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Abstract: A compositional glass is a state with an unavoidable disorder in chemical compositions
on each site, characterized by frustration and freezing of the compositional degrees of freedom at
low temperature. From this state a full atomic long-range order is unachievable by a reasonable
thermodynamic treatment. There is a similarity between a spin glass (a magnetic state with disorder
in spin orientations) and a compositional glass (with disorder in site occupations by chemical
elements): both have frustrated ground states and a frozen disorder at low temperatures T < Tf

(here Tf is called the freezing temperature). While it is possible to perform a ground-state search in a
compositional glass, the resulting set of the fully ordered structures does not adequately represent
the real solid with an inherent atomic disorder. Compositional glasses constitute a class of materials,
which is insufficiently understood, but is of high industrial importance. Some of the phases in the
precipitated alloys (including steels, high-entropy alloys, and superalloys) might be compositional
glasses, and their better understanding would facilitate materials design. Due to their strength at
high operating temperatures, superalloys are used in combustion engines and particularly in jet
turbine engines. Precipitation strengthening of nickel superalloys is an area of active research. Local
phase transformations inside Ni3Al-based precipitates are of particular interest due to their impact
on creep strength. In the Ni3(Al1−xTix)1 ternary system, the competing phases are Ni3Al-type L12

(γ′) and Ni3Ti-type D024 (η), while D019 (χ) is higher in energy. These three phases differ by the
stacking of atomic layers: locally, the last two look like the internal and external stacking faults in
L12. We compute enthalpies of disordered and ordered Ni3(Al1−xTix)1 ternary structures, examine
phase stability, investigate the ground states and competing structures, and predict that the Ti-rich
Ni3(Al1−xTix)1 D024 phase is a compositional glass with the atomic disorder on the Al/Ti sublattice.
To resolve apparent contradictions among the previous experiments and to confirm our prediction,
we perform X-ray diffraction and scanning electron microscopy analysis of the cast Ni3(Ti0.917Al0.083)1

sample. Our measurements appear to confirm the ab initio computed results. Our results elucidate
properties of compositional glasses and provide a better understanding of precipitation strengthening
mechanisms in Ni superalloys.

Keywords: compositional glass; disorder; atomic ordering; precipitation; superalloys; Ni3(Al+Ti)1

1. Introduction

The efficiency of heat engines increases with temperature T of a heater if an environ-
ment is used as a cooler. Thus, higher-efficiency engines require appropriate materials
suitable for use at higher operating temperatures. Due to their strength at elevated T,
superalloys are used for critical high-T applications in energy, automotive, and aerospace
industries. In particular, nickel-based superalloys are used in jet engine turbine disks [1].
These alloys are strengthened by Ni3Al γ′ precipitates [2], grain boundary strengtheners
(e.g., carbon or boron) [3], and solid-solution strengtheners [4]: refractory elements (W,
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Re, Ta, Mo, Nb) [5] and rare earth elements (La, Ce, etc.) [6]. Local phase transformations
inside Ni3Al-based precipitates result in additional strengthening and improved creep of
Ni superalloys [7–11].

Here we focus on the atomic ordering and phase stability in the Ni3(Al1−xTix)1 ternary
system. The competing phases in Ni3(Al1−xTix)1 are L12 (γ′)—the ground state (GS) of
Ni3Al, and D024 (η)—the ground state of Ni3Ti. We find that D019 (χ) phase is higher in
energy and less thermodynamically relevant. L12, D019, and D024 phases differ by the
stacking of atomic layers, see Figure 1. The last two phases locally look like stacking faults
in L12 [7].
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Figure 2. The ground-state candidates: L12-based orthorhombic structures at (a) x = 1/4 and (b) x = 
1/2; (c) D024-based hexagonal structure at x=7/8. Ti is light blue; Al is red; Ni is small yellow. There 
are multiple structures with well-spaced Al solute on the GS hull at x > 0.875, see text. 

Figure 1. Atomic structures of L12 (γ′), D019 (χ), and D024 (η) phases, shown for the fully relaxed
Ni3Ti. The upper panel shows cubic (111) and hexagonal (0001) projections. The lower panel
compares stacking of the 2D layers. Ti (Al) atoms are dark blue; Ni atoms are small yellow.

In the Ni3(Al1−xTix)1 ternary system the terminal binary L12 Ni3Al and D024 Ni3Ti
structures differ. We investigate the phase stability of Ni3(Al1−xTix)1 with a homogeneous
atomic disorder on the (Al1−xTix) sublattice, consider energy gain due to the atomic or-
dering, and construct the ground-state hull. We predict the existence of the fully ordered
ground-state structures at intermediate compositions—in addition to the known binary
L12 Ni3Al and D024 Ni3Ti structures. A subset of the predicted ground-state structures is
shown in Figure 2. The computed energies are plotted in Figure 3.
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Figure 2. The ground-state candidates: L12-based orthorhombic structures at (a) x = 1/4 and
(b) x = 1/2; (c) D024-based hexagonal structure at x=7/8. Ti is light blue; Al is red; Ni is small
yellow. There are multiple structures with well-spaced Al solute on the GS hull at x > 0.875, see text.

Interestingly, the energy decrease due to atomic ordering in the Ti-rich D024 phase
is very small (see Figure 3); hence, we do not expect development of a long-range order
(LRO) on the Al/Ti sublattice in experimental samples at these compositions, while a weak
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short-range order (SRO) is expected due to the repulsion between the solute Al atoms. This
phase is an example of a compositional glass, generic properties of which we discuss.
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Figure 3. Equilibrium volumes V0 [Å3/atom] and formation energies E [eV/atom] of Ni3(Al1−xTix)1

fully ordered structures (points) and phases with a homogeneous disorder on the Al/Ti sublattice
(lines), based on L12 (red), D024 (black), and D019 (green) lattices. The ground-state (GS) hull is
shown by the blue line, with marked L12-based (red squares) and terminal D024-based (black circles at
x = 0.875 and 1) ground states. There are multiple GS candidates with spaced Al solute at 0.875 < x < 1.

In addition to the structural phase transition between L12 and D024 phases, there is a
magnetic transition in the Ni3(Al1−xTix)1 ternary system. Dependence of atomic magnetic
moments on composition is given in Figure 4.
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are 6th degree x(MNi) polynomials with even powers, fitted to DFT data points. Inset: 0.0005 e−/Å3

iso-surfaces of electronic spin density in cubic L12 Ni3Al unit cell with Ni (grey) and Al (black) atoms.

The kink in the energy versus composition dependence (see Figure 3), present in all
three phases, is caused by a rapid change of the electronic density of states (DOS) at the
Fermi level EF, which is in the pseudo-gap in the Ti-rich structures, see Figure 5.
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Figure 5. Electronic density of states (states/eV·spin·atom) of magnetic Ni3Al (a) and non-magnetic
Ni3Ti (b) in L12 (red) and D024 (black) phases is compared to that of the L12-based GS at x = 1/4 and
1/2 (c) and D024-based GS at x = 7/8, 11/12, and 23/24 (d).

This article is organized as follows. Methods and materials are described in Section 2.
Results in Section 3 clarify phase stability and atomic ordering in the Ni3(Al1−xTix)1 ternary
system, while our experiment confirms our theoretical predictions. Discussion and sum-
mary are in Sections 4 and 5, respectively.

2. Methods and Materials
2.1. Theory

Physically different systems can be described by similar mathematical equations.
Hamiltonian formalisms are equivalent for a magnetic system composed of interacting
particles with spins (moments with a quantized projection on the chosen axis) and for an
alloy with a variable composition on each site, occupied by one of the available chemical
elements. On an occupied site an atom can be displaced from the ideal crystallographic
position [12]; a vacancy can be treated as another atomic type with zero nuclear charge.
A magnetic quantum system can be described in terms of the spin variables si. For spins
s = 1/2 (here we omit the reduced Plank constant h̄), on each site i there are only 2 possible
values of si = ± 1

2 , corresponding to either up or down spin orientations. The same spin-like
variables si can describe occupation of each site i in a binary alloy, which is composed
of only 2 chemical elements (for example, Al and Ti). One can extend this formalism to
describe either spin or atomic disorder on a particular sublattice, if all the other sublattices
are fully ordered. One can use the spin-like variables with a larger amplitude and more
projections, for example, {−1, 0, 1} for a spin 1 magnetic system or for a ternary alloy.
Next, there is a one-to-one correspondence between descriptions of an alloy in terms of
the spin-like (si) and occupational variables xi(X), where X is a particular chemical element
(e.g., Ti). The values of xi(X) are between zero and one: xi(Ti) = 1 if the site i is occupied by
Ti and 0 otherwise. For a binary alloy, composed by Al and Ti only, at each site i there is a
constraint xi(Al) + xi(Ti) = 1, due to which one can exclude one variable xi(Al) = (1− xi)
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and keep only xi(Ti) ≡ xi. The equation si = (xi − 1
2 ) connects the occupational and spin

variables, in which si = − 1
2 for Al and + 1

2 for Ti.
Historically, the Ising model [13] and its generalizations [14] described spin ordering

in magnetic systems, while the cluster expansion [15,16] described atomic ordering in
multicomponent systems. Hamiltonian formalisms for both are mathematically equivalent.
In both cases, such systems can be frustrated. A spin glass [17] is an inherently disordered
state of a frustrated magnetic system, and in the compositional space we expect the ex-
istence of a similar state, which we call a compositional glass. As a formality, below are
two definitions.

A spin glass is a magnetic state, in which magnetic moments have orientational disor-
der due to frustration, caused by a balance between attractive and repulsive interactions. A
spin glass [17] is characterized by randomness in orientations of spins and freezing of spin
dynamics below the freezing temperature Tf.

A compositional glass is a state with an inherent chemical disorder, characterized by a
randomness in the local chemical compositions on a set of sites (each site is occupied by
one of the constituting chemical elements), and freezing of disorder below temperature Tf,
at which atomic diffusion stops. A compositional glass is an analogue of a spin glass: both
systems are described by similar equations, have comparable properties of mathematical
solutions, but differ by a physical interpretation of mathematical symbols.

An example of a compositional glass will be considered in Section 3.

2.2. Computations

Density functional theory (DFT) is used to address fully ordered and partially disor-
dered periodic atomic structures [18]. Two DFT codes are used: the all-election Green’s
function-based KKR-CPA [19,20] code MECCA [21] and the full-potential pseudo-potential
VASP [22,23]. We use the same PBEsol exchange correlation functional [24] in both codes.

The Korringa–Kohn–Rostocker (KKR) approach [19,20] was combined with the coher-
ent potential approximation (CPA) [25] to consider a homogeneous substitutional chemical
disorder on the Al/Ti sublattice [21]. The truncated basis set with the maximal orbital
angular momentum quantum number lmax = 3 included s, p, d, and f orbitals. We used the
atomic spheres approximation (ASA) [26] with the periodic boundary corrections [27]. The
ideal c/a ratio of the lattice constants was used for the close-packed hexagonal phases in
KKR-CPA.

The Murnaghan equation of state (EoS) [28] was fitted to the E(V) data with at least
5 DFT points (with a step from 1% to 1.5% in the lattice constant, with an energy minimum
near V0) to find the equilibrium volume V0 at each composition for the phases with a
homogeneous disorder on the Al/Ti sublattice, see Figure 3. New DFT calculations were
performed at the equilibrium volume to find atomic magnetic moments in Figure 4. We
checked that the EoS energy at V0 (shown in Figure 3) and the directly computed DFT
energy E at V0 agree within the DFT error bar at each composition.

The Thermodynamic Tool Kit (TTK) [29] was used to generate a set of periodic struc-
tures with various decorations of atoms on the Al/Ti sublattice in L12 and D024 phases. An
iterative method described in Section 3.4 was used to add more ground state candidates
into DFT consideration.

The VASP code [22,23] with PAW pseudopotentials [30] was used to compute energies
of the fully ordered structures, which were fully relaxed at zero pressure. The plane-wave
energy cutoff was increased to ENCUT = 650 eV. During relaxation we used the Gaussian
smearing (ISMEAR = 0) with SIGMA = 0.043 eV, corresponding to kBT at T = 500 K. For the
fully relaxed structures we also used the tetrahedron method with Blöchl corrections (IS-
MEAR = −5). We used the Γ-centered Monkhorst–Pack k-mesh [31] with at least 50 points
per inverse ångström. The spin-polarized calculations were performed for magnetic sys-
tems. For consistency, full-potential corrections (assumed to be linear versus composition)
were applied to the KKR-CPA results using VASP energies at the terminal compositions.
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2.3. Experimental Sample Preparation and Characterization

A 30 g ingot composed of 79.24 wt.% Ni, 19.75 wt.% Ti, and 1.01 wt.% Al was produced
using vacuum induction melting (VIM) at the NASA Glenn Research Center Materials
Processing Laboratory. The 30 g button was then cut, mounted in polyfast epoxy, and
polished. The microstructural Ni3(Ti,Al) sample was polished using SiC grit paper fol-
lowed by 0.5 µm suspension and a final 0.05 µm colloidal silica finish. Scanning electron
microscopy of the sample was performed using a Tescan MAIA3 at 15 kV of acceleration
using a secondary electron detector. Chemical maps were performed using an Oxford Ultim
Max Silicon Drift Detector and Aztec Software. Phase identification of the button sample
was performed using both a Panalytical Empyrean X-ray diffractometer with a position
sensitive detector (Galipix) in scanning 1D mode utilizing Mo-Kα radiation and Bruker D8
Discover (area detector) X-ray diffractometer utilizing Cu-Kα radiation. Ten separate SEM
images were obtained, each containing a surface area of 0.02 mm [2]. The micrographs
were then cropped and transformed into 8-bit images. They were then segmented using
the adaptive threshold plug-in within the image processing software ImageJ [32]. The
threshold plug-in segments the image using the gray-scale contrast between the darker γ′

precipitates and lighter D024 matrix. The software determines a gray-scale cut-off and a
minimum size of a precipitate. Hence, any pixel that is determined “dark” enough to be
considered a γ′ precipitate must also have a minimum number of connecting “dark” pixels
for it to be considered a precipitate and included in the segmentation step. Otherwise,
the plug-in will consider that pixel as noise and exclude it. After the segmentation, the
segmented images were transformed into binary images and the segmented phases were
analyzed to determine their area fractions.

3. Results
3.1. Relevant Phases

The L12 (cP4, Cu3Au-type, cubic Pm3m space group no. 221), D019 (hP8, Ni3Sn-type),
and D024 (hP16, Ni3Ti-type, hexagonal P63/mmc space group no. 194) atomic structures
are shown in Figure 1. They differ by the stacking of 2-dimensional (2D) atomic layers
along the cubic (111) direction in L12 or the hexagonal (0001) direction in D019 and D024
structures, as well as by c1/a1 ratio, where c1 is the lattice constant along the stacking
direction, divided by the number of layers, and a1 is the interatomic distance between the
nearest periodic Al/Ti sites within the 2D layers. The periodic stacking of the 2D layers is
[ABC] in L12, [AB] in D019, and [ABAC] in D024. The Al/Ti sublattice is simple cubic (sc)
in L12, hexagonal close-packed (hcp) in D019, and double hexagonal close-packed (dhcp) in
D024, see Figure 1. In all three phases, the 3D Al/Ti sublattice is composed by the stacked
2D triangular lattices.

3.2. Ground-State Candidates

The known ground states at the terminal binary compositions are L12 Ni3Al and
D024 Ni3Ti. The lowest-energy structures at three selected Ni3(Al1−xTix) ternary composi-
tions are shown in Figure 2. The exhaustive set of L12-based ground states includes the
three structures at x = 0, 0.25, and 0.5 (see Figure 3). In contrast, the D024-based ground
states include many structures with well-spaced Al solute at 0.875 ≤ x ≤ 1; one of them
at x = 0.875 is shown in Figure 2c. This Ni3Al1/8Ti7/8 structure is hexagonal, with the
maximally spaced Al solute; the Al sublattice forms a close-packed structure (hcp with AB
stacking in Figure 2c); the competing structures differ by a stacking of the close-packed
Al sublattice (other possibilities include [ABC] for fcc or [ABAC] for dhcp, see Figure 1).
Due to the repulsion between Al atoms at a short distance, all D024-based ground states
have a well-spaced Al solute and prefer mixing for the atomic ordering on the Al/Ti
sublattice. However, at small Al concentrations at x(Ti)→1, there are many competing
structures with well-spaced Al solute and similar energies; the energy differences be-
tween those are within the DFT error. In addition, the energy difference ∆Ed between
the states with a homogeneous disorder on the Al/Ti sublattice and the ordered ground
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states with the well-spaced Al solute is small and constitutes only 2.37 meV/atom or
9.48 meV per Ni3Al1/8Ti7/8 formula unit (f.u.) at x = 0.875; it reduces to 1.42 meV per
Ni3Al1/12Ti11/12 at x = 11/12; 2.85 meV per Ni3Al1/24Ti23/24 at x = 23/24; and 0 meV/Ni3Ti
at x = 1. At x = 7/8, chemical entropy of the Al/Ti homogeneous atomic disorder is
Sd = kB(x ln(x) + (1− x) ln(1− x)) = 3.247·10−5 eV/K per Ni3Al1/8Ti7/8 f.u. (here kB is
the Boltzmann constant) and is zero for the fully ordered structure; the expected ordering
phase transition temperature is below ∆Ed/Sd = 292 K, while the experimental atomic
diffusion is negligible below 500 K. Hence, due to the insufficient energy gain from form-
ing the long-range order at 0.875 < x < 1 (see Figure 3), experimental Ti-rich D024-based
Ni3(Al1−xTix) samples are expected to have only short-range order on the Al/Ti sublattice.
This prediction makes it unnecessary to point at the fully ordered ground states, which
differ from the actual state with an inherent atomic disorder at 0.875 < x < 1. We expect
that Ni3(Al1−xTix) alloys at 0.875 < x < 1 will remain in D024 phase and have a disorder
(no LRO) on the Al/Ti sublattice, while SRO [33] will be caused by a repulsion between
Al solute atoms. An alloy with an inherent occupational disorder behaves as an analogue
of a spin glass in occupational variables, with a corresponding similarity between mag-
netic (spin) [13] and occupational degrees of freedom. Such a state of matter is called a
compositional glass.

3.3. Relative Energies of Disordered Structures

The computed energies Edis(x) of the relevant phases of Ni3(Al1−xTix)1 with a homoge-
neous atomic disorder on the Al/Ti sublattice are compared with the energies of the fully
ordered structures in Figure 3. For the Al/Ti disorder, we find a mixing tendency (indicated
by a positive curvature of the convex Edis(x) curve) in L12 phase at all compositions x, while
a mixing tendency in both D019 and D024 phases is present only at large Ti concentrations.
Negative mixing energies (relative to the terminal Ni3Al L12 and Ni3Ti D024) indicate that
Al and Ti atoms prefer to mix (and not to segregate) on the Al/Ti sublattice. If mixing
with a homogeneous disorder is already energetically favorable, then further relaxation of
compositional degrees of freedom with a formation of SRO or LRO on the Al/Ti sublattice
is expected to lower energy. This leads to an expectation of existence of ordered structures
(some of which are the ground states) with lower energies than those of disordered states.
Indeed, Figure 3 shows the computed ground-state hull, which is below the Edis(x) curves
for both L12 and D024 phases. As discussed in Sections 3.2 and 4, small differences ∆Ed
indicate that the actual state is a compositional glass.

3.4. Energies of Fully Ordered Structures and the Ground-State Hull

Using the Thermodynamic Tool Kit (TTK) [34], for both D019 and D024 phases we
generated a hierarchical set of ordered structures (smallest first) with atoms at the ideal
lattice positions and used density functional theory (DFT) to compute energies of the fully
relaxed structures. Next, energies and correlation functions for a set of structures [35]
were used in the structural inversion to construct a cluster expansion (CE) [29]. The CE
Hamiltonian was used to predict the CE energies of a very large number of structures and
to find new ground state candidates [36]. Energies of those were computed directly in DFT.
With energies and correlation functions of those additional structures, another CE was
constructed and another search for additional ground states was performed. This iterative
procedure was stopped (with 68 L12-based and 2650 D024-based structures) when no new
lower-energy (within the DFT accuracy) ground state candidate structures were suggested
by the CE and confirmed by DFT.

A CE Hamiltonian provides a polynomial energy versus composition dependence
for the structures with a homogeneous disorder on the Al/Ti sublattice. A low-degree
polynomial does not reproduce the kink near x = 0.915 on the Edis(x) curve for D024 phase in
Figure 3. Hence, any CE with a finite cutoff for the multi-body interactions (we considered
m-body clusters with m ≤ 7) does not accurately reproduce the Edis(x) curve for this phase,
although a CE is useful during an iterative search for new GS candidate structures.
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The suggested ground-state structures are shown in Figure 2. DFT energies of the
fully ordered structures (including the ground states) are in Figure 3. Importantly, in D024
phase there are many GS candidates at 0.875 < x < 1, and at each composition there are
many competing structures with similar energies (within the DFT accuracy), which differ
by the longer-ranged atomic correlations at larger interatomic distances. In other words,
at x→1 the D024-based ground states are the structures with a well-spaced Al solute, and
each ground state is accompanied by multiple competing structures with similar energies,
see Figure 3.

3.5. Magnetism

Ni3Al and Al-rich Ni3(Al1−xTix) alloys are magnetic [37], with the ferromagnetic
(FM) spin ordering of Ni magnetic moments MNi, while the induced atomic magnetic
moments of Al and Ti are small (and oriented oppositely to Ni). Ni3Ti is non-magnetic,
with zero atomic magnetic moments. At larger x, atomic magnetic moments and the total
magnetization in each phase of Ni3(Al1−xTix)1 become smaller and disappear, see Figure 4.
Although at small x D024 phase has higher moments MNi than L12, all D024-based ground
states at x ≥ 0.875 are non-magnetic. Disappearance of MNi is a magnetic phase transition,
which happens near x = 0.364; 0.447; and 0.67 in L12, D019, and D024 phases, respectively.

3.6. Electronic Structure

Considering the electronic density of states (DOS) n(E), we find that the L12-based GS
at x=0 (Ni3Al), 0.25, and 0.5 have a pseudo-gap above the Fermi energy EF. In contrast,
D024-based GS at x ≥ 0.875 (including Ni3Ti at x = 1) have the pseudo-gap at or below
EF, see Figure 5. Considering n(EF) versus composition, we find an electronic transition
from the states with higher n(EF) at x(Ti) < 0.875 to the states with low n(EF) and the Fermi
energy in the pseudo-gap at x ≥ 0.875. In practice, this electronic transition coincides with
the structural transition between L12 (at smaller x) and D024 phases (at x ≥ 0.875).

The valence electron charge density in real space in the selected ground states is shown
in Figure 6. Locally, the neighborhoods of each Al and Ti atom in Ni48Al2Ti14 (Figure 6b)
resemble those in L12 Ni3Al (Figure 6a) and D024 Ni3Ti (Figure 6c), respectively. This is
also true for the other D024-based ground states at x ≥ 0.875, which differ from D024 Ni3Ti
by a substitution of a fraction of Ti atoms by Al solute, with Al-Al spacing distance not
shorter than 7.1 Å in Ni48Al2Ti14 (Figure 2c).
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Crystals 2022, 12, 1049 9 of 13

3.7. Comparison to the Previous Experiments

Fully ordered Ni3(Al1−xTix)1 at T = 0 K should segregate between the L12-based
Ni3(Al0.5Ti0.5) and D024-based Ni3(Al0.125Ti0.875) ground states at 0.5 ≤ x ≤ 0.875. How-
ever, from a small energy difference between ordered and disordered states, we expect
that experimental Ni3(Al1−xTix)1 samples will not form LRO on the (Al1−xTix) sublattice.
Ni3(Al1−xTix)1 samples with disorder (only SRO) on the Al/Ti sublattice will be in D024
phase at x ≥ 0.915 and predominantly in L12 phase at x < 0.8, with a phase-segregated
region between. Currently, there is no consensus among the previous experimental assess-
ments of the phase boundaries of D024 and L12 phases in Ni3(Al1−xTix)1 alloys, see Table 1.
Due to disagreement among the previous experimental data [38–45], a new measurement
is desirable.

Table 1. Phase boundaries of L12 and D024 phases in Ni3(Al1−xTix)1 from our theory, our experiment,
and literature. Here x (at.%Ti) is titanium atomic percent on the Al/Ti sublattice.

Temperature xmax(L12) xmin(D024) Year Ref.

Order 0 K 50 87.5 This Theory
Disorder ∞ ≈80 91.5 This Theory

RT 300 K ≤91.68 This Expt.
900 ◦C 1173 K 70 82 2016 [39]
900 ◦C 1173 K 67 83 2001 [40]
800 ◦C 1073 K 73 88 1999 [41]

1200 ◦C 1473 K 65 83 1999 [41]
850 ◦C 1123 K 64 96 1993 [42]

1250 ◦C 1523 K 62 90 1993 [42]
800 ◦C 1073 K 67 100 2005 [43]
800 ◦C 1073 K 63 100 1991 [44]
800 ◦C 1073 K 47 95 1965 [45]

3.8. Experiment
3.8.1. X-ray Diffraction

XRD analysis using the Cu-kα data of the cast Ni3(Ti0.917Al0.083)1 sample is revealed
in Figure 7. The graph shows that all the peaks, except for 36.5◦ 2θ, match the expected
peak positions for the D024 crystal structure associated with Ni3Ti. The 36.5◦ 2θ is most
likely associated with the Ni3Al L12 phase. Quantification of the phase weight percent
was not performed due to significant peak intensity discrepancies between the Cu-kα and
Mo-kα scans. It was determined that this discrepancy was due to poor sampling statistics
associated with the large grains found in the sample. Still, from the XRD analysis it is clear
that this sample formed primarily the D024 crystal structure, while the scanning electron
microscopy (SEM) analysis was performed to validate the 79.24 wt.% Ni, 19.75 wt.% Ti,
and 1.01 wt.% Al composition, corresponding to 0.7500 at.% Ni, 0.2292 at.% Ti, and 0.0208
at.% Al in Ni3(Ti0.9168Al0.0832)1 at x = 0.9168.

3.8.2. Scanning Electron Microscopy

To validate the XRD results, scanning electron microscopy of the cast ingot was
performed. A SEM image of the sample is shown in Figure 8a and the corresponding
chemical maps of the area are revealed in Figure 8b. The chemical maps agree with the XRD
result in that the majority of the cast Ni3(Ti, Al) utilizes the D024 crystal structure. There
are small thin areas of material that appear to be composed of Ni3Al-type L12 phase due to
the increase in Al content and the corresponding L12 peaks found in the XRD analysis. The
Al chemical map also reveals that the Al content is not uniform in the D024 phase in the
as-cast state where areas that surround the L12 phase are richer in Al. Figure 8 also shows
the presence of smaller dark phases which are most likely Al- and Ti- rich oxides. Multiple
SEM micrographs were taken of the Ni3(Ti, Al) sample in the as-cast state to quantify the
area fractions for the two present phases—D024 and L12. Since the two phases appear in
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different contrast when imaged with a secondary detector, they can be separated, and their
corresponding area fractions quantified. From this analysis, the L12 phase corresponded to
only 0.86% ± 0.12% of the total area, while the rest was composed of the D024 phase and
oxides. This result appears to confirm the calculations performed on this ternary system.
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4. Discussion

Compositional glasses constitute a class of materials with inherent chemical disorder.
If ordering enthalpy is small compared to diffusion activation energy, then atomic LRO
on each sublattice is unachievable by a reasonable thermodynamic treatment. At low
temperatures atomic diffusion becomes negligible and atomic order (or disorder) is frozen.
Thus, a compositional glass does not transform to a fully ordered state [46] upon cooling.

Ground-state search algorithms [36] are applicable to both conventional crystals and
compositional glasses. For thermodynamic predictions it is necessary to consider not only
the ground states, but also competing structures [35], which might be ordered or partially
disordered. Ordering enthalpy ∆Ed is defined as the enthalpy difference between the
state with a homogeneous disorder on a particular sublattice and the ground-state hull
at the same composition. Diffusion activation energy EA can be either computed from
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the first principles [47] or assessed from experimental data. According to the Arrhenius
equation [48], diffusion rate D is proportional to exp(−EA/kBT); it becomes negligible
below the freezing temperature Tf if the activation energy EA is much higher than kBTf,
where kB is the Boltzmann constant. In Ni superalloys Tf > 500 K and kBTf > 43 meV, while
∆Ed < 10 meV in the Ti-rich Ni3(Al1−xTix)1 D024 phase: ∆Ed(x) changes from 9.48 meV per
Ni3Al1/8Ti7/8 at x = 0.875 to zero at x = 1. Thus, ∆Ed < kBTf � EA at any x ≥ 0.875, and this
phase is a compositional glass.

This example illustrates that in multi-phase materials (such as composites or precipi-
tated alloys, superalloys, and steels) some of the phases can be compositional glasses; a
better understanding of their fundamental properties is beneficial for materials design.

5. Summary

Compositional glass is a solid state with an inherent atomic disorder. An example of a
compositional glass is Ti-rich Ni3(Al1−xTix)1 D024 phase, which is relevant to precipitation
strengthening in Ni superalloys—multi-phase materials of high industrial importance.

We analyzed the phase stability and atomic order in Ni3(Al1−xTix)1 ternary system
and identified the ground states and competing structures. We found multiple D024-based
ground state candidates with a spaced Al solute at x ≥ 0.875 and confirmed 3 L12-based GS
at x = 0, 0.25, and 0.5. We considered electronic, magnetic, and structural phase transitions.
From the small enthalpy difference between the states with order and homogeneous
disorder on the Al/Ti sublattice we anticipated that experimental samples at x ≥ 0.875
would not develop LRO on this sublattice. We predicted that Ti-rich Ni3(Al1−xTix)1 alloy
at x > 0.915 should be a compositional glass in D024 phase. Considering the previous
experiments, we found no consensus in the literature regarding the boundaries of L12 and
D024 phases. To resolve this contradiction, we conducted a new experiment at x = 0.9168,
which appears to confirm our first-principles predictions.
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