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Abstract: Fully relaxed, crack free, smooth AlxGa1−xN layers with up to 50% Al composition were
demonstrated on pseudo-substrates composed of dense arrays of 10 × 10 µm2 compliant porous
GaN-on-porous-GaN tiles. The AlGaN layers were grown in steps for a total of 1.3 µm. The growth
conditions necessary to demonstrate high quality films at higher Al compositions also suppressed
any sidewall growth.

Keywords: AlGaN; Porous GaN

1. Introduction

The wide bandgap tunability range of (Al,Ga)N from 3.4 eV for GaN to 6.1 eV for
AlN allows for its use in deep ultraviolet (UV) light emitting diodes (LEDs) in fields such
as medical disinfection, water purification, biochemical detection and UV curing [1–6].
In addition, high power UV laser diodes (LDs) are needed for solar-blind non-line-of-
sight communications, UV spectroscopy, laser lithography, and optical data storage [7–11].
Recently, photonics integrated circuits have been of interest for developing self-powered
UV photonics systems that can work sustainably and independently with a reduced size
and power consumption for future on-chip optical communication [12–18]. For all these
applications, high quality, large area AlGaN substrates are needed. Bulk AlN substrates
with a low dislocation density are the ideal candidate [19–24]; however, they are currently
very expensive and only available in small sizes [25,26]. When AlGaN is grown on foreign
substrates such as silicon, sapphire, and silicon carbide, the lattice mismatch usually
leads to films with a relatively high density of threading dislocations [27,28]. This is the
main cause for non-radiative recombination, leading to the deterioration of the optical
and electrical performance of AlGaN UV optoelectronic devices [1,4,27]. When grown
hetero-epitaxially on GaN, the lower lattice constant of AlGaN leads to tensile strain and
cracking with epilayers thicker than the critical thickness [29,30]. Using lateral overgrowth
of buried cracks, relaxed Al0.2Ga0.8N layers on GaN templates were formed using plastic
relaxation [31]. Lateral growth of AlGaN on porous GaN or AlN base layers has also been
pursued in an effort to reduce the dislocation density [32,33]. Several research groups have
also attempted to use a sacrificial layer for flip chip UV LEDs [34].

Recently, 10 × 10 µm2 patterned compliant porous GaN pseudo-substrates (PSs)
were formed [35]. Due to its high surface-to-volume ratio, porous GaN exhibits reduced
mechanical stiffness with increased porosity [36], similar to porous silicon [37], facilitating
the elastic relaxation of InGaN grown on porous GaN PSs [38,39]. On these patterned
compliant pseudo-substrates, the growth of 1.3 µm thick crack free, elastically relaxed
AlGaN with a low Al composition was also demonstrated [40]. In this work, we performed
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the deposition of fully relaxed AlGaN with an Al composition of up to 50% on similar
GaN-on-porous-GaN PSs.

2. Materials and Methods

The layer structure used for porosification as the pseudo-substrate consisted of a
2.8 µm thick unintentionally doped (UID) GaN on c-plane sapphire followed by 800 nm
Si doped GaN with a doping of 5 × 1018 cm−3 which was capped with 100 nm of UID
GaN. The sample was patterned and dry etched with a 100 W BCl3/Cl2 etch, forming
10 × 10 µm2 square tiles 2 µm apart and with an etch depth of 600 nm. The sidewalls of the
tiles were aligned parallel to the orthogonal GaN [1100] and GaN [1120] planes, respectively.
The GaN:Si layers were then porosified with a doping selective electrochemical (EC) etch
in 0.3 M oxalic acid with metal contact to the sample with anode and Pt wire acting as the
cathode [41]. The current flowing through the sample caused a redox reaction resulting in
GaN:Si etching, which formed GaN tiles with embedded porous GaN as depicted in the
schematic in Figure 1a and as reported previously [35].
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Figure 1. (a) Schematic structure of the GaN-on-porous-GaN pseudo-substrate. (b) Top view scanning
electron microscopy image showing the tiles.

The epitaxial layers in this study were grown by metal organic vapor phase epitaxy
(MOVPE) in a close coupled showerhead reactor using the precursors trimethylgallium
(TMGa), trimethylaluminum (TMAl), and ammonia (NH3) on the c-plane porous GaN
pseudo-substrates at a pressure of 100 Torr. In our previous work, a total of 1.3 µm thick
elastically relaxed AlGaN with xAl = 0.18 was demonstrated using a growth temperature
of 1080 ◦C and a mixture of hydrogen and nitrogen as the carrier gas [40]. To obtain
good quality AlGaN films with a higher Al composition, the deposition temperature was
increased to 1155 ◦C [42,43], and the NH3 flow was decreased to 45 mmol/min from
178 mmol/min [40]. The molar flow of TMGa varied at 8.8–14.6 µmol/min and TMAl was
in the range of 0.98–2.4 µmol/min, respectively. However, growth under these conditions
on the GaN-on-porous-GaN PSs resulted in the formation of circular islands on the sample
surface (Figure 2a). While the higher growth temperature of 1155 ◦C was necessary to
achieve high quality AlGaN at the targeted composition, it was not suitable for deposition
on the GaN-on-porous-GaN PSs. In order to achieve smooth layers, a two-step process
was implemented, where the initial 120–130 nm of AlGaN was grown at 1080 ◦C in a
nitrogen ambient atmosphere, after which the temperature was increased to 1155 ◦C for the
rest of the run and the subsequent AlGaN growth was performed in a hydrogen ambient
atmosphere.
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Figure 2. 5 × 5 µm2 AFM images of AlGaN grown at 1155 ◦C (a) on 10 × 10 µm2 tiles of compliant
pseudo-substrate; (b) on planar GaN, with image taken in the region in between cracks which
developed due to strain.

The 1.3 µm thick AlGaN layers were grown in steps, and before every regrowth
the sample was solvent cleaned with acetone and isopropanol which was followed by a
buffered HF dip and rinsing with deionized water to remove contaminants and the oxide
layer introduced during characterization. The surface morphology was characterized using
an optical microscope and atomic force microscope (AFM). High resolution x-ray diffraction
(XRD) was used for rocking curve measurements to evaluate the film quality. Reciprocal
space maps (RSMs) were taken using XRD around the GaN (1124) reflection. Composition
and relaxation were determined from these RSMs using X-Pert Epitaxy software [44,45].

3. Experiment and Results

In the first experiment, the growth was initiated with 10 nm of GaN, which acted as
a transition layer before introducing any strain in the structure, followed by 30 nm thick
AlGaN layers where the composition was increased in steps with target al. composition
(xAl) = 0.05, 0.09, 0.13 and 0.17 at 1080 ◦C. Afterwards, the temperature was increased to
1155 ◦C and 30 nm each of AlGaN with target xAl = 0.21 and 0.25 was grown followed
by 330 nm of AlGaN with a target al. mole fraction of 0.30. The target xAl was obtained
from fully strained AlGaN on GaN calibration samples. The sample was characterized
and a further 400 nm of AlGaN was regrown with adjusted TMAl and TMGa flows, so
as to decrease xAl and match the lattice constant to the existing epilayer. An additional
regrowth was then performed for another 400 nm of AlGaN to bring the total thickness of
the AlGaN layer to 1.3 µm. The schematic of the full epitaxial layer structure grown on the
pseudo-substrate is shown in Figure 3a.
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Figure 3. (a) Schematic of the first structure grown on porous GaN. The xAl is obtained from RSM, and
the dashed lines indicate regrowth interfaces. 5 × 5 µm2 AFM height images of (b) initial ~500 nm
AlGaN; (c) after first regrowth (corresponding to dtotal ~900 nm AlGaN); (d) after second regrowth
(dtotal ~1.3 µm AlGaN) showing good surface morphology. (e) RSM obtained from XRD with the
GaN and 1.3 µm AlGaN peaks marked shows that Al0.32Ga0.68N is fully relaxed. The vertical dashed
line running up each scan from the GaN peak shows the strain line while the other dashed line is the
fully relaxed line.

Evaluation of the initial ~500 nm thick AlGaN structure revealed smooth, crack free
layers (Figure 3b) with xAl = 0.35 and a relaxation of ~85%. The increase in measured Al
composition over the targeted composition was expected due to the composition pulling
effect [40,46–50]. The surface morphology remained smooth after the first and second
regrowth (Figure 3c,d respectively). After the first regrowth (which brought the total
thickness to ~900 nm), the AlGaN peak corresponded to xAl = 0.32 with ~96% relaxation.
The final structure with ~1.3 µm thick AlGaN was fully relaxed and showed xAl = 0.32
(Figure 3e).

With encouraging results having been obtained so far, a second porous PS sample was
used to grow AlGaN with a higher xAl, following the structure depicted in the schematic
in Figure 4a. A 10 nm GaN transition layer was again grown followed by a step-graded
AlGaN layer composed of 25 nm AlGaN layers with target xAl = 0.05. 0.11, 0.17, 0.23, and
0.29 at 1080 ◦C under nitrogen. As before, the temperature was then increased to 1155 ◦C
and 25 nm AlGaN each with target xAl = 0.35, and 0.41 were grown followed by 325 nm of
AlGaN with a target xAl of 0.47 in hydrogen. AFM images demonstrated a smooth surface
morphology, and RSM showed an AlGaN peak at xAl = 0.53 with 89% relaxation (Figure 4b).
After the solvent was clean and buffered in an HF dip, an additional 400 nm of AlGaN was
grown with a slightly reduced TMAl flow to lattice match with the already grown AlGaN
layer. The aluminum composition was 50% with 90% relaxation (Figure 4c). A further
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400 nm regrowth increased the relaxation to 97% while maintaining the same aluminum
content (Figure 4d,e).
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Figure 4. (a) Schematic of the second structure grown on porous GaN. The xAl is obtained from
RSM, and the dashed lines indicate regrowth interfaces. 5 × 5 µm2 AFM height images of (b) initial
~500 nm AlGaN; (c) after first regrowth (corresponding to dtotal ~900 nm AlGaN); (d) after second
regrowth (dtotal ~1.3 µm AlGaN) showing good surface morphology. (e) RSM obtained from XRD
with the GaN and 1.3 µm AlGaN peaks marked shows that Al0.50Ga0.50N is fully relaxed. The vertical
dashed line running up each scan from the GaN peak shows the strain line while the other dashed
line is the fully relaxed line.

4. Discussion

Both the 1.3 µm thick AlGaN samples with xAl = 0.32 and 0.50 showed no signs of any
cracking, and were fully relaxed. For the sample with xAl = 0.32, AFM images showed a
slight increase in roughness, presented as the root mean square (RMS) value in Figure 5
after the individual regrowth steps. The RMS roughness values increased slightly from
1.1 nm for the first ~500 nm stack to 1.4 nm after the first regrowth and decreased to 1.2 nm
after the second regrowth, which is likely due to the AlGaN layer being already fully
relaxed. The sample with xAl = 0.50 showed an appreciable increase in roughness with the
RMS value rising from 1.2 nm for the initial AlGaN stack to 2.7 nm after the first regrowth
(with a total of ~900 nm AlGaN). The second regrowth stage showed no further increase in
roughness. While the increase in surface roughness after the first regrowth step was unclear,
the circumstance that the roughness did not further increase during the second regrowth
suggests that the relaxed underlying AlGaN layer (after the first regrowth) prevented any
stress-driven increase in surface roughness in this study, which is often observed when
growing strained AlGaN layers.

Further XRD characterization to determine theω-FWHM of the (002) and (201) reflexes
for the sample with xAl = 0.32 showed 418 and 544 arc seconds, respectively, on par with
good quality hetero-epitaxial growth [51,52]. Nevertheless, these values were higher than
the underlying GaN layer for which ω-FWHM values of ~280 and 386 arc seconds for
the (002) and (201) reflexes, respectively, had been recorded. While the somewhat higher
FWHM values could be the result of partial plastic relaxation, they could also be caused
by local variations in relaxation and in the Al composition, between the edge and center
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region of an individual tile, or tile to tile variations in the array. In addition, the elastic
relaxation process could have led to tile tilt causing an increase in theω-FWHM values.
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For the sample with xAl = 0.50, the (002) ω-FWHM amounted to 385 arc seconds,
which was narrower than the value measured for the sample with xAl = 0.32. In contrast,
the (201)ω-FWHM increased to 677 arc seconds. This is a much more significant increase
compared to the value of 386 arc seconds measured for the GaN base layer and the 544 arc
seconds measured for the sample with xAl = 0.32, which may be due to partial plastic
relaxation under the formation of edge dislocations. Further investigations are currently
underway to clarify the origin of the increase in FWHM, as well as to develop strategies to
suppress it.

There was little evidence of growth on the tile sidewalls (Figure 6) which was observed
previously when the AlGaN layers were grown with a higher NH3 flow of 178 mmol/min
of NH3 [38]. Lower NH3 flow rates are known to suppress lateral growth [53] and could
have been the cause for the lack of sidewall growth in this work. Further studies are
planned to investigate this aspect, as sidewall growth may allow for tile coalescence to
create large-area planar relaxed AlGaN templates.
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5. Conclusions

Fully relaxed, crack-free 1.3 µm thick AlGaN layers with xAl = 0.32 and 0.50 were
formed on pseudo-substrates composed of 10 × 10 µm2 compliant GaN-on-porous GaN
tile arrays. The epilayers were smooth for xAl = 0.32, while an increase in surface roughness
and potential onset of partial plastic relaxation were observed for the sample with xAl = 0.50.
Further optimization of the step-graded layer and lateral growth can open up a pathway
to obtain high quality, large area AlGaN substrates as well as obtain fully relaxed AlGaN
with even higher values of xAl.
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