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Abstract: Optically pumped nonlinear frequency down conversion is a proven approach for monochro-
matic terahertz (THz)-wave generation that provides superior properties such as continuous and
wide tunability as well as laser-like linewidth and beam quality. Phase-matching (PM) is an impor-
tant connection between the pump sources and nonlinear crystals and determines the direction of
energy flow (as well as the output power). In past decades, a variety of peculiar PM configurations
in the THz region have been invented and are different from the traditional ones in the optical
region. We summarize the configurations that have been applied in nonlinear THz-wave generation,
which mainly fall in two categories: scalar (collinear) PM and vector PM (including macroscopic
noncollinear PM and microscopic vector PM). The development of this technique could relax the
matching conditions in a wide range of nonlinear crystals and pump wavelengths and could finally
promote the improvement of coherent THz sources.

Keywords: coherent terahertz source; nonlinear optics; phase-matching; nonlinear optical crystal;
optical frequency conversion

1. Introduction

Terahertz (THz) technology [1] has attracted considerable interest owing to the unique
properties of this band of electromagnetic waves: (1) resonance with vibrational and
rotational modes of typical large molecules, (2) spectral overlap with the background
radiation of the space, (3) penetration through general non-polar materials (e.g., packages),
and (4) low photon energy (unionized to biological tissues). A variety of applications
in analytical chemistry [2], astronomy [3], the quality control of industrial products [4],
biomedical imaging and diagnose [5], etc., have demonstrated the effectiveness of this
technology. As active spectral analysis systems, Fourier transform infrared (FTIR) and time-
domain spectroscopy (TDS) are well-established and often utilized. Those methods based
on widely tunable and monochromatic THz sources (i.e., frequency-domain spectroscopy)
are alternative tools to FTIR and TDS due to their high spectral resolution.

Nonlinear optical frequency down conversion from the laser to the THz wavelength,
commonly referred to as difference frequency generation (DFG) or stimulated polariton
scattering (SPS), is one of the most effective approaches and could provide the following
merits: the availability of a compact pump laser and nonlinear crystals, operation at room
temperature, continuous and wide tunability, and laser-like linewidth and beam quality.
As discussed by C.M. Armstrong [6], “for some applications, the source’s spectral purity,
tunability, or bandwidth is more important”. These kinds of coherent sources have been
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successfully applied in various fields for applications such as the identification of gas
species [7], quality evaluations of pharmaceuticals [8], and nondestructive inspection via
spectroscopic imaging [9].

In the past few decades, a number of efforts have been made to improve the perfor-
mance of optical THz sources: from pump lasers via nonlinear crystals to enhancement
configurations (including surface-emitted [10], external cavity [11], and waveguide [12]
configurations, among others). In the down conversion process, the lasers and THz-waves
are mainly coupled through nonlinear susceptibility χ(2), so phase-matching (PM) is a key
factor. It determines the output characteristics of the THz source according to these aspects:
(1) the direction of energy flow during the three-wave interaction, (2) the available effec-
tive nonlinear coefficient deff, (3) the suitable pump wavelength (if the laser is powerful),
(4) the matchable tuning range, and (5) the tolerance of the angle, wavelength, or tem-
perature (if precise control is necessary). Numerous PM geometries have been adopted
according to the optical properties of nonlinear crystals. Some of them (e.g., birefringent,
noncollinear, and quasi-PM) are extended from traditional optical regions; some, were
original developments (such Cherenkov-type and front-tilting PM [13,14]).

We classify these geometries into two main categories: scalar and vector PMs. In the case
of scalar PM, the three beams are collinear (forward or backward output coupling [15,16]).
In the other category, a wavevector triangle is properly designed, and the THz output is
commonly coupled in a lateral direction. The vector PMs are further divided into two types:
macroscopic noncollinear PM (quasi-plane waves in obviously different directions [17]) and
microscopic vector PM (between spatial Fourier components [18,19]).

This paper is organized as follows. First, we introduce the basic problem of PM in THz-
wave generation and compare it to that in the optical region in Section 2. A brief review of PM
geometries obtained via various methods is presented in Sections 3 and 4. The mechanisms
of each method is described, and the suitable nonlinear crystals and typical reports are
presented. Here, we mainly discuss the interaction between two monochromatic optical
waves rather than the optical rectification of ultra-short pulses. Section 3 concerns the scalar
(collinear) forms, including birefringent PM in traditional infrared crystals (GaSe/ZnGeP2),
the cross-reststrahlen band PM in zinc blende or organic crystals, and quasi-PM (QPM) in
ferroelectrics or zinc blende crystals. The vector forms are considered in Section 4, which
consists of two Sections 4.1 and 4.2, for the macroscopic noncollinear and microscopic vector
PMs, respectively. In Section 4.2, Cherenkov-type, surface-emitted QPM and modal PM are
considered. Moreover, other configurations are also enumerated. A summary of the current
progress and perspectives is given in Section 5.

2. Basic Problem of Phase-Matching in THz-Wave Generation

The down conversion process is, in essence, energy flow from a high-frequency optical
wave (called a “pump”) to a low-frequency optical wave (called a “seed” or “Stokes”) and
a THz-wave via non-resonant χ(2) coupling [20]. The delivered THz frequency depends on
the seed wavelength or cavity feedback, which obeys the energy conservation relationship.
The configurations of dual-wavelength input are referred to as DFG or injection-seeded
THz parametric generation (is-TPG). If the intensities of the two beams are comparable,
it is called DFG, and if one is much stronger than the other, it is called is-TPG. In the case
of single-wavelength input, a cavity is usually necessary. This process is initially called
THz parametric oscillation (TPO) and has recently been called SPS. Although TPO/SPS is
considered to be a mixing of second-order parametric processes and third-order Raman
scattering in some literature [17], energy conservation and PM still dominate.

The concept of PM has been explained from three points of view: (1) a constructive
interference between the fields driven by polarization at different propagation steps [21],
(2) momentum (wave vector) conservation, and (3) phase-dependent energy flow from po-
larization to the field based on Poynting’s theorem [22]. Mathematically, the PM condition
is expressed as

∆
→
k =

→
k p −

→
k s −

→
k T =

→
0 (1)
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where the subscripts p, s, and T denote the pump, seed/Stokes, and THz-waves, with
ωp =ωs +ωT andωp >ωs >>ωT. In a scalar (forward collinear) form, (1) is equivalent to

npωp − nsωs − nTωT= (np − ns)ωs + (np − nT)ωT = 0 (2)

Then, the problem of PM turns into a problem of refractive index matching, which is
greatly influenced by the dispersion property of nonlinear crystals.

For a comparison with the traditional optical region (all three waves in one normal
dispersion region), we introduce the subscripts 3, 2, and 1 to denote three optical waves,
with ω3 = ω2 + ω1, ω3 > ω2 ≥ ω1, and n3 > n2 ≥ n1. As a result, the collinear wave
vector mismatch ∆kopt is always positive, and a vector triangle will not help to make it
zero if all of the refractive indices are on one dispersion curve (isotropic medium or the
same polarization).

The wavevector mismatch can be expanded as another form:

∆k = kp − ks − kT =
∂k
∂ω

(ωp −ωs)−
nT

c
ωT =

ωT

c
(ng − nT) (3)

where ng = c(∂k/∂ω) is the optical group index.
The PM in the THz region differs from that in the optical region in two main ways.

First, the THz and pump frequencies lie across one or more absorption bands (the rest-
strahlen band), which breaks the strict relationship above: ∆kopt > 0. On the contrary, the
THz refractive index is commonly equal to or larger than the optical one (i.e., ∆kTHz ≤ 0).
Collinear PM in isotropic crystals [23] and type-0 (eee-type) PM [24] are possible. The
corresponding medium (nT ≈ ng) is called “subluminal” or “weakly superluminal” ma-
terial [25]. In the general case of ∆kTHz < 0, noncollinear geometry [17] could work, even
in strong superluminal materials (nT much larger, e.g., ferroelectric). Second, the THz
wavevector is much smaller, and its transverse Fourier component is more prominent.
Thus, some configurations such as backward [16] and Cherenkov-type THz emissions [13]
can be achieved, which are rarely observed in the optical region. The choice of PM geometry
is further enriched, and some of the strict PM conditions are relaxed. In the following
sections, different types of PMs are summarized and classified, as seen in Figure 1.
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3. Scalar (Collinear) Phase-Matching

A collinear interaction is favorable due to the overlapping area of the large beams and
the ease of alignment. The inherent difference between the refractive indices can be com-
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pensated for by the birefringence or cross-reststrahlen band in bulk crystals or by artificial
periodic poling/inversion structures. In major situations [15,23,24,26], THz outputs are
in the same direction as the input beams (forward coupling); in minor situations [16,27],
outputs are in the opposite direction (backward coupling).

Birefringent Phase-Matching

Birefringent PM has been widely adopted in nonlinear processes in optical regions. One
of its merits is its broadband and frequency-agile tunability that can be achieved by rotating
the crystal. In some traditional non-oxide infrared crystals (such as GaSe [15,16,28–34] and
ZnGeP2 [35–38]), birefringent PMs are extended to THz DFG.

In the past 20 years, GaSe (negative uniaxial) crystals have attracted a large amount of
attention in nonlinear THz-wave generation due to their extremely low THz absorption and
collinear PM. Two forward configurations have been investigated for different frequency
band generation techniques [28]. In the scheme for low-frequency bands (Figure 2a), the
input pump (1.06 µm) and seed (1.06–1.09 µm) lights are ordinary (slow) and extraordinary
(fast), delivering a fast THz-wave (0.0848–5.15 THz). The band is labeled as o-e→ e or
oee-type, with an effective nonlinear coefficient of d22cos2θcos3ϕ and an optimal ϕ of 0◦. In
fact, the element d16 works in the nonlinear coupling and is equal to −d22 according to the
crystal symmetry. The scheme for the high-frequency bands (also regarded as mid-infrared)
is shown in Figure 2b, and the bands are labeled as eoo-type. A tuning range of 7.81–111
THz (38.4 to 2.7 µm) can be obtained by rotating the crystal in the range from 35◦ to 75◦.
Backward THz-wave DFG has also been demonstrated with GaSe (Figure 2c) [16]. An
external PM angle θex from 15◦ to 61◦ corresponds to a tuning range of 0.146–1.79 THz.
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Figure 2. Schematic diagram of birefringent PM configurations: (a) oee-type, (b) eoo-type, (c) backward
in GaSe, and (d) oeo-type in ZnGeP2.

In a positive uniaxial ZnGeP2 crystal [36], 1.06 µm pumped oee-type (similar to Figure 2a)
and oeo-type (Figure 2d) PMs provide tuning ranges of 0.18–3.61 and 0.21–3.74 THz with
deff = d36sin2θcos2ϕ and d36sinθsin2ϕ, respectively. It should be noted that the o- and e-lights
in ZnGeP2 are fast and slow lights, respectively. Moreover, birefringent PMs via other d-tensor
elements such as the d12 of DAST [39] and the d15 and d22 of LiNbO3 (both forward and
backward) [40,41] have been reported.
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Angle tuning has been used in most of the studies above. As a critical PM with small
angular acceptance [34], the precise control and simultaneous adjustment of the pump
wavelength and PM angle are necessary. Temperature tuning has rarely been utilized in
noncritical PMs because THz absorption greatly increases with temperature [42,43]. An
advantage of birefringent PMs is that there are multiple choices of pump sources. For
example, GaSe-DFGs have been pumped at wavelengths of ~1 µm [15,32], ~1.5 µm [31],
and ~2 µm [34]. A drawback is the limited kinds of media. The mechanical fabrication and
growth of high-quality GaSe are still difficult. Recently developed ε-GaSe [44] and S-doped
GaSe [45] have improved the optical properties.

Cross-Reststrahlen Band Phase-Matching

This type of PM is named after the fact that THz and pump frequencies lie across the
absorption band [46]. In some materials with proper phonon–polariton dispersion, the
mismatch of the refractive indices can be minimized without birefringence. It has been used
in isotropic zinc blende [23] and in organic crystals (also called type-0/eee-type PM) [24].

Zinc blende crystals are an excellent THz medium owing to their high nonlinearity,
acceptable THz absorption, and well-developed growth and fabrication technique. This
type of PM overcomes the drawback of these crystals: their intrinsic isotropy, if the pump
wavelength is properly chosen. For GaP (with a transverse optical phonon frequency at
10.9 THz), the optimally matched wavelength lies at 0.9–1 µm and is delivered from an
optical parametric oscillator (OPO) [23]. Commercial 1.06 µm laser-pumped GaP collinear
DFG has been presented in a number of reports [47–49]. Although it is not perfectly
matched, the coherence length (lc = π/|∆k|) is sufficiently large, and the pump source
is much more powerful. Alternative materials such as GaAs and ZnTe have transverse
optical phonon frequencies at 8.1 THz and 5.32 THz and an optimally matched wavelength
at ~1.3 µm and ~0.8 µm [50]. These crystals should be cut by 〈110〉 or 〈111〉 to utilize the
element d14. A comprehensive comparison between several nonlinear crystals in collinear
DFG was carried out in [51].

Organic crystals with a “D-π-A” molecule/ion structure have been invented and have
been applied as THz emitters [52], featuring extremely large proportions of nonlinear
diagonal elements d11/d33 and a favorable eee-type PM. A main discrepancy of these
inorganic crystals is their multiple absorption peaks. In some red-colored organic crystals
(DAST [24], DSTMS [53], and OH1 [54]), the matched pump wavelength lies in the range
of 1.2–1.6 µm; in yellow-colored crystals (BNA [55]), the matched pump wavelength is in
the range of 0.8–0.9 µm. Apart from the OPOs [24,53–57], different kinds of lasers have
been employed in this band, including Nd-doped solid-state lasers [58–60], Er-doped fiber
lasers [61], and Cr:Mg2SiO4 lasers [62]. The high nonlinearity and THz absorption can
be attributed to a short optimal interaction length (crystal thickness commonly below
1 mm [53,63]). As a result, the extremely wide tuning range (up to 30 THz) spans over the
absorption bands (those of inorganic crystals are generally limited to below the transverse
optical phonon frequency). Moreover, the dependence on the pump wavelength becomes
insensitive [53,54], and the synchronized and precise control during frequency tuning is
not necessary. The cascaded DFG process is possible when using this type of PM [63,64],
which can overcome the quantum defect-related limitations of THz-DFG. An additional
potential benefit of organic crystals lies in their designable molecule/ion structure, which
allows us to synthesize new crystals with better optical and growing properties (e.g., the
derivatives DSTMS, DASB [65], and DASC [66] as well as hydrogen-bonded MLS [67]).

Quasi-Phase-Matching (QPM)

A periodical structure with alternating sign of χ(2) can extend the effective conversion
length, even if the inherent coherence length is small. This configuration is called QPM
and is a feasible solution to the PM problem in three kinds of media: isotropic, strongly
superluminal, and those with ∆k > 0. The structure can be fabricated by periodically
poling a bulk crystal (ferroelectric PPLN [26,27]) or by stacking inverted layers (such as
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GaP [11,68], GaAs [69,70], and OH1 [71]). The poling/inverting period Λ should be twice
the coherence length, and the wavevector mismatch can be compensated for by a grating
vector of 2π/Λ (as shown in Figure 3a).
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The availability of various LiNbO3/LiTaO3-based periodical/aperiodical structures,
including chessboard-like [72], ridged [73], slant-stripe [74], fanned-out [75], and other
pre-designed structures [76,77], have the benefits of ferroelectric properties and the poling
technique. The first three geometries will be discussed in Section 4. Other types of QPM
crystals based on zinc blende wafers should mainly be fabricated via three methods: optical-
contacted, diffusion-bonded, and orientation-patterned. A given period Λ commonly
matches with one specific frequency and leads to a narrow tuning range [78]. Fanned-out
structures [75] and high-order QPM [69] could widen the tuning range to some extent. Some
pre-designed configurations with a gradually changing poling period could compress the
phase mismatch at different cascading orders caused by crystal dispersion [77]. Continuous-
wave (CW) TPO via backward QPM (as seen in Figure 3b) has been reported in PPLN [27].

The optical rectification of ultra-short laser pulses in QPM structures could also give
rise to monochromatic THz-waves [78,79]. From the point of view of the time-domain, a
multi-cycle wave package is generated by the inverted domains; from the point of view of
the frequency-domain, one single frequency is selected by the PM condition. Another DAST-
SiO2 multi-layer structure (slightly different from QPM) has been proposed to enhance the
single-cycle THz-wave output via phase correction [80].

4. Vector Phase-Matching

All of the configurations in this category utilize vector triangles and can help to solve
scalar PM problems when ∆k < 0. In other words, vector PM works if and only if the optical
group index is smaller than the THz index. As a matter of fact, this condition is valid in a large
number of materials. A variety of vector PM geometries have been invented [13,14,17,19]. We
can classify them into two divisions: macroscopic noncollinear PM and microscopic vector PM.
In the former case, two optical beams (commonly collimated) are obviously noncollinear and
deliver a THz beam in a third direction (as seen in [17] and in the k-vector diagram in Figure 4a).
In the latter case, optical beams (sometimes tightly focused) propagate in approximately the
same direction, and vector PM occurs between the spatial Fourier components (such as
the Cherenkov-type components [13]). Some of these methods were initially adopted for
optical rectification and were later applied to dual-wavelength DFG. Here, “macroscopic” and
“microscopic” are used to distinguish these divisions due to the peculiarity of THz-waves. In
the traditional optical region, only the former exists, and the “vector” PM is equivalent to the
“noncollinear” PM. The prominent transverse THz wavevector components contribute to the
microscopic vector PM.
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4.1. Macroscopic Noncollinear Phase-Matching

Noncollinear laser-pumped THz-wave generation began being investigated as early
as 1969 [81]. This configuration is suitable for ferroelectrics, zinc blende, and KTiOPO4
(KTP)-type media. A small angle between the two optical beams (generally below 5◦) is
sufficient to eliminate the wavevector mismatch, which should be synchronously changed
during frequency tuning. To efficiently couple out the THz beam, traditional rectangular
crystals are usually cut at an angle [82] or are attached with a Si prism [17].

As discussed above, the pump wavelength of isotropic crystals in collinear PM is
determined by the dispersion property, which greatly limits the choice of pump source. This
noncollinear approach makes it possible to match with a wide range of optical wavelengths.
For example, 2.97 THz [82], 0.5–3 THz [83], and 0.11–4.15 THz [84] were generated using
GaAs pumped by CO2 lasers. GaP can provide a wider tuning range (up to 6 THz) due to
its higher transverse optical phonon frequency. Experiments have been performed with
pump sources such as Nd:YAG lasers and OPO [85], Cr:Mg2SiO4 lasers [86], and fiber
amplifiers [87–89]. Compared to the ~0.9 µm OPO [23], some of these lasers have better
performance, demonstrating higher output power and a narrower linewidth and operation
at a higher repetition rate or CW. A frequency-domain THz spectrometer based on CW
GaP-DFG equipped with power/frequency feedback, motorized stages, and a Si bolometer
with a high spectral resolution was constructed and applied for the quality evaluation of
pharmaceuticals [8].

LiNbO3 crystals are the most studied crystal type in TPO [10,17,90–93] and
is-TPG [9,94–98], as they can take advantage of the A1-symmetry polariton mode. TPO
only requires a single- and fixed-wavelength input; commercial and compact Q-switched
Nd:YAG lasers are available. The THz frequency is tuned continuously by rotating the cav-
ity of the Stokes light. Progress has been made in surface-emitted geometry via internal total
reflection [10,92], pump recycling [90], and the ring cavity [91]. CW-TPO was achieved by
putting a Si prism-coupled MgO:LiNbO3 crystal within an end-pumped Nd:GdVO4 laser
resonator [93]. Later, sub-nanosecond (sub-ns) or picosecond (ps) lasers were employed
as the pump source, combing a tunable seed and forming an is-TPG to pursue high peak
power [94–99]. A real-time spectroscopic measurement system based on a multi-frequency
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is-TPG was set up by inputting five seed beams simultaneously [9]. Noncollinear DFGs
have also been conducted in bulk LiNbO3 crystals using, for example, a CW fiber-laser
pump [100] and a reflected signal beam [101].

A similar TPO configuration was also extended to Raman-active KTP-type crystals
(such as KTiOPO4 [102], KTiOAsO4 [103], and RbTiOPO4 [104]). The high optical damage
threshold allows us to use high pump power and to obtain high nonlinear gains. Due to the
infrared absorption by the A1 crystalline modes in these crystals, discrete tuning bands were
observed. A green laser pump moved the tuning bands toward higher frequencies [105].

4.2. Microscopic Vector Phase-Matching

Cherenkov-Type Phase-Matching

Classical Cherenkov radiation with a conic wavefront was first discovered in an ex-
periment on the glow of uranyl salt solutions under gamma-ray irradiation in 1934 [106].
A similar radiation form excited by an electromagnetic pulse (called “optical Cherenkov
radiation”) was predicted in 1962 [107] and was experimentally observed in optical rec-
tification in 1984 [108]. Later, it was regarded as a kind of PM [109]. Since 2008 [13],
Cherenkov-type PM in monochromatic THz-DFG has been studied. Different from the clas-
sical/optical Cherenkov radiation explained by Huygens’ principle, this Cherenkov-type
PM is essentially a type of vector PM (shown in Figure 4b). It has been considered that PM
is automatically satisfied under a certain angle with respect to the laser path (cosθc = ng/nT).
General pump beams with a finite size consist of a continuum of radial wavenumbers that
create the transverse components of Cherenkov wavevectors as long as the beam is focused
into a specific size according to the THz wavelength.

This kind of PM has been demonstrated in ferroelectric LiNbO3 [13,110–113] and in
organic DAST [114] crystals. Theoretical models based on the analytical solution via spatial
Fourier expansion [18] and coupled wave equations via the split-step method [115] have
been reported. Line-focused pump beams can generate a wedged THz wavefront [116],
which is better to collect than a conic one. Similar to in Section 4.1, Si prism coupling can
decrease the absorption and increase the output, especially at high frequencies [117]. More-
over, real-time sensing with a Cherenkov-type evanescent wave has been achieved [118].
This “automatical” PM has a large tolerance (free from the precise control of input parame-
ters) and is almost independent of the pump wavelength [119]. Strictly speaking, it is not
a perfect PM type because of the transverse mismatch [110]. A small pump beam width
corresponds to a wide tuning range and high efficiency. This means that a good pump
beam quality is favorable. On the other hand, a narrow focus causes severe divergence,
decreasing the effective radiation length. This contradiction can be solved by employing a
leaky-mode waveguide, which will be discussed in the following sections.

Another PM geometry with Bessel-type pump beams was introduced [19]. By properly
controlling the input beam profile (as well as the longitudinal wavenumber), oblique THz
wavevectors can be generated via vector PM (as seen in Figure 4c), forming a conic wave-
front. Compared to the Cherenkov-type PM above, the radial Fourier component of
the Bessel pump beam is a single value that should strictly obey the PM conditions in
Figure 4c. Using pump beams with a tilted phase front is an alternative approach for PM in
superluminal materials [14] and is extended from optical rectification [120].

Surface-Emitted QPM with 2D Poling Period

In Section 3, collinear QPM with a longitudinal poling period was presented. A well-
developed PPLN crystal has been widely used in TPO and DFG. One of the drawbacks
is the high THz absorption, which limits the effective length. Surface emission achieved
by tightly focusing the pump beam was proposed to minimize absorption [121,122]. The
perpendicular THz wavevector originates from the transverse Fourier component (similar
to Cherenkov-type PM). It still suffers from the contradiction between transverse mismatch
and beam divergence. A two-dimensional (2D) poling period provided a transverse grating
vector (e.g., Figure 4d), and so tight focusing was no longer necessary. Chessboard-like [72]
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and ridged [73] PPLN-based DFG have been demonstrated experimentally. Another
domain structure, walling along the propagation direction of optical beams, was designed,
which delivered a THz beam at around the Cherenkov angle [123]. Cavity-enhanced CW
THz DFG was achieved with a slant-stripe-type PPLN pumped by vertical external cavity
surface-emitting lasers [74]. Similar poling structure also benefited a novel cavity-less
backward TPO [124].

Modal Phase-Matching in a Waveguide

A nonlinear waveguide is a substitute for bulk crystal-based THz emitters due to
modal PM and optical field confinement. By introducing the size parameter (transverse
mode distribution), the THz effective index can be changed at will, to match the optical
waves. As early as 1974 [12], a planar dielectric GaAs waveguide pumped by CO2 lasers
had been reported. Components made of zinc blende materials, including planar [125,126],
rod [127], and ridge-type [128] components, commonly operate in guided-mode. THz out-
put is coupled in the forward direction, and it is sometimes treated as “collinear”. However,
it is intrinsically a kind of vector PM (between longitudinal propagation constants). A com-
prehensive comparison between different zinc blende materials for dielectric waveguide
creation has been presented [129], deriving a general figure of merit for the evaluation
of conversion efficiency. All-fiber CW THz generation was demonstrated experimentally
based on thermal poling-induced second-order nonlinearity [130]. In these guided-mode
PMs, the tuning ranges are relatively narrow, as determined by the distribution of the
intrinsic mode. Another drawback lies in the coupling efficiency of the pump into the
nonlinear core (small aperture), which limits the total output power.

Leaky-mode (sandwich-like) waveguides have also been applied for nonlinear THz-
wave generation, which is the combination of Cherenkov-type PM and the waveguide struc-
ture [131–134]. The optical fields are confined in a high-nonlinear core (e.g., MgO:LiNbO3)
with a small cross section and deliver a leaky-mode THz-wave coupled into a Si clad. The
tuning range is wider and flatter [132] due to the continuously distributed leaky mode.
A room-temperature CW THz spectrometer was constructed based on this configuration,
which offered broad spectral coverage (up to 7.5 THz), a high spectral resolution, a µW-
level emission power, and an absolute frequency reference [135]. Intracavity THz DFG in
a dual-wavelength mid-infrared quantum cascade laser (QCL) was achieved [136]. The
QCL was designed to have giant optical nonlinearity in the active region and to form
a multi-layer leaky-mode waveguide, which offered efficient nonlinear conversion and
output coupling.

Other Phase-Matching Configurations

There are some PM geometries that are not included in the categories above. The concept
of phase correction, a situation in which the velocities of the interactive waves are not perfectly
matched, was introduced in 1962 [137]. A phase shift of 180◦ could help to circumvent
the mismatch, which is possible at the total reflection point [138] or within a Fabry–Perot
interferometer (called “cavity PM”) [139,140]. Triply resonant DFG has also been analyzed
theoretically [141]. The form of the resonator could be a sheet or a microdisk (in whispering
gallery mode) [142]. A hybrid thin-film waveguide-based racetrack resonator was proposed
recently, which gave rise to an integrated CW THz source [143].

5. Summary and Discussion

As optical THz sources (DFG, TPO, or is-TPG) mainly consist of nonlinear crys-
tals and pump lasers, the output characteristics are greatly determined by these two
factors. Different kinds of crystals have been investigated, ranging from traditional in-
frared (GaSe/ZnGeP2), zinc blende (GaAs/GaP), ferroelectrics (LiNbO3), and KTP-type
(KTiOPO4/KTiOAsO4) crystals to organic crystals (DAST/OH1). At present, each kind
has its particular advantages and inherent difficulties. An ideal nonlinear medium should
exhibit the following merits: high nonlinearity, a wide transparency range, a high opti-
cal damage threshold, and fixability for large-size growth and fabrication. Since optical
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THz sources are superior due to their continuous and wide tunability, the corresponding
pump/seed should generally be tunable. Initially, Q-switched laser-pumped OPOs were
employed, which commonly operated in ns-pulses with low repetition rates. Later, tun-
able lasers with amplifiers at the desired wavelength bands were developed, offering a
narrower linewidth, better beam quality, acceptable power, and a high repetition rate or
even CW operation.

Phase-matching represents an important connection between the two parts above.
A favorable PM configuration could make full use of the merits of current lasers and crystals
(some are commercially available and have demonstrated high performance) and could
overcome their drawbacks. Traditional infrared crystals are suitable for birefringent PM
with angle tuning. Zinc blende crystals could adopt cross-reststrahlen band PM, QPM,
nonlinear PM, Bessel-type PM, guided-mode PM, and cavity PM. Ferroelectrics and KTP-
type crystals could adopt QPM, nonlinear PM, Cherenkov-type PM, front-tilting PM, and
leaky-mode PM. Organic crystals commonly use type-0 PM. As it is highly desired in
frequency-domain THz spectroscopy, efficient nonlinear conversion under relatively low
pump power is in demand. Integrated devices (e.g., fiber-coupled or on-a-chip) are arising
as a new trend. A well-designed PM becomes necessary, which could relax the matching
condition in a wide range of crystals and pumps and could finally promote the application
of coherent THz sources.
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