C44 + 4e14d123R3,
m = 4λ11

(
R2

3 − C44K44
)
− 4d2

123C44 − 8e2
14K44 + 12e14d123R3,

n = 2λ11
(

R2
3 − C44K44

)
.

4. Griffith Crack Problem

Now, we study the Griffith crack problem with a crack length of 2a, which is subjected
to a pair of linear forces and charges at the distancefrom the origin of the coordinates. The
linear force intensity of the phonon field and the phason field per unit length are Q1 and
Q2, respectively, and the linear charge density is q, as shown in Figure 1.
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𝑘=1
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3

𝑘=1

− 4(𝜆11𝐶44 + 2𝑒14
2 ) 𝑅𝑒 ∑ 𝜇𝑘

2𝐴𝑘

3

𝑘=1

− 2𝜆11𝐶44 𝑅𝑒 ∑ 𝜇𝑘
4𝐴𝑘

3

𝑘=1

= 0, (24) 
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The complex function Fk
(5)(zk) is assumed as follows:

Fk
(5)(zk) =

Ak

(zk − c)
√

z2
k − a2

, (22)

the constants Ak = αk + βki (k = 1, 2, 3) can be determined by the boundary conditions.
When y = 0, |x| > a, it is required to uz = 0, wz = 0, Φ = 0, then

2λ11R3Re
3

∑
k=1

Ak + 4(λ11R3 + 2e14d123)Re
3

∑
k=1

µ2
k Ak + 2λ11R3Re

3

∑
k=1

µ4
k Ak = 0, (23)

− 2λ11C44Re
3

∑
k=1

Ak − 4
(

λ11C44 + 2e2
14

)
Re

3

∑
k=1

µ2
k Ak − 2λ11C44Re

3

∑
k=1

µ4
k Ak = 0, (24)

− 4(d123C44 − e14R3)

(
Re

3

∑
k=1

µk Ak + Re
3

∑
k=1

µ3
k Ak

)
= 0. (25)

and then we can deduce the following:

3
∑

k=1

(
2λ11R3 − 4(λ11R3 + 2e14d123)s2

k + 2λ11R3s4
k
)
αk = 0,

3
∑

k=1

(
−2λ11C44 + 4

(
λ11C44 + 2e2

14
)
s2

k − 2λ11C44s4
k
)
αk = 0,

3
∑

k=1

(
s3

k − sk
)

βk = 0.

(26)

The integration along a small semi-circle around the point of action of a linear force
and charge on x = c, one has

∑ 3
k=1

(
sk + s3

k
)

βk =
Q1
√

a2−c2

4πe14(C44d123−e14R3)
,

πλ11
(

R2
3 − C44K44

) 3
∑

k=1

(
− 1

sk
+ sk + s3

k − s5
k

)
βk

+4πe14(d123R3 − e14K44)
3
∑

k=1

(
sk + s3

k
)

βk = Q2
√

a2 − c2,

3
∑

k=1

(
s4

k − 1
)
αk =

q
√

a2−c2

2πλ11(C44d123−e14R3)
.

(27)

Combining Equations (26) and (27), the expressions of the complex constant Ak can be
obtained as follows:

A1 = i
Q1
√

a2−c2
(

4e14(e14K44−d123R3)s2
3−(C44K44−R2

3)(−1+s2
3)

2
λ11

)
8πe14(−C44d123+e14R3)(C44K44−R2

3)(−1+s2
3)

2
λ11

−i Q2
√

a2−c2s2
3

2π(C44K44−R2
3)(−1+s2

3)
2
λ11

,
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A2 =
q
√

a2−c2s4
3

4π(C44d123−e14R3)(−1+s2
3)(1+s2

3)λ11

+i
√

a2−c2(Q1(e14K44−d123R3)+Q2(C44d123−e14R3))s5
3

2π(C44d123−e14R3)(C44K44−R2
3)(−1+s2

3)
2
(1+s2

3)λ11
,

A3 = q
√

a2−c2

4π(C44d123−e14R3)(−1+s4
3)λ11

+i
√

a2−c2(Q1(e14K44−d123R3)+Q2(C44d123−e14R3))s3

2π(C44d123−e14R3)(C44K44−R2
3)(−1+s2

3)
2
(1+s2

3)λ11
.

(28)

Thus, the complete elastic field can be obtained. After derivation, the corresponding
stress and electrical displacement intensity factors can be expressed as follows:

Kσ =
Q1
√

a + c√
a− c

√
πa

, (29)

KH =
Q2
√

a + c√
a− c

√
πa

, (30)

KDy =
q
√

a + c√
a− c

√
πa

. (31)

Now take a = 5× 10−3 m to analyze the influence of linear force Q1 on the phonon
field stress intensity factor Kσ (both the phason field stress intensity factor and the electric
displacement intensity factor have similar variation rules with the phonon field stress
intensity factor).

It can be seen from Figure 2 that the stress intensity factor of the phonon field increases
with the increase of c, indicating that the farther the action point is from the origin, the
greater the stress intensity factor. Furthermore, the stress intensity factor increases with the
increase of linear force Q1, and the farther the action point is from the origin, the greater
the influence of the linear force.
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5. Interaction between Screw Dislocation and Semi-Infinite Crack

In this section, the interaction between a semi-infinite crack and a screw dislocation
with the Burgers vector B = (b1, b2) is studied. Suppose that the dislocationi s located at
the distance c from the semi-infinite crack tip, as shown in Figure 3.
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Suppose the analytical formula Fk has the following form:

Fk
(5)(zk) =

Bk
(zk − c)

√
zk

, (k = 1, 2, 3). (32)

the constants Bk = γk + δki (k = 1, 2, 3).
When x < 0, make σyz = 0, Hyz = 0, Dy = 0, we have the following:

3
∑

k=1

(
sk + s3

k
)
γk = 0,

3
∑

k=1

(
lsk −ms3

k + ns5
k
)
γk = 0,

3
∑

k=1

(
1− s4

k
)
δk = 0.

(33)

when x = c, we have the following:

2π
3
∑

k=1

[
−λ11R3 + 2(λ11R3 + 2e14d123)s2

k − λ11R3s4
k
]
δk = b1

√
c,

2π
3
∑

k=1

[
λ11C44 − 2

(
λ11C44 + 2e2

14
)
s2

k + λ11C44s4
k
]
δk = b2

√
c,

3
∑

k=1

(
s3

k − sk
)
γk = 0.

(34)

The following can be obtained from Equations (33) and (34):

γ1 = γ2 = γ3 = 0, (35)

δ1 =

√
c
(

b1

(
4e2

14s2
3 − C44

(
−1 + s2

3
)2

λ11

)
+ b2

(
4d123e14s2

3 − R3
(
−1 + s2

3
)2

λ11

))
8πe14(−C44d123 + e14R3)

(
−1 + s2

3
)2

λ11

, (36)

δ2 =

√
c(b2d123 + b1e14)s4

3

4π(C44d123 − e14R3)
(
−1 + s2

3
)2

λ11

, (37)

δ3 =

√
c(b2d123 + b1e14)

4π(C44d123 − e14R3)
(
−1 + s2

3
)2

λ11

. (38)

Substituting Equations (35)–(38) into Equations (16) and (18), the analytical expressions
of the stresses were obtained, as follows:

σyz = 4e14(d123C44 − e14R3)
3
∑

k=1

(sk+s3
k)δk

(x−c)
√

x ,

Hyz =
3
∑

k=1

(−lsk+ms3
k−ns5

k)δk
(x−c)

√
x .

(39)
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Substituting Equation (39) into the expressions of the stress intensity factors for phonon
field and phason field, respectively, and introducing

Kσ = lim
x→0

√
2πxσyz,

KH = lim
x→0

√
2πxHyz.

then one has the following:

Kσ = −

√
2
(

b1

(
2e2

14s3 + C44(1 + s3)
2λ11

)
+ b2

(
2d123e14s3 + R3(1 + s3)

2λ11

))
√

πc(1 + s3)
2λ11

, (40)

KH = b1

(
2(2e2

14(e14K44−d123R3)s3−C44d123R3(1+s3)
2λ11)√

2πc(C44d123−e14R3)(1+s3)
2λ11

− e14(C44K44(−1+s3)
2−R2

3(1+s2
3))√

2πc(C44d123−e14R3)s3

)
+b2

(
2e14R3(−2d2

123s3+K44(1+s3)
2λ11)√

2πc(C44d123−e14R3)(1+s3)
2λ11

+
(d123(4e2

14K44s2
3+(1+s3)

2(R2
3(−1+s3)

2−C44K44(1+s2
3))λ11))√

2πc(C44d123−e14R3)s3(1+s3)
2λ11

)
.

(41)

The influence of coupled elastic coefficient on stress intensity factor will be discussed
in detail by numerical examples. To this end, the material properties have been chosen by
referring to the previous work [3], such as follows:

C44 = 50× 109 Nm−2, R3 = 0.5× 109 Nm−2, K44 = 0.3× 109 Nm−2,
e14 = −0.138 Cm−2, d123 = −0.16 Cm−2, λ11 = 82.6× 10−12 C2N−1m−2.

Other parameters are x = 1× 10−3 m, b1 = 1.6× 10−9 m, b2 = 10.7× 10−9 m.
It can be seen from Figures 4 and 5 that the coupling elastic coefficient R3 has a

significant impact on both the phonon and phason filed stress intensity factors. When the
distance between the dislocation and the crack tip is determined, it can be found that the
stress intensity factor decreases with the increase of R3.
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The Griffith crack problem and the interaction between screw dislocation and semi-
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