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Abstract: Sandwich beams are preferable for aerostructure and marine structures due to their high
mechanical strength, durability, stiffness, and fatigue resistance. This paper presents a study on the
flexural behavior of sandwich beams made of self-compacting concrete comprising a polystyrene
inner core with wire mesh reinforcement. The effect of the design parameters such as the inner core
area, percentage of tension reinforcement, and wire mesh on the moment carrying capacity and failure
modes of sandwich beams was analyzed. Ten beams were cast and tested to failure with simply
supported end conditions and they were classified into three different groups. The longitudinal
section of the inner core area was varied by 0% (control beam), 25%, 50%, and 75% of the gross
area. The tension reinforcement ratio varied between 0.6 and 1.5%. In addition, the effect of the wire
mesh in shear and flexural resistance was studied. The load-carrying capacity of sandwich beams
increased with flexural reinforcement. In addition, the welded wire mesh improved the sandwich
beams’ flexural and shear performance. The conventional expressions for the moment of resistance
were valid for sandwich beams, whereas the shear strength expressions overestimated the capacity;
therefore, modifications were suggested. The refined models had a significant agreement with the
experimental results.

Keywords: sandwich beam; inner core geometry; flexural behavior; reinforcement ratio; wire mesh;
self-compacting concrete

1. Introduction

The construction industry is always looking for new, better, and efficient systems [1,2].
At present, most of the problems faced by the construction industry are mainly due to
the shortage of raw materials [3–5]. Hence, it is necessary to find out all possible ways
to reduce the usage of concrete in structural members [6]. The sandwich structure is the
structural element that consists of a multi-layer core of different materials [5,7]. It has an
outer facing element and inner core element placed between the outer facing [8,9]. The
outer facing takes up the bending, the inner core takes up the axial load, and the shear force
is taken up by the bonding agent [10–12]. Sandwich structures were utilized in aerospace
applications in the early 1960s and further found applicability in marine, civil, automotive,
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and high-performance structures [8,13,14]. The sandwich construction method has all
desirable characteristics such as a high mechanical strength-to-weight ratio, economy,
durability, and thermal and acoustic insulation, for all the main structural elements such as
slabs, beams, transfer girders, columns, frames, walls, and stairs [15–18]. Sandwich panels
made up of fiber-reinforced polymer, carbon-fiber-reinforced polymers were used in the
last five decades [19–21].

A precast concrete sandwich panel (PCSP) consists of two internal and external pieces
of concrete separated by insulation material such as polystyrene. These types of panels
function in commercial buildings, residential buildings, and warehouses [9]. The amount
of skin reinforcement and shear connectors governs the flexural behavior of ferrocement
sandwich panels [22]. The outer parts and inner core are able to withstand different loading
conditions such as tension, compression, and shear [23]. The bonding between the outer
layer and inner core is very much essential to take up the stresses [24]. Debonding leads
to a reduced load-carrying capacity due to the inefficient transfer of tensile and shear
stresses. Moreover, the debonding due to compression tries to buckle the outer part from
the inner core and progresses the separation to obtain potential collapse [25]. These types
of defects in the sandwich structure reduce the efficiency of the structure to take up the
forces such as cyclic, fatigue, and dynamic forces [26]. The structural behavior of sandwich
panels under axial compression, eccentric, and flexural loading was investigated in the
past [27–30]. In the dynamic test of a single-story sandwich building [31], discontinuous
walls in-between the door and window openings are vulnerable to flexural cracking. The
in-plane shear test results of a composite sandwich beam showed that the shear capacity
and modulus of the skin govern the ultimate load [32]. Previous studies have shown that
the flexural and shear behavior of different types of precast sandwich panels such as 3D
panels [33–35], textile-reinforced-concrete-faced panels [36], glass-fiber-reinforced concrete
beams/panels [36–42], and ferrocement panels performed better than the conventional
members [43–47]. However, [48] the failure modes and failure mechanism of cast in situ-
type, short and slender sandwich beams have not yet been reported in the literature.

Materials used in the fabrication of cast in situ-type sandwich members are struc-
tural concrete, polystyrene, steel reinforcement, and welded-wire mesh. Flowable or
self-compacting concrete is usually adopted for wythes of sandwich members because of
the small thickness and reinforcement congestion. The ultimate strength of self-compacting
concrete (SCC) beams was similar to normal concrete beams [49–51]. Moreover, many
designers use a minimum quantity of welded wire mesh in addition to the reinforcement
bars in architectural and structural applications to ensure that the sandwich panels perform
properly against flexure and shear stresses under service loads [2].

Sandwich beams are classified into three types, namely, noncomposite, composite,
and partially composite [1,2]. The top and bottom wythes of fully composite and noncom-
posite members act as a single unit and independent, respectively. The bending stiffness
and mechanical strength of partially composite members fall between fully composite
and noncomposite members. In reality, sandwich beams are neither fully composite nor
noncomposite. In sandwich flexural members, the top and bottom wythes resist flexu-
ral stresses and the side wythes resist both horizontal and vertical shear stresses [49,52].
However, there is the possibility to promote the composite action by increasing the tension
reinforcement and by adding welded wire mesh, which were experimentally attempted in
this study. As the degree of composite action is generally not known exactly, the verification
of conventional shear and flexural strength expressions for sandwich beams is not possi-
ble without experimental results. The applicability of flexural strength expressions was
validated, and a necessary modification was proposed for shear strength expression. Not
much information is available on the structural behavior of RC sandwich beams especially
regarding the stiffness, flexure, and shear strength. However, the aims of this study are
(1) to arrive at an optimum geometry and reinforcement ratio; (2) to investigate the influ-
ence of wire mesh, wherein the beams provide a high bending strength and stiffness with
low density; (3) to compare the experimental results with the shear strength and moment
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of resistance expressions suggested by the current design codes such as Indian, American,
and European codes; (4) to obtain a modified model to evaluate the shear capacity based on
the comparison of results; (5) to enable the design engineers to evaluate the shear capacity
of such sandwich beams.

2. Experimental Procedure
2.1. Materials and Methods

The self-compacting concrete (SCC) was adopted for the outer core to ensure flow in
between the congested reinforcement confinement. OPC 43 grade cement of specific gravity
3.12 was used according to IS 8112: 2013 [53]. Crushed angular granite metal of 10 mm in
size from a local source was used as coarse aggregate with a specific gravity of 2.68. River
sand belongs to the Zone III gradation as per IS 383 (2016) [54] with a specific gravity of
2.61 and was used in this experimental study. For trial purposes, three water-to-cement
ratios (0.33, 0.42, and 0.46) and two types of super plasticizers, namely, Conplast and
Cerahyperplast, were used to prepare the SCC mixes. The mix ratio of cement, sand, and
coarse aggregate in concrete was kept constant as 1:1.5:1.37, whereas the water-to-cement
ratio was varied in order to achieve the flow as well as the mechanical strength for two
types of superplasticizers. Based on the flowability and compressive strength of SCC
mixes, the water-to-cement ratio and type of plasticizer were adopted. Further, the yield
strength ( fy) and ultimate strength of tension and web reinforcement were 530–615 MPa
and 495–580 MPa, respectively. The V-funnel test was used to check filling ability, whereas
the J-ring, L-box, and U-box test were used to verify its passing ability. The slump flow
test was used to measure the workability as a slump value. The observed results were
checked with limiting values of EFNARC guidelines. The compressive strength of SCC
was carried out in a compression testing machine of 2000 kN capacity. Cube specimens of
size 150 mm × 150 mm × 150 mm were cast to test the compressive strength of concrete.

2.2. Fabrication of Sandwich Beams

Figure 1 shows the sequence of fabrication of sandwich beams. Stage I involved
reinforcement caging, placing polystyrene in position with binding wires, and fixing of the
steel wire mesh on three sides of the cages, as shown in Figure 1a. In stage II, the mold was
prepared with steel plates. Oil was applied on the steel mold for the following reasons:
easy removal, smooth surface finishes, and to minimize the surface adhesion. Plaster of
Paris was applied for arresting the leakage of water in the small gaps of the mold while
concreting. Stage III involved the placement of the first layer of concrete and leveling up to
the concrete cover thickness (Figure 1b,c). In stage IV, the fabricated reinforcement cages
were placed over the bottom layer, and self-compacting concrete was poured. Specimens
were then removed from the mold and cured for 28 days. All the test specimens were
whitewashed to monitor the crack propagation and to measure the crack width.

2.3. Details of the Test Specimens

Details of the test specimens are shown in Figure 2. Ten beams were cast and tested
in three different groups under four-point bending. The beam designation, geometry of
the inner and outer core, and reinforcement details of solid and sandwich beams are given
in Table 1. In the first group, four beams were tested with the inner core area varied by
0.0% (control beam), 25%, 50%, and 75%. The second and third group consisted of four
and two beams, respectively, with a 50% inner core area. The tension reinforcement was
varied as 0.6%, 0.9%, 1.2%, and 1.5% in the second group, whereas in the third group, wire
meshes were provided at the top and bottom for beams with 0.6% and 1.5% of tension
reinforcement. In the beam designation, “B1, B2, and B3” represent beam groups I, II,
and III, respectively. The notations “0.00A, 0.25A, 0.50A, and 0.75A” correspond to zero,
twenty-five, fifty, and seventy-five percent of inner core area. Furthermore, the last number
represents the percentage of tension reinforcement, and “W” refers to the presence of wire
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mesh. Wire mesh is provided on the side faces and bottom face to resist shear and flexure,
respectively. Classifications of beams and remarks are detailed in Table 2.
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Table 1. Designation of sandwich beams.

Group No Beam Designation L, mm B, mm D, mm Hanging Bars Ast
a
d f ck, MPa Size of Polystyrene, mm2

I

B1-1.0A 2200 100 200 2# 8� 2# 10� 3.5 33.40 –

B1-0.25A 2200 100 200 2# 8� 2# 10� 3.5 33.28 50 × 50

B1-0.50A 2200 100 200 2# 8� 2# 10� 3.5 31.90 50 × 100

B1-0.75A 2200 100 200 2# 8� 2# 10� 3.5 32.66 50 × 150

II

B2-0.50A-0.6 2200 100 200 2# 8� 2# 8� 3.5 34.64 50 × 100

B2-0.50A-0.9 2200 100 200 2# 8� 3# 8� 3.5 32.86 50 × 100

B2-0.50A-1.2 2200 100 200 2# 8� 3# 10� 3.5 33.62 50 × 100

B2-0.50A-1.5 2200 100 200 2# 8� 4# 10� 3.5 34.01 50 × 100

III
B3-0.50A-0.6-W 2200 100 200 2# 8� 2# 10� 3.5 33.41 50 × 100

B3-0.50A-1.5-W 2200 100 200 2# 8� 4# 10� 3.5 31.06 50 × 100

Ast—Reinforcement details of tension zone; hanging bars—Reinforcement details of compression zone; L: Length;
B: Bredth; D: Depth; f ck—characteristic compressive strength of concrete; a

d —Shear-span-to-depth ratio.

2.4. Test Setup

Specimens were tested in a 500 kN capacity loading frame. The schematic diagram of
the test setup is shown in Figure 3. A spreader beam was used to distribute the applied
concentrated load to the two-point loads on the top face of the beam. Each specimen
was supported on roller and hinge assemblies. In the roller end, the displacement of the
specimen in the transverse direction was restricted, whereas, at the hinged end, rotation
was allowed. To achieve uniform contact between the specimen and the bearing plates, a
thin layer of mortar was applied on the specimen as well as to the bearing plates. Two linear
variable differential transformers (LVDTs) were placed at one-third span and mid-span
from the left support. Strain gauges were mounted on the tension reinforcement at the
mid-span. The transverse deflection, applied load, and strain were monitored through an
assembly of a data logger in association with the load cell, LVDTs, and strain gauges, respectively.



Crystals 2022, 12, 1021 5 of 19Crystals 2022, 12, x FOR PEER REVIEW 5 of 23 
 

 

2-8

2 LEGGED
6dia 150mm c/c

SECTION A-A

2-10

B1-1.0A

A

A

B1-0.25A

A

A

NA

NA

B1-0.50A

P1 P2

P1 P2
2-8

2-10

2-8

2-10

6 dia-300mmc\c 6 dia-150mmc\c

polystyrene

A

A

P1 P2

NA

B1-0.75A

2-8

2-10

A

A

P1 P2

dia

dia

dia

dia

dia

dia

dia

dia

 

(a) 

NA NA

2-8

2-8

2-8

3-8

dia

dia

dia

dia

NA

2-8

3-10

dia

dia

NA

4-10

2-8  dia

dia

B2-0.50A-0.60 B2-0.50A-0.90 B2-0.50A-1.2 B2-0.50A-1.5
A

A

P1 P2

 

(b) 

NA

B3-0.50A-0.60-W

A

A

P1 P2

NA

B3-0.50A-1.50-W

2-8
A

A

P1 P2

wire mesh

4-10

2-8

2-8

dia

dia

  dia

dia

 

(c) 

Figure 2. Reinforcement details of the test specimens (All dimensions are in mm). (a) Group I: Primary
variable—Area of inner core. (b) Group II: Primary variable—Percentage of tension reinforcement.
(c) Group III: Primary variable—Addition of wire mesh.



Crystals 2022, 12, 1021 6 of 19

Table 2. Fresh and hardened properties of concrete.

Methods Standard
Values

SCC by Using Conplast for a
Particular Water–Cement Ratio (w/c)

SCC by Using
Cerahyperplast for a Particular Water–Cement Ratio (w/c)

w/c 0.33 w/c 0.42 w/c 0.46 w/c 0.33 w/c 0.42 w/c 0.46

Slump Flow 650–800 mm 680 mm 695 mm 699 mm 740 mm 745 mm 750 mm

T50 Slump
Flow 2–5 s 5 s 4 s 4 s 5 s 4 s 3 s

J-Ring 0–10 mm 10 mm 9 mm 8 mm 9 mm 8 mm 8 mm

V-funnel test 8–12 s 11 s 10 s 8 s 9 s 8 s 8 s

U-box H2-H1 = 30
mm (max) 29 mm 27 mm 27 mm 28 mm 26 mm 25 mm

L-box H2/H1 = 0.8
to1.0 0.8 0.8 1.0 0.9 0.8 1.0

Compressive
strength in MPa 33.92 31.44 30.23 30.36 28.44 26.50
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dimensions are in mm). (b) Photograph of the test setup.

The flexural test on reinforced concrete structures under four-point bending was
conducted according to ASTM C 160 [55]. The whitewashed test specimen was placed
on the supports and the horizontal and vertical alignments were checked with the mini
laser projector. The LVDTs were checked and calibrated before applying the load. Initially,
in order to check all the instruments were ready for the measurements, a 1 kN load was
applied and corresponding deflection values were noted in each of the LVDTs. A handheld
microscope was used to measure the crack width. Cracks in accordance with the applied
load were marked on the surface of the specimen. When excessive cracking occurred, the
failure load was identified. In addition, the load–deflection response dropped when the
load increased beyond the ultimate load.
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3. Results and Discussions
3.1. Test on Self-Compacting Concrete

The fresh and hardened properties of trial concrete mixes are presented in Table 2. The
V-funnel, J-ring, slump flow, L-box, and U-box tests carried out on SCC mixes are shown
in Figure 4. In view of the flow of concrete, both types of superplasticizers performed
well; however, SCC mixes made of Conplast with a water-to-cement ratio of 0.33 exhibited
maximum compressive strength. Consequently, the same ratio was adopted to prepare the
sandwich beams. The cube compressive strength corresponding to each beam is given in Table 2.
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The mechanical strength and serviceability results from each of the tests are presented
in Table 3. Failure modes, cracking load (VTEST

cr ), ultimate load (VTEST
u ), initial cracking

moment (Mcr), yielding moment (My), ultimate moment (Mu), and reserve strength index
(R) were mechanical-strength-based results. On the other hand, maximum deflection (∆ult)
and energy absorption (Eabs) were serviceability-based results.

3.2. Load–Deflection Response

All cast specimens are shown in Figure 5. The load–deflection responses of test beams
are shown in Figure 6. First, at zero external load, the beams carried their self-weight
along with that of the loading system. When the load reached 31 to 60% of the failure
load, tensile stresses at the bottom fiber reached the same magnitude as the modulus of
rupture of concrete. Up to the cracking load, the load–deflection response of beams varied
linearly as the strain in steel and concrete was relatively small, and the materials were
under an elastic range. As the load increased beyond the cracking load, tensile stresses in
the concrete were greater than the modulus of rupture of concrete; thus, cracks were further
developed. Then, the response seemed to be nonlinear up to the yielding moment due to
cracking, which resulted in the reduction in effective moment of inertia for the applied
load. As the load increased further, strain-hardening occurred, and the beams reached
their ultimate load [56]. In the load–deflection curves, initial stiffness was a function of
compressive strength of concrete, and the stiffness of nonlinear and constant regions relied
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on the grade and quantity of steel reinforcement. In beams, a large increase in deflection,
prior to the failure, was indicative of ductile failure. Shear strength increased up to the first
yielding and, after that, the crack width was increasing [57]. Up to the first crack, the shear
strength was provided by the concrete. Moreover, the actual failure was due to the yielding
of tension reinforcement [58].

Table 3. Mechanical Strength and serviceability results.

Group
Name Designation Failure

Mode 2VTEST
cr , kN 2VTEST

u , kN
Mcr,

kN-m
My,

kN-m
Mu,

kN-m R a ∆ult, mm Eabs, kN mm

I

B1-1.0A F 22.4 48.1 6.72 11.262 14.43 53.43 17.55 765.58

B1-0.25A F 18.5 58.1 5.55 10.236 17.43 68.16 21.58 1098.5

B1-0.50A F 27.7 52.3 8.31 12.897 15.69 47.04 15.40 687.26

B1-0.75A S 14.7 24.3 4.41 6.225 7.29 39.51 7.643 206.25

II

B2-0.50A-0.6 F 13.9 34.5 4.17 7.068 10.35 59.71 7.63 190.96

B2-0.50A-0.9 F 16.3 42.3 4.89 9.258 12.69 61.47 8.74 300.2

B2-0.50A-1.2 F 25.6 63.1 7.68 15.192 18.93 59.43 16.10 859.83

B2-0.50A-1.5 F 33.4 75.0 10.02 19.488 22.5 55.47 6.23 1033.9

III
B3-0.50A-0.6-W F 18.0 42.9 5.4 10.566 12.87 58.04 6.10 204.62

B3-0.50A-1.5-W F 32.7 77.0 9.81 20.067 23.1 57.53 13.04 899.08

Area under load–deflection curve = a R = VTEST
u −VTEST

cr
VTEST

u
; Eabs
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In group 1, the initial uncracked stiffness of beams, namely, B1-1.0A, B1-0.25A, and
B1-0.50A, were higher than that of B1-0.75A. Due to higher moment of inertia, the beams
with larger thickness in the compression zone had a higher initial stiffness than the other
beams with lower thickness. Initial uncracked stiffness was calculated by extending a
line from the origin to the point at which the initial flexural crack occurred. In addition,
the load–deflection curves were linear up to this point. The beam B1-0.25A deflected the
most compared to all other beams at the ultimate load. The ultimate deflection of B1-0.25A
was 21.58, which was 22.96% higher than that of the control specimen. In group 2, the
beams with a high steel reinforcement ratio had exhibited a stiffer response and higher
yielding and ultimate loads. The span-to-maximum deflection ratio of beams provided
with a percentage of tension reinforcement more than 0.9% was merely the same and
ranged between 93 and 328. Depending on the quantity of tension reinforcement (0.6–1.5%),
each beam in group 2 showed different responses after yielding; however, the response
was linear up to the yield load. Further, in group 3, the addition of steel wire mesh had
improved the stiffness and ductility. The mesh provided in the side wythes and bottom
wythes enhanced the initial stiffness, cracking, yield, and ultimate loads of sandwich beams.
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Figure 6. Load vs. deflection response of (a) Group I beams, (b) Group II beams, and (c) Group III beams.

3.3. Moment Resistance

The moment of resistance of solid and sandwich beams is shown in Figure 7. When
compared to the solid beam, the moment of resistance of sandwich beams increased up
to 20% and 8% as the longitudinal inner core area reduced by 25% and 50%, respectively.
A further decrease in inner core area by 75% reduced the flexural capacity by 49% of the
solid beam. The area of the core influences considerably the ultimate moment carrying
capacity. As the core thickness increases, the moment carrying capacity increases [59].
An increased core thickness reveals a minimal sandwich face yield. The core thickness
increases the collapse load [60]. It is reported that when the size of inner core area increased,
the percentage of tension reinforcement (Pt = Ast/Anet) was also increased; therefore, the ul-
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timate moment of sandwich beams B1-0.25A and B1-0.50A was higher than that of the solid
beam B1-1.0A. In group 2, the ultimate moment of beams B2-0.50A-0.60 and B2-0.50A-0.90
decreased by 28 and 12% with respect to the solid beam, respectively. On the other hand,
the ultimate moment capacity of beams B2-0.50A-1.2 and B2-0.50A-1.5 increased to 31 and
55% of the moment capacity of the solid beam. By introducing the wire mesh, the moment
capacity was decreased by 10% and increased up to 60% in cases of B3-0.50A-0.60-W and
B3-0.50A-1.50-W, respectively. It should be noted that the counterparts of the moment
capacity of group 3 beams as in group 2 without the wire mesh were decreased by 28% and
increased by 55% with respect to the control beam. Furthermore, in between 31–60% and
58–86% of the applied moment, the concrete and reinforcement of sandwich beams cracked
and yielded, respectively. The average cracking and yielding moments were 44 and 78% of
the applied moment, respectively.

The process of selecting an optimum section was based on the ultimate load-to-the-net
area of the concrete cross-section of beams. It is nothing but a strength-to-weight concept.
In test beams, the length of the specimens had been maintained constant. On the other
hand, the area of the inner core of the cross-section of beams was varied. The net cross-
sectional area of concrete decreased with an increase in the area of inner core. As the area
of the inner core increased, the ultimate load-to-area of the concrete cross-section of beams
(strength-to-weight ratio) increased. The optimum section was determined by comparing
and concluding the highest ultimate load-to-area of the concrete cross-section among other
beams. The moment-to-weight ratio of sandwich beams was in between 17 and 113% higher
than that of the solid beam, except for the beams B1-0.75A and B2-0.50A-0.60. Therefore, it
was observed that when the maximum inner core area was 50% and the minimum tension
reinforcement was 0.9%, the bending strength reached its optimal level when compared to
the solid beam.

3.4. Reserve Strength Index

The reserve strength index is the ratio of the difference between the ultimate load and
initial cracking load to the ultimate load. In simple words, it is the additional strength
beyond the initial cracking load. The reserve strength increased by 27% and decreased
by 26% in sandwich beams B1-0.25A and B1-0.75A with respect to the control beam,
respectively. In group 2, the reserve strength decreased from 15% to 3% when the percentage
of tension reinforcement ratio was increased from 0.9% to 1.5%. The beams provided with
the wire mesh, in addition to 0.6 and 1.5% of tension reinforcement, performed better than
those counterparts in group 2 as well as the control beam. From the experimental results, it
can be concluded that the reserve strength of sandwich beams decreased with the quantity
of tension reinforcement and, consequently, the mode of failure changed from flexure to
flexural-shear or shear.

3.5. Energy Absorption

The area under the load–deflection response is considered as the energy absorption,
and it can be calculated using the trapezoidal rule as given in Equation (1):

A =
(Vni + Vni+1)(∆i+1 − ∆i)

2
(1)

where Vni+1and Vni are the load ordinates of beams corresponding to the deflections
∆i+1 and ∆i, respectively. The energy absorption of beams, namely, B1-0.25A, B2-0.50A-1.2,
B2-0.50A-1.5, and B3-0.50A-1.5W, were 43, 12, 35, and 17% higher than that of the solid
beam, respectively. In group 2, the beams with tension reinforcements of 0.6 and 0.9%
exhibited energy absorptions of 75 and 65% lower than that of the solid beam, whereas
the beams with tension reinforcements of 1.2 and 1.5% showed 12 and 35% higher energy
absorptions than that of the control beam, respectively. One of the previous studies showed
a 35% increase in energy absorption due to the inner core; at the same time, due to the
provision of face sheets, the energy absorption decreased by 30%. In group 3, for the
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beams with 0.6% and 1.5% tension reinforcements, the energy absorptions decreased by
73% and increased by 17%, respectively. When the tension reinforcements provided in
the sandwich beams were higher than those of the solid beams, it was found that the
energy absorption of sandwich beams was higher than that of the solid beam. Due to the
presence of a polystyrene foam core, the failure mechanism showed that the collapse of the
structure was a slow rate of progressive collapse, which results in a high energy absorption
capacity [61]. The addition of steel wire mesh improved the energy storing capacity of the
sandwich beams. Although the tension reinforcement percentage increased as the inner
core area decreased in group 1, the energy stored was decreased beyond its optimum range
for beams with a 50% inner core area.
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Figure 7. Cracking and the ultimate moment of resistance of sandwich beams (a) effect of inner core;
(b) effect of reinforcement ratio; (c) effect of wire mesh.

3.6. Deflection

The excessive cracking of concrete affects the appearance and durability of the struc-
tural members. Therefore, the Indian standard imposes a limit that the maximum deflection
should not exceed the lesser of span/350 or 20 mm. Amongst all the beams, only one
beam, namely, B1-0.25A, exceeded the deflection limit of 20 mm at the ultimate moment.
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Meanwhile, in the deflection check, the ranges of the effective span-to-maximum deflection
of other beams were 93–262, 124–321, and 153–328, corresponding to group 1, 2, and 3,
respectively. For example, if the limiting value of span-to-deflection was 250, then four
beams, namely, B1-0.75A, B2-0.50A-0.6, and B3-0.50A-0.6-W, failed in the serviceability
limit state. This indicates that the deflection of sandwich beams with a low amount of
tension reinforcement and low thickness of the outer core exceeded the acceptable limit,
and therefore, serviceability failure occurred. Except for beam B1-0.25A, all other sandwich
beams deflected lesser than that of the control beam at a range between 8 and 65%.

4. Failure Modes and Failure Mechanism

As the applied moment on the sandwich beam section increased beyond the initial
cracking phase, the stress was concentrated near the crack tip. The cracks initiated at
the soffit of the beam, and with increased loading, the cracks widened and propagated
gradually toward the neutral axis [62]. The cracks started to open when the stress at the
tip reached the tensile strength limit. The cracked concrete was ineffective in resisting the
tensile stresses. Therefore, the concrete below the neutral axis was merely useless, except
for serving two functions: (1) holding the rebars in place and (2) resisting the shear and
torsion [63].

The failure modes of test specimens are shown in Figure 8. All the beams failed in
flexure except beam B1-0.75A, which failed in shear. In the control beam, enough percent-
age of tension reinforcement was provided to manifest the flexural compression failure.
Meanwhile, beams B1-0.25A and B1-0.50A have also shown combined failure, i.e., concrete
crushed in the compression zone and steel reinforcement yielded in tension. In beam
B1-0.75A, shear stress increased at a distance of “d” from the support and caused diagonal
cracks. The shear cracks developed and extended to the level of tension reinforcement and
then propagated horizontally toward the support [64].

In group 1, the net outer-core concrete area (Anet) decreased when inner-core area
varied from 0.00% to 75% of the gross area, resulting in an increase in tension reinforcement
ratio. It should be noted that the gross area and reinforcement configuration were constant
in beams belonging to group 1. When the quantity of tension reinforcement was increased,
the couple ( fy Ast × lever arm, z) resisting the flexural stresses increased. Another reason
the moment capacity of sandwich beams was higher than the solid beam could be explained
through the fracture mechanics approach. According to the principles of fracture mechanics,
stress near the crack tip tends to infinity, regardless of the type and magnitude of the load.
Cook’s theory reports that if a weak interface or cleavage is present roughly normal to the
plane of the main crack, then the interface may break, producing a secondary crack, and the
progress of the primary crack will be curbed [65]. Likewise, the inner core is merely hollow,
hindering the growth of the flexural crack. Only half of the energy flowed to the crack tip in
the side covered beyond the thickness of the bottom wythe, where it was dissipated by the
facture process. Therefore, it was found that the moment carrying capacities of sandwich
beams were higher than those of the solid beams [66].

In the second group of beams, as the amount of tension reinforcement increased, the
number of cracks distributed along the span increased (Figure 5). Shear cracks appeared
when the beams were provided with a higher amount of tension reinforcement (1.2 and
1.5%). For the beams provided with a 1.5% tension reinforcement, inclined cracks joined
together to form the diagonal tension cracks. In addition, the mode of failure changed
from flexure to flexural-shear due to the following reasons: high flexural rigidity due to the
provision of 1.5% of tension reinforcement, and the width of side cover was insufficient
to resist the shear stresses. In group 3, the beams with steel wire mesh failed in flexure,
in which the concrete crushed due to flexural compression. As the percentage of tension
reinforcement increased due to the addition of steel wire mesh, the number of visible
distributed cracks increased.
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5. Prediction in Accordance with the Existing Expressions

The expressions to predict the shear and flexural strength of solid RC beams according
to IS456-2000 [67], ACI318-14 [68], and Eurocode 2 [69] are listed in Table 4. The experi-
mental results were compared with the moment and shear strengths obtained from the

expressions given in the codes of practice. The plot of shear strength ratio, VTEST
n

VPRE
n

, against

the percentage of tension reinforcement and the plot of moment ratio, MTEST
u

MPRE
u

, against the
percentage of tension reinforcement are shown in Figure 7a,b, respectively. The IS456-2000
and American codes predict the moment capacity of sandwich beams in a range of 88
to 109% and 87 to 112% of experimentally measured bending moments, respectively (ex-
cluding beam B1-0.75A, which failed in shear). Furthermore, the moment of resistance
expression of the ACI code is slightly conservative compared to the Indian standard as
the stress block is considered as a rectangle rather than a parabola. The mean, standard
deviation, and coefficient of variation of moment ratios calculated from the guidelines of
Indian and American codes are 1.09, 0.28, and 25% and 1.11, 0.28, and 25%, respectively.
The comparison results indicate that the flexural strength expressions available in the
current design codes, which are derived from the classical Bernouli’s theorem, are valid for
the sandwich beams. On the other hand, the mean values of shear strength ratios of Indian,
American, and European codes are 0.56, 0.60, and 0.55, respectively. The shear strength of
sandwich beams is overestimated by these codes. The reason for this overestimation and
the proposed refinement for shear strength expression is explained in the following section.

6. Modified Shear Strength Expressions

Based on the shear failure mechanism of sandwich beams, an analytical equation was
formulated from the ACI shear strength expression. The shear force is normally resisted by
uncracked concrete, the vertical component of the aggregate interlock, dowel action, and
the web reinforcement. The ultimate shear resistance by any section of the beam is given
by Equation (2):

V = {Vc + Vs} (2)

where the total shear resistance of the beam is given by V, the ultimate shear resistance of
concrete is Vc, and the ultimate shear resistance of vertical stirrups is Vs. As per ACI 318-14,
0.17

√
f ′c can be substituted instead of

(
0.158

√
f ′c + 0.17 ρw

VuD
Mu

)
in the expression of Vc.

Thus, Vc can be calculated as per Equation (3).

Vc =

(
0.158

√
f ′c + 0.17 ρm

VuD
Mu

)
bd ≈ 0.17

√
f ′cbd (3)

The design strength of concrete, 0.17
√

f ′c bd, is rewritten as
(
0.17

√
f ′cρw

2)Anet for the
following reasons. First, for neglecting the inertness of polystyrene in structural behavior,
Agross is replaced by Anet (outer core area). Secondly, the effect of tension reinforcement
percentage (ρm) on the shear strength is incorporated in the ultimate shear resistance of
concrete by multiplying 0.17

√
f ′c Anet with ρm

2.

Vs = ns fys Avs (4)

The term fys Avs in Equation (4) is the internal force component offered by the stirrups.
Total force is the product of the total number of bars and the force in each bar. To obtain
the number of bars effectively contributing toward shear resistance, the term “ d

tan θ ” is
multiplied by “F1

1
Sv

”, where the horizontal length of the diagonal crack is “ d
tan θ ”. The

mitigation factor for the shear critical member, F1 =

(
1+α ln

d
12

)
, is adopted from the ACI

318 code [68]. There are two reasons for considering the mitigation factor. First, the shear
reinforcement may not yield at the ultimate loads. Secondly, the inclination of the shear
crack of sandwich beams is greater than 45◦; therefore, all the vertical web bars do not
contribute completely toward the diagonal tension resistance. However, the fundamental
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assumption of codes such as American, Indian, and European codes is that the inclination
of the shear crack is 45◦.

The number of vertical bars in Equation (4) is nv = F1d
sv tan θ . For beams with an a/d ratio

greater 2.0, adopting the inclination of the crack, tan θ = d
a yields unconservative results.

Instead, the shear crack angle can be idealized as tan θ = d
Sv

. As a result, the general form
of the shear strength expression by substituting the values of VC and VVs in Equation (3) is
given below.

VPRO
n =

(
0.17

√
f ′cρm

2
)

Anet +

1 + 0.4
(

l
d

)
12

 fy Asv

 D

Sv tan
(

d
sv

)
 (5)

where V is the shear strength of sandwich beams; Anet is the net area of concrete; ρsv is the
percentage of vertical steel wires; ρsv is the percentage of vertical web reinforcement; f ′c is
the cylinder compressive strength of concrete; ln

d is the effective span-to-depth ratio. Using
regression analysis of the experimental data, α is found to be 0.4 for conservative results.

The expressions to predict the shear and flexural strength of solid RC beams according
to IS456-2000 [67], ACI318-14 [68], and Eurocode 2 [69] are listed in following Table 4.

Table 4. Existing models to predict shear strength and moment of resistance.

Sl. No Models Codes of Practice Expressions Equation No

1.

Shear strength expressions

IS 456-2000

V IS
n = Vc + Vs

Vc = τc × Anet;

τc =
0.85
√

(0.8 fck)(
√

1+5α−1)
6α ;

α =

{{
= 0.8 fck

6.89 Pt
= 1

whicheverisgreater

}
;

Vs = f y AsνD/Sv

(6)

2. ACI 318-08
VACI

n =
(

0.158
√

f ′c + 0.17 ρw
Vu D
Mu

)
Anet

+ fy Asv

(
D
Sv

) (7)

3. Eurocode 2

VEC
n =

(
τRk(1.2 + 40ρw) + 0.9ρv fyv

)
Anet

τR = 0.25
(

0.7× 0.30× (0.8× fck)
2
3
)

;

k = 1.6− D ≥ 1.0 ; ρw = As
Anet

; ρv = Asv
(B−b)Sv

(8)

4.
Moment of resistance

IS 456-2000 MIS
n = As fyd

(
1− As fy

Anet fck

)
(9)

5. ACI 318-08 MACI
n = As fyd

(
1−

(
As fy

)
/(0.85 f ′c Anet )

2

)
(10)

7. Reliability of the Modified Shear Strength Expression

The analytical equation proposed here was validated against the results of 10 sandwich
beam tests. The proposed shear strength equation predicts the capacity of sandwich beams
within the range of 71% to 111% of the experimentally measured shear strength with a
mean value of the shear strength ratio of 1.0. The coefficient of variation is 14%. Irrespective
of the tension reinforcement ratio, the proposed equation showed a uniform prediction.
As no experimental data are available in the literature with an a/d ratio greater than 2.0,
the proposed equation was validated with only 10 beam results presented in this study. In
the future, more experimental studies are needed to understand the behavior of sandwich
beams with a span-to-depth ratio between 6 and 10. Figure 9 represents the graph between
mechanical strength ratio and percentage of tension reinforcement.
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8. Conclusions

In this study, an optimum geometry and reinforcement ratio were determined for a
sandwich beam comprising a polystyrene inner core with wire mesh reinforcement, and
the influence of the inner core area and the effect on providing a wire mesh were analyzed.
The experimental results were compared with the shear strength and moment of resistance
expressions suggested by the current design codes such as Indian, American, and European
codes. Based on the comparison results, a modified model was presented and has the
potential to enable the design engineers to evaluate the shear capacity of such sandwich
beams. From the results of this study, the following conclusions were drawn:

− The moment of resistance of sandwich beams increased up to 20% and 8% as the
longitudinal inner core area reduced by 25% and 50%, respectively.

− The experimental results proved that the performance of the sandwich beam was
better than the normal beam in regard to the mechanical strength-to-weight ratio and
serviceability aspect. For achieving high bending strength and stiffness, the optimum
limit for adopting the inner core area was 50% and the minimum tension reinforcement
was 0.9%.

− The moment-to-weight ratio of sandwich beams was in between 17 and 113% higher
than that of the solid beam.

− As the area of the inner core increased for a given reinforcement configuration and
geometry, the failure mode of sandwich beams changed from flexure to shear.

− The load-carrying capacity of sandwich beams increased with the quantity of flexural
reinforcements. In addition, the welded wire meshes improved the flexural and shear
performances of sandwich beams.

− The conventional expressions for the moment of resistance were valid for predicting
the moment capacity of sandwich beams, whereas the shear strength expressions
available in the current design standards overestimated the shear strength of such
sandwich beams. Therefore, design modifications were proposed for the better pre-
diction of shear strength. The proposed shear strength design formula could closely
predict the experimental shear strength of sandwich beams and, therefore, can be used
by future researchers and by practicing engineers.
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