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Abstract: The effect of ultrasonic treatment parameters, including ultrasonic treatment duration, fre-
quency resonance, and treatment temperature, on the degassing of Mg-3.03Ca alloys was investigated.
The results indicated that the optimum degassing efficiency could be obtained under the ultrasonic
resonant condition. When applying ultrasonic treatment for 90 s with 150 W at 700 ◦C, the minimum
hydrogen content and the highest degassing efficiency are obtained, respectively (42.8 cm3/100 g and
27.5%). The ultrasonic treatment can remove the gas from the melt and refine the microstructures.
Finally, the mechanism of ultrasonic degassing and refinement was analyzed.
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1. Introduction

Magnesium alloys have a series of advantages, such as low density, high specific
strength, high stiffness, good damping performance, high thermal conductivity, and low
cost [1–3]. Therefore, magnesium alloys are widely used in the automobile, communication,
and electronics industry [4,5]. It is predicted that magnesium alloys will become one of the
most important lightweight and high-strength materials in the 21st century.

Casting is a common method of processing magnesium alloys [6,7]. However, mag-
nesium alloys usually absorb large amounts of hydrogen during the melting process [8,9].
Hydrogen is generated by the reaction between water vapor from the air, the melt, and
the moist flux. For example, the hydrogen solubility is about 30 mL/100 g in magnesium
alloys that melt at 730 ◦C [10]. If hydrogen is dissolved into the solid metal, the hydrogen
will become the strengthening element. However, once the hydrogen content exceeds the
solid solution limitation, the second phase changes to bubbles. The hydrogen can enhance
the formation of the porosity and severely deteriorate the properties of the magnesium
alloys. Therefore, the removal of the hydrogen from the melt is very important. However,
research papers on this issue are still rare up to now.

High-energy ultrasonic has a unique acoustic effect [11–13]. If the ultrasonic vibration
is applied for a proper time during the solidification, the structure of the casting ingot
will change from coarse columnar grains to uniform and fine equiaxed grains [14]. The
macro- and micro- segregation of the casting ingot will be improved. Moreover, ultrasonic
can effectively remove the gas from the melt, thereby improving the density of the ingot.
At present, the degassing problem mainly focuses on aluminum alloy. However, the
degassing problem of magnesium alloy is currently ignored. In fact, according to the
above, the degassing of magnesium alloys is also very important. For magnesium alloys,
the traditional degassing methods mainly include vacuum treatments, inert gas blowing,
chlorine additions, rare earth additions, and so on. The ultrasonic degassing of the melt is
also reported in some of the literature [15–18]. For example, in the Soviet Union [19], some
researchers found that the mechanism of ultrasonic degassing was intimately attributed
to cavitation, which depends on ultrasonic power. Increasing the ultrasonic power could
improve the degassing effect. It was reported by the researchers of the Oak Ridge National
Laboratory that the ultrasonic degassing efficiency of the A356 alloy melt was related to
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the ultrasonic treating temperature or time [20,21]. The results indicated that increasing
either the temperature or the treating time could improve the degassing effect. Recently,
Wu et al. [22,23] considered that the degassing effect on the melt or the semi-solid slurry
aluminum alloys should be attributed to a combination of cavitation and acoustic streaming,
which is related to ultrasonic power. Up to now, little research has been done on the
degassing of magnesium alloys melted by ultrasonic. Therefore, the effects of the ultrasonic
treatment duration, ultrasonic resonant, and treatment temperature on the degassing effect
and solidification structure of the Mg-3.03Ca alloy were studied for this paper, and the
mechanism of ultrasonic degassing and refining are also discussed.

2. Experimental Methods

Figure 1 is a schematic diagram of an ultrasonic device. The ultrasonic system used in
the experiment mainly includes an ultrasonic generator with a frequency of 20 ± 2 kHz,
a piezoelectric ceramic transducer, an acoustic transmitter, an air-cooling system, and
a temperature control system. The power of the ultrasonic generator is continuously
adjustable from 0~150 W. The temperature of the melt and the preheating temperature of
the ultrasonic transmitter are controlled by the temperature control system.
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Figure 1. Schematic diagram of the ultrasonic treatment experimental set-up. 1—Ultrasonic trans-
ducer; 2—Cone; 3—Thermocouple; 4—Resistance heater; 5—Ultrasonic radiator; 6—Ceramic tube;
7—Mg-3.03Ca alloy melt; 8—The iron crucible.

The alloy of Mg-3.03Ca (the mass fraction is the same below) is prepared by melting
magnesium of 99.9% and 99.99% calcium. The alloy was put into a self-made iron crucible
and smelted in the resistance furnace. The mixed gas of CO2 + 0.5%SF6 was used to prevent
the oxidation and combustion of the magnesium alloy during smelting. The alloy was
heated to 740 ◦C to melt completely and was held for 10 min after reduction of the required
temperature. At the same time, the preheated ultrasonic probe (the preheating temperature
is the same as the temperature to be processed) was quickly introduced from the top of the
crucible into 20 mm, the selected ultrasonic power was 150 W, the processing time was,
30, 60, 90, and 120 s, respectively, the panel of the tuning indicator was changed from 0 to
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0.4, and the processing temperature was 730, 700, and 670 ◦C, respectively. The melt was
absorbed by a quartz tube (tested by an RH404 hydrogen gauge), and the microstructure
and porosity were observed by a Leica DMR metallography microscope. Therefore, the
hydrogen content was measured by the solid state.

The degassing efficiency was used as follows:

η =
C0 − C

C0
(1)

where
η—is the degassing efficiency;
C0—is the initial hydrogen content in melt;
C—is the hydrogen content in the melt after degassing.

3. Results and Discussion
3.1. Effect of Ultrasonic Treatment Duration on Hydrogen Content and Refinement of
Mg-3.03Ca Alloy

Figure 2 shows the effect of the ultrasonic treatment duration on the hydrogen content
by 150 W at 700 ◦C. The hydrogen content was 59 cm3/100 g without the ultrasonic
treatment. With the increase in the ultrasonic processing time, the hydrogen content can
reach the minimum value (42.8 cm3/100 g) at 90 s. The hydrogen content slightly increased
at a processing time of 120 s (43.5 cm3/100 g).
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Figure 2. Effect of ultrasonic treating duration on hydrogen content of Mg-3.03Ca alloy. 

Without the ultrasonic treatment, the microstructure of the alloy has lots of coarse den-
drites, and there are more porosities between the dendrites, which is with a large amount in 
the untreated ingots. After the ultrasonic treatment for 30 s, there exist lots of porosities and 
dendrites, as shown in Figure 3b. When the ultrasonic treatment duration is 60 s, the grains 
are rounded and refined, but there are still some pores. Subsequently, when the treatment 
time increases to 90 s, the grain refinement is very obvious, and the porosity defects in the 
center of the ingot casting are rarely observed, as shown in Figure 3d. As the treatment time 
increases to 120 s, the grains are coarsened and nonuniform, as shown in Figure 3e. 

Figure 2. Effect of ultrasonic treating duration on hydrogen content of Mg-3.03Ca alloy.

Without the ultrasonic treatment, the microstructure of the alloy has lots of coarse
dendrites, and there are more porosities between the dendrites, which is with a large
amount in the untreated ingots. After the ultrasonic treatment for 30 s, there exist lots of
porosities and dendrites, as shown in Figure 3b. When the ultrasonic treatment duration is
60 s, the grains are rounded and refined, but there are still some pores. Subsequently, when
the treatment time increases to 90 s, the grain refinement is very obvious, and the porosity
defects in the center of the ingot casting are rarely observed, as shown in Figure 3d. As the
treatment time increases to 120 s, the grains are coarsened and nonuniform, as shown in
Figure 3e.
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According to G. I. Eskin [10], when the ultrasonic vibration intensity I is lower than a
certain power value, it is in the stage of the sub-cavitation effect. When the value exceeds
this value, it is considered to be in the development/developed stage of the cavitation effect.
The characteristics of these two stages are obviously different, which are described below
respectively. The ultrasonic frequency used in this experiment is 20 kHz. It is assumed that
the relationship in the smaller range from 20 kHz to 200 kHz is a linear relationship, then
the minimum intensity of the cavitation effect is Imin = 1.25 × 104 W/m2. It is assumed that
all the ultrasonic energy in the experiment is transmitted to the liquid level of the metal
melt, and the crucible size diameter is ϕ = 0.07 m, according to P = IS, when P = 150 W and
the vibration intensity I = 3.9 × 104 W/m2 > Imin. It is considered that the melt is at the
stage of the developing/developed cavitation effect. In this state, the growth of cavitation
bubbles is extremely active, and the significant decrease in the pressure within the bubble
leads to the continuous combination and growth of various bubbles, which surface towards
the melt to achieve the purpose of degassing. The development/developed stages of the
cavitation effect are shown in Figure 4b.
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When the appropriate ultrasonic treatment time is applied to the melt, a large number
of cavitation bubbles are generated in the melt. At this moment, if the cavitation bubbles
generated in the melt and the ultrasonic frequency are in a resonance relationship, then the
cavitation bubbles will grow significantly, and the resonance frequency of the cavitation
bubbles can be calculated by the following formula [11]:

f =
1

πd

√
3kp0

ρL
(2)

where f is the frequency of the ultrasonic transducer, kHz; d is the diameter of the bubble,
m; k is the ratio of the specific heat at a constant pressure to the specific heat at s constant
volume of the gas in the bubble, namely k =

cp
cv

; p0 is the hydraulic pressure of the melt, Pa;
ρL is the density of the pure magnesium melt, kg/m3.

In this experiment, f = 20 kHz, p0 = 1.01325 × 105 Pa (1 atm), k = 1.14, ρL = 1.577 ×
103 kg/m3 (700 ◦C), and d = 2.36 × 10−4 m.

Assuming that the cavitation bubble is a sphere with an initial radius of R0 = d
2 and

that the floating speed is v and the dynamic viscosity is η, according to the Stokes formula,
we have:

v =
2gR0

2(ρL − ρ0)

9η
(3)

where ρ0 is the density of the cavitation bubbles (kg/m3), g is the acceleration of gravity
(m/s2), and the viscosity coefficient of the magnesium melt is 1.12 × 10−3 N·s/m2 (at
700 ◦C), so the floating speed of the bubble can be obtained (v = 0.043 m/s). The melting
depth of the crucible is H = 0.09 m. Then, the floating time of the bubble is t = H

v = 2.09 s.
However, in fact, cavitation bubbles also exist in areas with a depth less than H, and
the cavitation bubbles continually combine and grow until they escape from the liquid.
The active bubbles make the bubble radius larger than the initial radius. Therefore, it is
considered that the bubble float time in the magnesium melt is 2.09 s. Therefore, proper
ultrasonic treatment duration (90 s) can effectively remove hydrogen from the melt.

The refining effect produced by the ultrasonic can be explained as follows: When
ultrasonic is used to treat the Mg-3.03Ca alloy melt, liquid molecules are subjected to a
periodic alternating sound field, and the liquid is subjected to negative pressure and is
forced to crack, resulting in cavitation bubbles. Under the motion of the positive phase of
the subsequent sound waves, the cavitation bubbles are generated close to or collapse at a
very high speed, which locally produces an instantaneous high pressure, high temperature,
and strong shock waves within the melt. In the process of the cavitation bubble formation
and growth, heat will be absorbed from the surrounding area, which leads to a decrease in
the temperature of the metal melt in the area of the cavitation bubble surface, resulting in



Crystals 2022, 12, 1162 6 of 10

local supercooling. However, in the collapse process of the cavitation bubble, the strong
shock wave will shatter the primary crystal and the growth, making them into broken
crystal particles. The local heat pulse formed by the cavitation constantly impinges on the
solidification front and causes local erosion of the interface. The high temperature caused
by the cavitation causes the dendrite to melt and also increases the nucleation number, thus
increasing the number of grains. When the pressure value exceeds 104 MPa, the transition
from liquid to solid can be realized. The high pressure generated by ultrasonic processing
exceeds this value so that acoustic cavitation can promote the formation of a crystal nucleus.
Therefore, the ultrasonic-treated alloy can make the grain fine and even under the effect
of acoustic cavitation and acoustic flow. The ultrasonic processing melt occurs when the
energy is absorbed by the melt into thermal energy dissipation; the longer the processing
time is, the greater the thermal effect is apparent, which causes a prolonged crystal growth
time. Therefore, grain coarsening will appear.

3.2. Effect of Ultrasonic Resonance and Non-Resonance on Hydrogen Content and Degassing
Efficiency of Mg-3.03Ca Alloy

The ultrasonic generator was adjusted to the resonance before each experiment, and it
was regarded as a resonant when the panel of the tuning indicator was changed from 0 to
0.4. Figure 5 shows the degassing efficiency of the Mg-3.03Ca alloy with different degassing
processes (the resonance and non-resonance under the ultrasonic power of 150 W for 90 s
at 700 ◦C).
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Figure 5. Effect of ultrasonic resonance and non-resonance on the degassing efficiency of Mg-3.03Ca
alloy. 1—Non-resonance 2—Resonance.

It can be seen that the Mg-3.03Ca alloy has the best degassing effect under ultrasonic
resonance. This phenomenon can be understood in Figure 6 [11]. The cavitation bubbles
generated under the ultrasonic resonance can be divided into an expansion stage and a
compression stage. The cavitating bubble grows slowly in the expansion stage, and the
surface area increases. Meanwhile, the thickness of the diffusion layer also decreases,
and the gas concentration increases, which increases the gas concentration gradient in
the cavitation bubble and accelerates the moving rate of the gas from the melt into the
cavitation bubble. In the compression stage, the cavitation bubble grows rapidly, and the
surface area decreases. At this time, the thickness of the diffusion layer will also increase,
and the gas concentration will decrease, which will reduce the gas concentration gradient
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in the cavitation bubble, so the moving rate of the gas will also decrease. When the melt
is in the ultrasonic vibration resonance, the pulsating diffusion movement caused by the
continuous expansion and compression of the cavitation bubbles is active. Therefore, the
degassing effect is the best under the condition of ultrasonic resonance.
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3.3. Ultrasonic Degassing and Refinement at Different Temperatures

The effect of the ultrasonic treatment temperature at 150 W for 90 s on the degassing
was investigated in Figure 7. The maximum degassing efficiency can reach 27.5%, which is
higher than those of 730 ◦C and 670 ◦C, respectively.
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Figure 7. The effect of the ultrasonic treating temperature on the hydrogen content and degassing
efficiency of Mg-3.03Ca alloy.

Figure 8 shows the microstructures of the alloy at different temperatures by ultrasonic
treatment. Many poles exist in the ingot without the ultrasonic treatment. The microstruc-
tures of the ingots at the treatment temperatures of 730 ◦C and 700 ◦C show small equiaxed
grains. However, the microstructures of the ingots at the treatment temperature of 670 ◦C
show non-uniform grains and lots of pores.
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With the increase of the temperature, the hydrogen content of the magnesium melt
increases. When the treatment temperature is higher (730 ◦C), it takes a longer time to
remove the gas from the melt. Therefore, 90 s is not enough to completely remove the
gas in the melt, with many pores existing and the degassing efficiency decreasing. When
the alloy was treated at a low temperature (670 ◦C), the degassing time of 90 s at this
temperature was long because the alloy absorbed less gas than at 730 ◦C, and a long time
of ultrasonic treatment would cause a large number of cavitation bubbles in the melt
to distribute uniformly in the melt. In addition, the lower melt temperature makes the
melt viscosity larger, which is not beneficial to bubble floating. Therefore, these bubbles
remained in the ingot with the temperature decreasing, resulting in a degassing efficiency
lower than 730 ◦C.

It can also be seen from Figure 8 that 90 s treated at 700 ◦C not only results in the
most obvious degassing effect but also makes the grains smaller than those at 730 ◦C
and 670 ◦C. The reasons for the refinement caused by ultrasonic treatment at different
temperatures can be explained as follows: The cavitation effect by ultrasonic is closely
related to the treatment temperature of the ultrasonic. If the melt temperature is too high
and the cooling rate is slow, crystal nucleation becomes difficult, and then the solidification
structure of the alloy is coarse. Meanwhile, the rising of the temperature caused by the
thermal effect generated by the ultrasonic will increase the pressure inside the cavitation
bubble, which will weaken the cavitation effect and make the refining effect not obvious.
If the temperature is too low and the melt viscosity is greater, the cavitation and acoustic
effect will be weakened, so the ultrasonic treatment at a lower temperature cannot achieve
the refinement and degassing effect.
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The solidification structure of the ingot becomes fine and uniform by ultrasonic. The
coarse dendritic crystal is not beneficial to the rising of the bubbles and the melt feeding;
however, the uniform and fine equiaxed crystals benefit from this. Therefore, when the
best degassing effect is obtained, the solidification structure of the ingot often becomes fine
and uniform.

4. Conclusions

Ultrasonic treatment can effectively remove the gas from the Mg-3.03Ca alloy, which
can decrease the hydrogen content in the melt. Therefore, ultrasonic degassing is feasible
in magnesium alloys, and the optimum degassing efficiency can be obtained under the
ultrasonic resonant condition.

The effect of ultrasonic degassing is closely related to the ultrasonic treatment duration
and treatment temperature. When applying ultrasonic treatment for 90 s with 150 W at
700 ◦C, the minimum hydrogen content and the highest degassing efficiency are obtained,
respectively (42.8 cm3/100 g and 27.5%).

Ultrasonic treatment not only removes the gas from the melt but also uniformly refines
the solidification structure, which is beneficial to the degassing effect.
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