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Abstract: Al-8Zn-2Mg-1.5Cu-0.15Sc-0.15Zr alloy with high-strength performance as well as good
castability has been developed. In this study, effects of electromagnetic stirring melt treatment
(ESMT) on microstructure and mechanical properties of the alloy in the squeeze casting process were
investigated. The results show that solidification structure and mechanical properties are significantly
improved by ESMT; compared with the conventional squeeze casting, the average grain size decreases
from 112 µm without ESMT to 53 µm with ESMT. Meanwhile coarse primary Al3(Sc, Zr) particles
unavoidably occurred in cases without ESMT disappear, and segregation degree of the main elements
of Zn, Mg, Cu are greatly alleviated; the tensile strength increases from 590 MPa to 610 MPa, and
the elongation increases from 9% to 11%. The structure refinement and homogenization should
owe to uniform temperature and composition distribution by ESMT under squeeze casting with
rapid solidification.

Keywords: high-strength aluminum alloy; electromagnetic stirring; melt treatment; microstructure;
mechanical properties; squeeze casting

1. Introduction

Lightweight, ultra-high-strength aluminum alloys in aerospace, rail transit, national
defense, and military industries are increasingly demanded [1,2]. The castability of the cast
aluminum alloys, such as Al-Zn, Al-Mg, Al-Si and Al-Cu, are fairly good, but their strength
are not particularly good, which cannot satisfy the needs of high toughness. Characterized
with excellent comprehensive mechanical properties processed by subsequent deformation
and heat treatment, commercial Al-Zn-Mg-Cu series aluminum alloys are widely applied
to substitute for low-carbon steel and cast-iron materials. However, in the alloys featured
with high-alloying and large solidification temperature range, there are also problems
such as coarse grains, serious segregation tendency, severe shrinkage, and high hot-tearing
sensitivity by the conventional casting processes [3–5]. Much attention is being focused on
squeeze casting process for this kind of alloy, because its rapid solidification under high
pressure can eliminate shrinkage porosity defects in the casting process, and the casting
structure becomes denser [1,6].

To achieve near-finish casting of high-strength aluminum alloy, much research has
been carried out on the forming process and composition design in recent years [7–9].
On one hand, casting defects in the small-sized squeeze castings can be reduced to some
degree for some wrought Al-Zn-Mg-Cu alloys, but there are still unavoidable defects
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such as shrinkage porosity, and coarse structure in the large-sized squeeze castings, which
seriously affect casting performance and mechanical properties [10,11]. In response to
this problem, an advanced electromagnetic stirring melt treatment (ESMT) method was
developed [12,13], and uniform, fine solidification structure of wrought 7XXX series alloys
was obtained by applying electromagnetic stirring in the solidification process [14–16]. On
the other hand, an ultra-high-strength cast aluminum alloy for squeeze casting, designed
by main element composition optimization and Sc and Zr micro-alloying, exhibited good
casting properties while maintaining mechanical properties with high strength and high
toughness [17]. However, little work has been done to examine the effect of the ESMT on
the microstructure and mechanical properties of the cast alloy.

The aim of this work is to study the solidification characterization of the new Al-8Zn-
2Mg-1.5Cu-0.15Sc-0.15Zr cast alloy, where effects of ESMT on microstructure, composition,
and mechanical properties of squeeze castings are explored, and also corresponding mech-
anisms of structure refinement and homogenization are discussed.

2. Materials and Methods

The industrial high-purity aluminum (99.99%), pure zinc (99.92%), pure magnesium
(99.95%), Al-50Cu, Al-5Zr, and Al-2Sc master alloys were adopted to prepare the exper-
imental alloy, and its practical chemical composition is shown in Table 1. The liquidus
temperature is calculated to 632 ◦C by the JMatPro software. Figure 1 shows the schematic
view of the ESMT apparatus. The test alloy was first heated to 760 ◦C, and then the alloy
melt was poured into a stainless-steel crucible with a size ofϕ70 mm × H180 mm and a pre-
heating temperature of 350 ◦C. In the case with ESMT, as the melt temperature is reduced to
660 ◦C, the melt was poured into a cylindrical die with a size of ϕ60 mm × H90 mm and a
preheating temperature of 150 ◦C to squeeze castings, and the melt processing parameters
and forming pressures of the die forming machine are shown in Table 2. In the case without
ESMT, the melt was naturally cooled to about 660 ◦C. The detailed information about
experimental process procedures is provided in literature [12]. To obtain the temperature
change of the alloy melt in the experiments under two conditions, the temperature curve
with time at different positions in the melt were measured, and the testing positions of the
thermocouples are shown in Figure 1, named 1, 2, 3, 4, 5 and 6.

Table 1. Practical chemical composition of the test alloy (wt. %).

Zn Mg Cu Zr Sc Fe Si Others Al

7.94 1.94 1.48 0.14 0.14 0.02 0.02 ≤0.01 Bal.
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Table 2. Melt treatment parameters under different conditions.

Conditions Pouring
Temperature/◦C

Stirring
Frequency/Hz

Stirring
Current/A

End
Temperature/◦C

Ratio
PRESSURE/MPa

No ESMT 760 0 0 632 100
ESMT 760 5 10 632 100

Metallographic samples with a size of 25 mm × 10 mm × 6 mm were cut along the
radial direction of the squeeze castings. The specimens were grounded, polished, and then
anodized in a diluted solution of 2.5%HBF4 acid. The coating voltage is 30 V, the coating
current is controlled below 1 mA, and the coating time is 60 s. The microstructures were
observed by ZEISS optical microscope and the grain size was evaluated using the linear
intercept method described in ASTM standard E112-96. The solid solution level of elemental
line scan analysis and secondary phases were observed on a JSM-7900F scanning electron
microscope. Element distribution in squeeze castings was measured by direct reading
spectrometer, by measuring three points at each location and calculating the average. The
tensile testing samples was subjected to T6 heat treatment [17] for the mechanical properties
measurement according to GB/T228.11-2010, by taking three samples along the axis of each
casting for measuring at least 3 times to ensure the stability of the experimental results.
Tensile properties were performed on a CSS-44100 electronic universal testing machine
with a 2 mm/min loading speed. The tensile specimens are illustrated in Figure 2.
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Figure 2. Sample geometry of a tensile specimen (unit: mm).

3. Results
3.1. Microstructure Characterization

Figure 3 shows the optical microstructures of squeeze castings of the test alloy under
two conditions: (a) without ESMT; (b) with ESMT. It can be seen from Figure 3a that the
alloy melt without ESMT consists of coarse dendritic grains with irregular morphology,
and the average grain size is 112 µm by the cross-section method. In the case with ESMT
shown in Figure 3b, the microstructure is significantly refined, and the grains are mainly
made of equiaxed spherical crystal structures with an average grain size of 53 µm. It is
clear that the grain size and microscopic morphology are improved greatly when the ESMT
is applied to the test alloy melt during squeeze casting process.

Figure 4 shows the scanning images of the alloy microstructure of the squeeze castings
under different conditions. It can be seen that there are rectangular and triangular bulk
primary second phases inside the grains without ESMT, and the size of the primary second
phase is about 10 µm, as shown in the black circle in Figure 4a, which is Al3(Sc, Zr) primary
phase by EDS analysis, as shown in Figure 5. After ESMT, the coarse primary Al3(Sc, Zr)
phases inside the grains decrease or even nearly disappear, as shown in Figure 4b.
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3.2. Composition Analysis

Figure 6 shows the concentration distribution of Zn, Mg, and Cu elements in different
positions of the castings formed by squeeze casting under different treatment conditions. It
is noted that, the concentration distribution of alloying elements has a decreasing trend from
the center to the edge in the castings without ESMT, and the difference in the distribution
of element concentration is very large. After the ESMT, the difference in the distribution of
element concentrations in the castings decreases obviously. It is clear that the ESMT can
reduce the macro-segregation degree of the alloying element concentration.
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Figure 6. Concentration distribution of Zn, Mg, and Cu elements in different positions of the squeeze
castings under different treatment conditions: (a) Zn; (b) Mg; (c) Cu.

Figure 7 shows the line-scan element distribution among grains at different positions
of squeeze castings under different processing conditions. In the case without ESMT,
shown in Figure 7a,b, the degree of element segregation at the edge is more serious than
at the center, and the segregation position of Zn, Mg, and Cu elements exist at the grain
boundary in the microstructure. In the case with ESMT, shown in Figure 7c,d, the degree
of element segregation between the edge and the center decreases, especially at the grain
boundary in the microstructure. It is obvious that the ESMT can improve the composition
homogenization of the castings, as well as at the grain boundary.
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3.3. Mechanical Properties

Figure 8 shows the mechanical properties of squeeze castings under different condi-
tions. It can be seen from the figure that the mechanical properties of the alloy are improved
by ESMT. The tensile strength increases from 590 MPa without ESMT to 610 MPa with
ESMT, and the elongation increases from 9% without ESMT to 11% with ESMT. Further-
more, the mechanical property error reduces greatly with ESMT, and the performance of
the alloy is more stable.
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Figure 8. Mechanical properties of squeeze castings under different conditions.

Figure 9 shows the fracture surfaces of squeeze castings under different conditions:
(a) without ESMT; (b) with ESMT. It can be seen from Figure 9a that the tensile fracture is
mostly composed of shear planes and a few small dimples, indicating the main fracture
mode of intergranular shear fracture. Figure 9b shows the tensile fracture morphology
when the alloy is treated with ESMT. The fracture morphology of the alloy is basically
the same as the alloy without ESMT, but the number of dimples increased, especially
the intergranular dimples which increased substantially. In addition, there will be more
transgranular dimples on the fracture surface.
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4. Discussion

Al-8Zn-2Mg-1.5Cu-0.15Sc-0.15Zr cast alloy, designed by main element composition
optimization and Sc and Zr microalloying, exhibited good casting properties while main-
taining mechanical properties with high strength and high toughness [17]. However, the
alloy is featured with high-alloying, grain refinement, and homogenization which have a
great effect on mechanical properties of the castings.

For the untreated melt, since there is only natural convection in the melt, the cooling of
the melt mainly relies on the heat conduction with the crucible wall for heat dissipation. The
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stainless-steel crucible wall dissipates heat faster, so the melt temperature near the crucible
wall is relatively low. The melt away from the crucible wall has a slow heat conduction
speed, leading to a large temperature gradient and uneven temperature distribution as
shown in Figure 10a. When ESMT is applied, forced convection is caused by the electro-
magnetic force driving the melt flow, and the temperature distribution is more uniform
as shown in Figure 10b. During the solidification process of the melt without ESMT, the
temperature field and composition field of the melt is not uniformly distributed, and the
Sc-Zr atomic clusters have a high aggregation ability, which leads to the aggregation and
segregation of Sc and Zr elements, and the Al3(Sc, Zr) phase in the melt first nucleates and
grows due to the higher liquidus temperature as shown in Figure 11a, and subsequently
coarse Al3(Sc, Zr) particles cannot be used as a nucleation base to refine the microstructure
of the alloy, which will eventually lead to the coarse and uneven grains in the castings.
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When applying ESMT to the melt, the temperature field and composition field of the
melt is uniformly distributed, and Sc and Zr elements are more evenly distributed in the
melt, and the trend of aggregation and segregation of Sc and Zr elements is alleviated, and
lots of Al3(Sc, Zr) phases in the melt simultaneously nucleate as the melt temperature drops
to the liquidus, as shown in Figure 11b; consequently, a large number of fine and dispersed
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primary Al3(Sc, Zr) crystal nuclei have not enough time and space to grow, and the tiny
Al3(Sc, Zr) particles can be used as effective nucleation bases to refine the microstructure of
the alloy, which will eventually lead to the fine and even grains in the castings.

At the same time, the solute concentration in the liquid phase can be homogenized
by strong shearing action of ESMT, and the uneven distribution of solute elements in
the case without ESMT can be improved as well. According to the Hall-Petch formula,
the mechanical properties of the alloy increase with the decrease of the grain size, so the
mechanical properties of the alloy castings by ESMT are improved. It is emphasized in this
study that fine microstructure and homogenous composition distribution will contribute to
elongation enhancement.

5. Conclusions

In this study, effects of ESMT on microstructure and mechanical properties of Al-8Zn-
2Mg-1.5Cu-0.15Sc-0.15Zr cast alloy in the squeeze casting process were investigated. The
following conclusions can be made:

(1) Solidification structure and mechanical properties are significantly improved by ESMT;
compared with the conventional squeeze casting, the average grain size decreases
from 112 µm without ESMT to 53 µm with ESMT, and segregation degree of the main
elements of Zn, Mg, Cu are greatly alleviated.

(2) Rectangular and triangular bulk primary second phases with a size of about 10 µm
inside the grains unavoidably occurred in cases without ESMT decrease or even nearly
disappear by ESMT.

(3) The tensile strength increases from 590 MPa without ESMT to 610 MPa with ESMT, and
the elongation increases from 9% without ESMT to 11% with ESMT. The improvement
of the mechanical properties should owe to structure refinement and composition
homogenization by ESMT under squeeze casting with rapid solidification.
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