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Abstract: The mechanical properties of calcium carbonate minerals formed by enzyme-induced
carbonate precipitation (EICP) were studied using nanoindentation. Two types of precipitates were
considered: (i) a “baseline” precipitate, synthesized via urea hydrolysis in an aqueous solution of
urease enzyme, urea, and calcium chloride; and (ii) a “modified” precipitate, synthesized from a
similar solution, but with the inclusion of nonfat dry milk. While both precipitates predominantly
comprised calcite, X-ray diffraction and Raman spectroscopy indicated broader peaks in the modified
precipitate, implying differences in the crystal structure of the two precipitates. Both precipitates
were polycrystalline and had a higher average indentation hardness (H) and a lower indentation
modulus (M) compared with the values for single calcite crystals reported in the literature. The
ductility of the precipitates was quantified by the ratio M/H. The modified precipitate had a higher
average M/H, implying greater ductility. The increased ductility of the modified precipitate results in
higher resistance to crack propagation. In sands biocemented using the modified EICP solution, the
increased ductility of the precipitate, in addition to preferential precipitation at interparticle contacts,
may contribute to relatively high unconfined compressive strengths at low carbonate contents.

Keywords: biogeotechnics; enzyme-induced carbonate precipitation; nanoindentation; ductility

1. Introduction

Enzyme-induced carbonate precipitation (EICP) is a biochemical process used for soil
stabilization that involves the addition of a solution comprising urea, calcium chloride,
and urease enzyme to granular soil. The urease catalyzes the hydrolysis of urea, which
increases the alkalinity of the reaction solution by production of dissolved inorganic carbon
and ammonium. Sufficient alkalinity production, in the presence of dissolved calcium
(Ca2+) cations, will lead to precipitation of CaCO3. The precipitated CaCO3 can improve
the strength and stiffness of the soil by binding the particles together. There has been a
growing interest in EICP over the past two decades, mainly in the context of development
of new ground improvement technologies that draw inspiration from naturally occurring
biomineralization processes.

The use of nonfat dry milk in EICP solution was first reported by Nemati and Voor-
douw [1] and subsequently employed as an enzyme stabilizer (i.e., an agent that delays
the denaturation of the urease) by several researchers [2–4]. More recent studies [5,6]
have shown that the unconfined compressive strength (UCS) of a sand treated by EICP
can be significantly enhanced, often by up to an order of magnitude, by the addition of a
relatively small concentration of nonfat dry milk to the treatment solution. This finding
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is significant because in order to be commercially viable as a ground improvement tech-
nique, EICP treatment of soil should result in relatively high strengths at low carbonate
contents. Almajed et al., [5] treated specimens of Ottawa 20–30 silica sand using both a
baseline EICP solution (i.e., without nonfat dry milk) and a modified EICP solution (i.e.,
with nonfat dry milk). Except for the concentration of nonfat dry milk, the composition
of the baseline and modified EICP solutions were identical. These investigators reported
an order of magnitude increase in UCS for Ottawa 20–30 sand specimens treated with the
modified solution compared with specimens treated with the baseline solution, from an
average of 138 kPa to an average of 1.75 MPa. Using scanning electron microscopy (SEM),
Almajed et al., [5] showed that the modified EICP treatment resulted in the precipitation of
larger calcite polycrystals (compared with the baseline EICP treatment) at the interparticle
contacts. Almajed et al., [5] concluded that the increased UCS of the biocemented sand
following the modified EICP treatment was due to the increased amount of precipitate at
the interparticle contacts. Martin et al., [6] concurred with this conclusion after evaluating
the UCS of four different granular materials treated with the same baseline and modified
EICP solutions as Almajed et al., [5].

The CaCO3 precipitated during EICP treatment (both baseline and modified) is usually
composed of polycrystalline particles of calcite and/or vaterite. In general, biopolymers
in milk (comprising proteins such as casein and whey) may be adsorbed to the surface
of these particles or may be occluded within the crystals. Martin et al., [6] submerged
glass slides in beakers containing baseline and modified EICP solutions and qualitatively
evaluated the adhesion of the precipitate to the glass slides. This evaluation showed that
the adhesion between precipitate from the modified EICP solution and the glass slide was
stronger compared with the adhesion between precipitate from the baseline EICP solution
and the glass slide. These observations suggest that the modified EICP treatment may
result in the precipitation of a composite of CaCO3 and milk biopolymers that may have
different properties compared with the precipitate from the baseline EICP treatment. In
this paper, we explore this phenomenon in greater detail by investigating the following
research questions:

• How are the mechanical and chemical properties of the modified precipitate different
from that of the baseline precipitate?

• Apart from favoring the precipitation to occur at interparticle contacts, does the
modified EICP treatment contribute to higher UCS also by virtue of the different
mechanical characteristics of the precipitate?

To answer these questions, we evaluate the mechanical properties of the baseline and
modified precipitates at the sub-micron scale using instrumented indentation. We also
evaluate the crystal habit and structure of the precipitates using SEM, X-ray diffraction
(XRD), Raman spectroscopy, and infrared spectroscopy.

2. Materials and Methods
2.1. EICP Solution

The baseline EICP solution used in this study comprised 1.0 M urea, 0.67 M calcium
chloride dihydrate, and 3.0 g/L urease enzyme (manufactured by Thermo Fisher Scientific,
Waltham, MA, USA, urease activity ≈ 4200 U/g [7]). The urea and calcium chloride
were reagent grade (purchased from VWR International, Radnor, PA, USA) and had a
purity greater than 99%. The modified EICP solution used in this study was identical to the
baseline EICP solution with respect to the grade and concentration of urea, calcium chloride,
and urease. In addition to these reagents, the modified EICP solution contained 4.0 g/L
nonfat dry milk (manufactured by Boston BioProducts, Ashland, MA, USA). The baseline
and modified EICP solutions were stored in capped 50-mL centrifuge tubes (without
shaking or stirring) at room temperature for 72 h. At the end of this period, each tube was
centrifuged at 1500 rpm for 10 min and the supernatant was discarded. The precipitate
remaining in the tubes was washed thrice by adding 45 mL deionized water each time.
After each washing, the tubes were centrifuged at 1500 rpm for 10 min and the supernatant
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was discarded. Finally, the precipitates were airdried at room temperature until constant
mass was achieved.

2.2. Mineralogical Characterization

The mineral phases in the baseline and modified precipitates were identified using XRD.
The precipitates were ground into a fine powder using a mortar and pestle. The powder
was placed on a glass slide and transferred to an X-ray diffractometer (Aeris Research
Edition, manufactured by Malvern Panalytical Inc., Westborough, MA, USA). The X-rays
were generated in the diffractometer using a copper anode (Kα1 wavelength = 1.540598 Å;
Kα2 wavelength = 1.544426 Å; Kα2/Kα1 intensity ratio = 0.5; X-ray tube voltage = 40 kV;
emission current = 15 mA). The diffractograms were recorded at room temperature from
10◦ to 80◦ 2θ (where 2θ is the angle between the diffracted and transmitted X-ray beam).
The scan step was 0.010866◦ and the time per step was 3.57 s. Rietveld refinement of
calcite peaks was performed using MAUD (Materials Analysis Using Diffraction, v. 2.991,
Luca Lutterotti, Trento, Italy). Using Rietveld refinement, we evaluated the crystallite
size, lattice microstrain, and the lattice unit cell parameters of calcite in the baseline and
modified precipitates.

The baseline and modified precipitates were also characterized using Raman mi-
crospectroscopy (laser excitation wavelength of 532 nm; 1200 grooves/mm diffraction
grating; 300 mm spectrometer focal length; 50x objective with laser spot size dimension
of ≈ 2 µm; ≈1.5 cm−1/pixel spectral dispersion; spectra collected between 1980–80 cm−1).
Raman spectra were recorded at five locations each on the baseline and modified precipi-
tates. The position and width of the peaks (i.e., full width at half maximum (FWHM)) were
analyzed by fitting a Lorentzian function to the measured spectral line (see Section A of
Supplementary Information). The plots of the Lorentzian fitting curves are presented in
Section B of Supplementary Information. The precipitates were also characterized using
Fourier-transform infrared spectroscopy (FTIR; Nicolet 6700, manufactured by Thermo
Fisher Scientific, Waltham, MA, USA). The FTIR system used a single-reflection attenuated
total reflectance (ATR) accessory (diamond ATR crystal, KBr beamsplitter, DTGS/KBr
detector; DTGS: deuterated triglycine sulfate). The IR spectra were collected between
4000–525 cm−1 (32 scans at 4 cm−1 resolution). The various crystal habits in the baseline
and modified precipitates were studied using SEM (Helios 5 UX, manufactured by Thermo
Fisher Scientific, Waltham, MA, USA).

2.3. Indentation Testing

Indentation tests were used to evaluate two material properties: indentation hardness
(H, defined as Pmax/Ac; Pmax: peak indentation load; Ac: area of elastic contact projected
on the horizontal plane) and indentation modulus (M). The elastic unloading stiffness
measured in indentation tests is a combined effect of the indentation moduli of the test
material and the indenter probe. The indentation modulus of the test material is then
derived using equations in Oliver and Pharr [8]. For isotropic materials, the indentation
modulus is equal to the plane stress modulus (i.e., E/(1−ν2); E: Young’s modulus; ν:
Poisson’s ratio). Specimens for indentation testing were prepared by embedding the
airdried precipitates in epoxy. Approximately 2 g each of the baseline and modified
precipitates were used to prepare epoxy-embedded specimens of diameter 3.2 cm (1.25 in).
The specimens were then ground using silicon carbide abrasive pads of increasing fineness
(grit size 120 to 1200). The grinding process eroded portions of the CaCO3 particles and
exposed their interior. Here “particles” of CaCO3 refer to polycrystals (or aggregates of
polycrystals). Following the grinding, the specimens were polished using aluminum oxide
polishing pads with abrasive particles of diameters 12 µm, 9 µm, 3 µm, 1 µm, and 0.3 µm.

Indentation tests were performed at room temperature on the exposed surfaces of
the CaCO3 particles using an Ultra Nanoindentation Tester (UNHT3, Anton Paar USA,
Inc., Ashland, VA, USA). The UNHT3 device was placed inside a closed acoustic vibration
isolation chamber, with the chamber situated on top of a piezo-corrected antivibration table.
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The indenter probe was a diamond Berkovich tip (Young’s modulus (EIN) = 1141 GPa;
Poisson’s ratio (νIN) = 0.07; correction factor (β) = 1.034). Grids of indents were performed
on seven particles in the baseline precipitate specimen and on eight particles in the modi-
fied precipitate specimen. The peak indentation load was 2.0 mN (except in two particles
of the modified precipitate, where 2.5 mN was applied). Each indent consisted of the
following loading protocol: (i) a 30-s loading phase, where the load was ramped up at a
constant rate to the peak load; (ii) a 5-s holding phase, where the load was held constant
at the peak load; and (iii) a 30-s unloading phase, where the load was ramped down at
a constant rate to zero. The loading rate (and unloading rate) was 66.7 µN/s in indents
with peak load of 2.0 mN and 83.3 µN/s in indents with peak load of 2.5 mN. The resulting
indentation curves were analyzed using the Oliver and Pharr [8,9] method, which came
preinstalled in the Anton Paar postprocessing software, to obtain the indentation hardness
and indentation modulus of the particles. Any indentation curve that significantly deviated
from the ideal load-displacement profile (due to, for example, rough surface topography)
was eliminated from the dataset and designated as an outlier. Further experimental details
on the indentation testing are provided in Section A of Supplementary Information. In-
dentation load-displacement curves and images of indentation footprints are presented in
Section C of Supplementary Information.

The measured values of indentation hardness and modulus of the baseline and mod-
ified precipitates were modeled as a bivariate normal distribution. Using the maximum
likelihood estimates of the distribution parameters (mean vector and covariance matrix),
we constructed 95% prediction intervals (i.e., prediction ellipses in the M, H space) for the
indentation hardness and modulus. Details of the statistical procedure are provided in
Section D of Supplementary Information.

3. Results and Discussion
3.1. Mineralogical Characteristics

Representative SEM images of the baseline and modified precipitate are shown in
Figure 1. It is well known that the presence of organic compounds (such as proteins
and biopolymers) during CaCO3 precipitation can modify the morphology and crystal
habit of the precipitate [10,11]. Various crystal habits can be observed in Figure 1, e.g.,
overlapping rhombohedra, elongated and rounded, spherulites. The size of the polycrys-
talline precipitate particles ranged from on the order of a few microns to approximately
100 microns.

Figure 2a presents the X-ray diffractograms of the baseline and modified precipitate.
The baseline precipitate was composed entirely of calcite, whereas the modified precipitate
was composed predominantly of calcite with a small amount of vaterite. Compared with
the baseline precipitate, the diffractogram of the modified precipitate exhibited minor
broadening of calcite peaks, illustrated in Figure 2b. Peak broadening may result from a
decrease in mean coherent domain size (i.e., smaller crystallite size) and/or an increase in
lattice microstrain, e.g., strains at grain boundaries, from ion substitution, or from occlusion
of organic compounds [12]. The results of the Rietveld refinement are presented in Table 1.
The Rietveld analysis indicated that while the lattice strains in both precipitates were almost
equal, the modified precipitate had a smaller crystallite size and larger lattice parameters
(a-axis expansion of 0.03%; c-axis expansion of 0.07%). Note that the vaterite peaks in the
diffractogram of the modified precipitate were excluded from the Rietveld analysis because
the crystal structure of vaterite is still under debate, i.e., several polytypes and space groups
have been proposed for vaterite [13–15].
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Figure 1. (a–c) SEM images of the baseline precipitate: (a) Imbricated rhombohedral clusters of cal-

cite polycrystals. Smaller overgrown crystals are observed predominantly along corners and edges 

of the calcite crystal substrate. (b) Elongated (with curved surfaces) and spherulitic calcite crystals. 

(c) Magnified image of (b) showing overgrown needle fiber calcite. (d–f) SEM images of the modi-

fied precipitate: (d) Aggregate of spherulitic calcite crystals. (e) Coalesced calcite spherulites at 

higher magnification. Deposits of organic solids (from milk, urease source) are observed on the 

grain (red arrows). (f) Broken particle of spherulitic calcite or vaterite. Radial groove-like features 

can be seen in the interior section of the particle. 

Figure 2a presents the X-ray diffractograms of the baseline and modified precipitate. 

The baseline precipitate was composed entirely of calcite, whereas the modified precipi-

tate was composed predominantly of calcite with a small amount of vaterite. Compared 

with the baseline precipitate, the diffractogram of the modified precipitate exhibited 

Figure 1. (a–c) SEM images of the baseline precipitate: (a) Imbricated rhombohedral clusters of calcite
polycrystals. Smaller overgrown crystals are observed predominantly along corners and edges of
the calcite crystal substrate. (b) Elongated (with curved surfaces) and spherulitic calcite crystals.
(c) Magnified image of (b) showing overgrown needle fiber calcite. (d–f) SEM images of the modified
precipitate: (d) Aggregate of spherulitic calcite crystals. (e) Coalesced calcite spherulites at higher
magnification. Deposits of organic solids (from milk, urease source) are observed on the grain (red
arrows). (f) Broken particle of spherulitic calcite or vaterite. Radial groove-like features can be seen
in the interior section of the particle.
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Figure 2. (a) X-ray diffractograms of the baseline and modified precipitate (C—calcite peaks;
V—vaterite peaks). (b) Line broadening of calcite (104) peak in baseline and modified precipi-
tates. The markers indicate experimentally measured intensities normalized by the maximum fitted
intensity (using Rietveld refinement) of the calcite (104) diffraction line. Further details are presented
in Section A of Supplementary Information.
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Table 1. Results of Rietveld refinement.

Parameter Baseline Precipitate Modified Precipitate

Crystallite size (nm) 411(5) 149(2)
Microstrain (%) 0.047(1) 0.046(3)

Calcite unit cell a (Å) 4.98774(11) 4.98939(17)
Calcite unit cell c (Å) 17.0659(5) 17.0770(8)

Figure 3a presents the Raman spectra of the baseline and modified precipitates. Com-
pared with the baseline precipitate, the modified precipitate had a large background signal
(resulting from laser-induced fluorescence) and a lower signal-to-noise ratio. The spectra of
both the baseline and modified precipitate exhibited only calcite peaks. Further, due to the
large background signal in the modified precipitate, the Raman bands of calcite that had
low intensity (ν3 and (ν1 + ν4)) were indiscernible. Two explanations are possible for the
absence of vaterite peaks in the spectra of the modified precipitate specimen: (i) the five
microscopic spots in the specimen where spectra were acquired did not contain vaterite; or
(ii) the vaterite peaks were small and were masked by the background signal. Figure 3b
plots the position and the width of the calcite peaks (i.e., FWHM), both estimated from the
Lorentzian fitting curves. While the positions of peaks in the baseline and modified precipi-
tates were nearly equal, the peaks of the modified precipitate were broader compared with
the baseline precipitate. Broader peaks indicate greater short-range atomic disorder in the
calcite crystals of the modified precipitate.

Figure 4 presents the IR spectra of the baseline and modified precipitates. Peaks
corresponding to calcite were observed in the baseline precipitate and peaks corresponding
to calcite and vaterite were observed in the modified precipitate. Compounds occurring
naturally in milk, such as lactose, milk proteins, and calcium phosphates [16], were also
observed in the IR spectrum of the modified precipitate. These compounds were not
detected in the Raman spectrum of the modified precipitate for the same possible reasons
vaterite was not detected, i.e., small scan volume and/or large background signal.
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modes; (C) ν4: doubly degenerate in-plane bending; (D) ν1: nondegenerate symmetric stretching;
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Table 2. Indentation properties of calcium carbonate reported in the literature. 

Reference Description 
No. of 

Indents 

Pmax 

(mN) 
H (GPa) M (GPa) 

Zu ̈gner et al., [17] Geological calcite (ground to diameter 500 μm) NA 0.20–1.0 2.8–3.4 83–88 a 

Merkel et al., [18] Inorganic calcite (single crystal, (104) plane) NA Note b 2.0–2.8 62–78 c 

Kim et al., [19] Synthetic calcite (single crystal, (104) plane) 10 Note d 2.6 ± 0.1 89.9 ± 12.4 e 

Figure 4. FTIR spectra of the baseline and modified precipitates. Baseline precipitate peaks:
(a) 711.6 cm−1: calcite (ν4); (b) 869.7 cm−1: calcite (ν2); (c) 1088 cm−1: calcite (combination band);
(d) 1383 cm−1: calcite (ν3); (e) 1624 cm−1: calcite (combination band); (f) 1795 cm−1: calcite (ν1 + ν4);
(g) 2513 cm−1: calcite (ν1 + ν3). Modified precipitate peaks: (a) 568.9 cm−1: calcium phosphates
(HPO4

2-/PO4
3-, ν4); (b) 709.7 cm−1: calcite (ν4); (c) 742.5 cm−1: vaterite (ν4); (d) 869.7 cm−1: calcite (ν2)
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(and vaterite (ν2)); (e) 1018 cm−1, 1045 cm−1, 1078 cm−1, 1151 cm−1: calcium phosphates
(HPO4

2−/PO4
3−, ν3) and/or lactose (C–O stretch); (f) 1383 cm−1: calcite (ν3) (and vaterite (ν3)); (g)

1624 cm−1: calcite (combination band); (h) 1641 cm−1: milk protein (amide I band); (i) 1658 cm−1:
water (H–O–H scissor); (j) 1793 cm−1: calcite (ν1 + ν4); (k) 2511 cm−1: calcite (ν1 + ν3); (l) 2924 cm−1:
lactose (C–H stretch); (m) 3300 cm−1: water (O–H asymmetric stretch) and/or lactose (O–H stretch).

3.2. Mechanical Properties

Table 2 presents a summary of the indentation hardness and modulus of calcite re-
ported in the literature. There is some variability in the reported indentation properties,
possibly due to differences in the calcite crystal face tested and variability in sample prepa-
ration techniques. The measured indentation hardness and modulus of the baseline and
modified precipitates is summarized in Tables 3 and 4, respectively. The M, H data cluster
and the corresponding 95% prediction ellipses for the baseline and modified precipitates
are plotted in Figure 5. In general, the variability in the indentation properties of the
baseline and modified precipitates can be attributed to: (i) differences in the crystal face
tested; (ii) variability associated with sample preparation (e.g., scratches and asperities
on the particle surface resulting from grinding/polishing); and (iii) intrinsic variability in
the particle structure and composition (e.g., crystallite sizes, grain boundary effects, ion
substitution, adsorption/occlusion of organic compounds from milk and/or urease source).
In both the baseline and the modified precipitates, the indentation hardness and modulus
were positively correlated. The computed correlation coefficients for the particles of the
baseline and modified precipitates are listed in Tables 3 and 4, respectively.

Several particles of both the baseline and the modified precipitate have a higher hard-
ness compared with the values reported in Table 2. Typically, plastic deformation in single
calcite crystals occurs via dislocation motion. Single calcite crystals can be hardened by
inhibiting dislocation motion via: (i) ion (e.g., Mg2+) substitution [24]; and (ii) occlusion of or-
ganic compounds at relatively low volume fractions [20,25]. Additionally, in polycrystalline
particles (as is the case with the baseline and modified precipitates), the grain boundaries
can also significantly impede dislocation motion, resulting in increased hardness.

To investigate the question of whether the higher strengths observed in sands treated
by the modified EICP treatment could be linked to possible improvements in the mechanical
properties of the precipitates, we considered the ratio of the indentation modulus over
indentation hardness (M/H), which is directly correlated to ductility. The M/H ratio has
been used to evaluate the ductility characteristics of many different materials, including
cement paste [26], clay minerals [27], and glass [28]. For purely elastic materials, the value
of M/H depends only on indenter geometry and equals 2tanθIN, where θIN is the half-cone
angle of the indenter (for Berkovich tip, θIN = 70.32◦, 2tanθIN = 5.59). The value of M/H
of elastoplastic materials is greater than 2tanθIN (with no theoretical maximum). Qomi
et al., [29] interpreted M/H as proportional to the inverse of a yield strain, i.e., high M/H
indicates a material of low elastic strain limit. Further, Hoover and Ulm [26] suggested that
as M/H increases, a greater proportion of energy is dissipated as plastic flow (rather than
stored as elastic potential energy), resulting in higher ductility. Ductile materials typically
have a higher resistance to crack propagation due to several reasons (e.g., delayed onset
to cracking, more stress transfer, larger fracture process zones, etc.). Figure 6 plots the
values of M/H vs. H for the baseline and modified precipitates. In both precipitates, soft
regions tended to have a higher M/H. However, some particles of the modified precipitate
(e.g., Particle 1, 4, and 7) had a lower average hardness and covered a wider range of
hardness values. These particles were softer than the baseline precipitate and had a
significantly higher M/H, inferring that the modified precipitate had a higher ductility.
A related observation regarding the ductility of the precipitates is that the indentation
curves of the baseline precipitate exhibited “pop-ins” (i.e., irregular loading response with
small jump(s) in displacement due to brittle fracture) more frequently compared with the
modified precipitate. Even in particles of modified precipitate that had a relatively low
M/H (such as Particle 6), pop-ins occurred less frequently compared with particles of the
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baseline precipitate. Both the presence of particles with high M/H ratio and the relative
absence of pop-ins in the modified precipitate suggest that the modified precipitate is more
cohesive and has a higher average ductility compared to the baseline precipitate.

Table 2. Indentation properties of calcium carbonate reported in the literature.

Reference Description No. of Indents Pmax (mN) H (GPa) M (GPa)

Zügner et al., [17] Geological calcite (ground to
diameter 500 µm) NA 0.20–1.0 2.8–3.4 83–88 a

Merkel et al., [18] Inorganic calcite (single crystal,
(104) plane) NA Note b 2.0–2.8 62–78 c

Kim et al., [19] Synthetic calcite (single crystal,
(104) plane) 10 Note d 2.6 ± 0.1 89.9 ± 12.4 e

Kunitake et al., [20] Geological calcite (Iceland spar,
single crystal)

(001) face, 0◦ azimuth between
Berkovich tip and crystal face 9 2.5 2.30 ± 0.14 76.9 ± 3.1

(001) face, 60◦ azimuth between
Berkovich tip and crystal face 9 2.5 2.46 ± 0.03 67.5 ± 1.1

(104) face, average of azimuths
from 0◦ to 120◦ 63 2.5 2.54 ± 0.07 88.1 ± 1.7

Ren et al., [21] Pure vaterite crystals in an
organic matrix 31 30 3.2 ± 0.19 57 ± 4.0

Kim et al., [22] Synthetic calcite (single crystal) 9 10 2.45 ± 0.24 91.1 ± 5.7
Kabacińska et al.,

[23]
Single calcite crystal from

Wojcieszów quarry, Poland 36 10 2.74 ± 0.17 70.23 ± 1.35 f

a Reported values correspond to Young’s modulus. Poisson’s ratio of calcite not reported. b Displacement-
controlled indents performed to a maximum depth of 300 nm. c Reported values correspond to Young’s modulus.
Poisson’s ratio of calcite assumed as 0.3 (isotropic). d Displacement-controlled indents performed to a maximum
depth of 500 nm. e Reported values correspond to Young’s modulus. Poisson’s ratio of calcite assumed as 0.28.
f Reported value corresponds to the reduced modulus. Indents were performed using a diamond Berkovich tip.

Table 3. Summary of indentation properties of precipitate obtained from baseline EICP solution.

Particle No. No. of
Indents a

No. of
Outliers

Pmax (mN)
Hardness (H) Modulus (M) M, H

Correlation
(ρ)

Mean
(GPa) SD (GPa) Mean

(GPa) SD (GPa)

1 2 × 13 − 2 0 2.0 3.18 0.33 59.3 5.34 0.61
2 4 × 5 2 2.0 3.42 0.34 56.3 3.66 0.14
3 5 × 4 3 2.0 3.47 0.43 62.5 4.41 0.86
4 3 × 5 − 5 1 2.0 2.98 0.52 59.2 7.89 0.96
5 18 3 2.0 2.65 0.35 36.8 5.62 0.56
6 10 × 8 3 2.0 3.47 0.33 60.3 5.25 0.75
7 9 × 6 1 2.0 3.51 0.25 50.2 5.79 0.55

Overall 213 13 - 3.37 0.41 55.8 8.67 0.56
a Number of indents is listed in the format m × n − q, representing a grid comprising m rows, n columns, and q
indents outside the particle.
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Table 4. Summary of indentation properties of precipitate obtained from modified EICP solution.

Particle No. No. of
Indents a

No. of
Outliers

Pmax (mN)
Hardness (H) Modulus (M) M, H

Correlation
(ρ)

Mean
(GPa) SD (GPa) Mean

(GPa) SD (GPa)

1 4 × 4 + 4 × 5 0 2.5 2.26 0.52 42.3 6.58 0.46
2 5 × 6 0 2.5 3.31 0.57 54.7 2.89 0.45
3 4 × 8 8 2.0 3.51 0.57 58.8 5.07 0.45
4 8 × 15 6 2.0 2.29 0.47 47.3 6.60 0.73
5 8 × 15 0 2.0 2.95 0.24 50.6 2.39 0.79
6 9 × 16 15 2.0 3.99 0.33 61.1 2.80 0.66
7 10 × 12 0 2.0 2.78 0.34 53.2 3.91 0.67
8 12 × 16 1 2.0 2.90 0.26 50.8 3.02 0.64

Overall 764 30 - 2.99 0.65 52.3 6.39 0.83
a Number of indents is listed in the format m × n, representing a grid comprising m rows and n columns.
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3.3. Role of Casein in EICP

Casein proteins in modified EICP solution are significantly impacted by the interaction
between various EICP reagents and the solvent water. Chaotropic solutes (such as urea)
break hydrogen bonds between water molecules and suppress water structure formation;
this facilitates the dispersion of casein micelles in the EICP solution. Kosmotropic solutes,
on the other hand, are well hydrated and enhance the hydrogen bond network in water;
this facilitates the dehydration of casein micelles, followed by hydrophobic aggregation
(“curdling”) and precipitation (“salting out”). The products of urea hydrolysis, CO3

2−
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(aq), HCO3
− (aq), and NH4

+ (aq), are kosmotropic [30]. As a result, once a sufficiently
high concentration of urea is hydrolyzed, the EICP solution transforms from chaotropic to
kosmotropic, resulting in the aggregation (and precipitation) of casein.

Rodriguez-Blanco et al., [31] showed that the crystallization of amorphous calcium
carbonate (ACC) into calcite is a two-step process: (i) dehydration of ACC followed by an
internal structural reorganization into vaterite; and (ii) dissolution of vaterite followed by
reprecipitation on the surface of growing calcite crystals. Casein slows down both these
steps by stabilizing ACC and vaterite. The predominant mechanism of stabilization is via
phosphoserine residues, which are present in all caseins. Phosphoproteins can induce (i.e.,
nucleate) ACC precipitation and stabilize the ACC precipitate, i.e., slow down crystalliza-
tion to other polymorphs [32,33]. Liu et al., [34,35] studied the precipitation of calcium
carbonate in the presence of casein. These investigators showed that the phosphoserine
residues in casein stabilized ACC and vaterite by binding to the Ca2+ ions at the surface of
these minerals. However, despite the stabilizing effect of casein, the conversion to calcite
was favored under certain reaction conditions, including: (i) high supersaturation; (ii) ex-
cess dissolved inorganic carbon (compared to Ca2+); and (iii) high temperature. In addition,
casein at low concentrations was ineffective in stabilizing ACC and vaterite. Based on this
review, we postulate that in the initial stages of modified EICP, the precipitated ACC and
vaterite is stabilized by casein. However, as the ureolysis progresses, the ionic activity
product {Ca2+}{CO3

2−} increases, resulting in increased supersaturation with respect to
CaCO3 minerals. These reaction conditions may facilitate the recrystallization of ACC and
vaterite to calcite.

3.4. EICP in Porous Media

The precipitation conditions in clean granular media (e.g., Ottawa 20–30 sand) are
somewhat different compared with a reaction in pure liquid conditions (such as in a beaker
or, as in this study, a centrifuge tube). Pore networks typically have a much higher surface
area-to-volume ratio compared to a reaction vessel. As a result, a greater fraction of casein
in the EICP solution is adsorbed to the porous medium (or filtered by the medium during in-
jection of EICP solution). The filtered casein typically accumulates around particle contacts
or at the pore throats. The casein that remains in the pore solution is precipitated during
the course of ureolysis (due to the increased concentration of kosmotropic products) and is
deposited by gravity on the sand grains. Subsequently, the precipitated casein micelles de-
hydrate, clump together, and adhere to the sand. These casein micelles influence the CaCO3
precipitation by facilitating nucleation and slowing down the recrystallization of ACC and
vaterite to calcite. However, it is improbable that the casein micelles directly adsorbed to
the sand (via physisorption or chemisorption) sequester Ca2+ ions (to nucleate CaCO3) or
bind to Ca2+ ions on the surface of ACC/vaterite (to stabilize these intermediates). As a
result, the “effective” concentration of casein available to regulate CaCO3 precipitation in
granular media is less compared with the reaction in pure liquid conditions. This variation
in the reaction conditions may result in changes to the mineralogy and crystal structure of
the precipitate (compared with precipitation in a reaction vessel). For example, Krishnan
et al., [36] observed calcite, but not vaterite, in X-ray diffractograms of Ottawa 20–30 sand
treated with the modified EICP solution.

As observed in Figure 6, the modified precipitate has particles that are significantly
softer (and more ductile) compared with the baseline precipitate. The softness of these
particles is likely due to the presence of casein at the surface of polycrystals, in between
polycrystals, or at the grain boundaries of a polycrystal. Modified precipitate in granular
media will also be a composite of casein and CaCO3. In this case, some of the casein will
be adsorbed to the sand grains and the remaining casein will be adhered at the surface
of the calcite polycrystal or in between the polycrystal and the sand grain. Based on
this argument, we postulate that the modified precipitate in porous media will also have
a higher ductility compared with the baseline precipitate in porous media. However,
the ductility of modified precipitate in porous media will be lower compared with the
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ductility of modified precipitate in pure liquid conditions (due to the lower “effective”
casein concentration).

Biocemented sand loaded in compression may fail in three different ways: (i) shear
failure; (ii) tensile cracking; (iii) failure due to stress concentrations at the boundary (where
the specimen makes contact with the loading platens). In all cases, at the particle scale, fail-
ure occurs due to fracture within the binding precipitate or at the sand–precipitate interface.
In this context, improved ductility in the precipitate, or in the “adhesion zone” between
the precipitate and the sand grains, results in higher resistance to crack propagation and
can increase the strength of the biocemented sand specimen. Consequently, in addition to
preferential precipitation at interparticle contacts, an increase in ductility of the precipitate
may also be a contributing factor to the high UCS at low carbonate contents observed
by Almajed et al., [5] and Martin et al., [6] when testing sands treated by the modified
EICP solution.

4. Conclusions

The addition of nonfat dry milk to the baseline EICP solution results in significant
changes to the crystal habit and structure of the calcium carbonate precipitate. Mineral
characterization showed that precipitates from both the baseline and modified solutions
predominantly comprised calcite. However, broader peaks in the X-ray diffractogram and
Raman spectra of the modified precipitate indicated that the modified precipitate had a
smaller average crystallite size and greater short-range atomic disorder. Both the baseline
and modified precipitate had a higher average indentation hardness and a lower indenta-
tion modulus compared with the values for single calcite crystals reported in the literature.
The modified precipitate had a higher ductility compared with the baseline precipitate,
as evidenced by the higher average M/H ratio and smaller frequency of pop-ins during
indentation loading. The increased ductility implies greater resistance to crack propagation
in the precipitate, which, in addition to preferential precipitation at interparticle contacts,
might be instrumental in the development of high strengths at low carbonate contents in
sands treated by the modified EICP solution. Further investigations into the mineralogy of
enzyme-induced carbonate precipitates in porous media, such as determination of the pre-
ferred orientation (if any) of crystallites, and evaluation of the distribution of casein in the
polycrystals of modified precipitate can provide additional insights into the strengthening
mechanisms of the modified EICP solution.
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www.mdpi.com/article/10.3390/cryst12070995/s1: (A) experimental details of Rietveld refinement,
Raman microspectroscopy, and nanoindentation; (B) Lorentzian fitting curves to the measured
spectral lines of the Raman spectra; (C) load-displacement curves for indents, images of indentation
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(D) methodology of computation of prediction ellipses.
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