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Abstract: The aim of this work is to predict suitable chemical compositions for the development of
new ceramic oxygen gas separation membranes, avoiding doping with toxic cobalt or expensive
rare earths. For this purpose, we have chosen the system (Sr1−xBax)(Ti1−y−zVyFez)O3−δ

(cubic
perovskite-type phases). We have evaluated available experimental data, determined missing crys-
tallographic information using bond-valence modeling and programmed a Python code to be able
to generate training data sets for property predictions using machine learning. Indeed, suitable
compositions of cubic perovskite-type phases can be predicted in this way, allowing for larger elec-
tronic conductivities of up to σe = 1.6 S/cm and oxygen conductivities of up to σi = 0.008 S/cm at
T = 1173 K and an oxygen partial pressure pO2 = 10−15 bar, thus enabling practical applications.

Keywords: ceramic; perovskite; oxygen separation membrane; mixed ionic-electronic conducting
membrane MIEC; valence bond calculations; machine learning; python programming; Pecon.py

PACS: 02.60.-x; 02.60.DC; 02.60.Ed; 02.70.-c; 31.15.xw; 51.20.+d; 51.50.+v; 61.43.-j; 61.50.-f; 61.50.Ah;
61.66.-f; 61.66.Fn; 61.72.U-; 65.40.gk; 66.10.Ed; 66.30.je; 72.60.+g; 72.80.-r; 72.22.-d; 81.05.Je; 81.05.Zx;
82.33.Pt; 82.45.Un; 82.45.Xy; 82.47.-a

1. Introduction

Mixed ion-electronically conducting ceramic-based membranes (MIEC) for oxygen sep-
aration have been synthesized and characterized for more than 30 years, mainly based on
perovskite-type structures [1–8], such as SrTixFe1−xO3−δ [9] and Ba0.5Sr0.5Co0.8Fe0.2O3−δ [10,11].
Oxygen transport in dense ceramic membranes is driven by the partial pressure gradient
across the membrane [9,12,13]. As mixed conducting materials single-phase perovskite can
be used. Based on SrTiO3 (STO), materials with the general structural formula ABO3 offer
a range of uses as functional materials in a variety of energy applications. For example,
pure STO is used as a dielectric in electronic components. The crystal structure allows for
a large number of dopants, making it possible to selectively introduce conductivities for
electrons and/or oxygen ions into the material. Functionalized and doped STO materials
are therefore used, e.g., as thermoelectrics, in the photovoltaic industry as well as in ceramic
fuel cells or as gas separation membranes (high electronic and ionic conductivity) [12].
At the same time, the STO host lattice offers high intrinsic stability, which enables true long-
term operation. As an example, dopants with Ba (A-position in the crystal structure) and
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V/Fe (B-position) are selected and a methodology combining available experimental data,
chemical bond modeling, and machine learning is developed. Doping with toxic Co will be
deliberately avoided, as well as the use of rare earths (La, Ce, Sm), in order to keep produc-
tion costs as low as possible. The properties of the chemical bonds and the resulting electron
density distributions are decisive for the functional properties. Therefore, these are modeled
using the bond valence method, as this requires significantly less computational power com-
pared to ab initio methods (e.g., DFT) with similar information and provides faster results.
In this way, screening of possible candidate materials is attainable, and oxygen diffusion as
well as electronic conductivity can be optimized. However, there are frequent cases where
ionic oxygen transport is accompanied by phase changes depending on temperature and
oxygen partial pressure operating conditions. De Souza [14] published a comprehensive
review of oxygen diffusion in undoped SrTiO3 and related perovskite oxides that illustrates
the relationship between defect chemistry, diffusion, and conductivity. There are some
references regarding B-site substituted SrTiO3 with V [15–17], but they are mainly related
to the application of SrTiO3-based ceramics such as thermoelectrics, solar cells, and sensors.
However, such phases can also be used as stable gas separation membranes suitable for
long-term application [6]. Doping of SrTiO3 with Ba at the A position (ABO3) enhances
O2 diffusion [6,18]. Inclusion of V at the B position increases electronic conductivity [6].
V5+ reduces an equivalent amount of Ti4+ to Ti3+, which in turn increases the electronic
conductivity. As long as the cation radius of the dopant on the B side is smaller than that
of Ti4+VI (rK = 0.605 Å), the oxygen conductivity is always increased [14]. In fact, this is the
case for V4+

VI (rK = 0.580 Å), V5+
VI (rK = 0.540 Å), and Fe3+

VI (rK = 0.55 Å), but not for Fe2+
VI

(rK = 0.610 Å) (ionic radii: Shannon and Prewitt [19]). Here, Fe2+ and Fe3+ are assumed to
be low-spin on the octahedral sites in the perovskite crystal structure. Experimentally deter-
mined cell constants of SrTixFe1−xO3−δ phases deliver strong evidence for this assumption,
because cell constants clearly decrease with increasing iron content [9]. With relatively
low doping with V crystal structure stability is maintained. The Ti-O and V-O bonds are
almost equally strong, i.e., the incorporation of V does not affect the BO6 network, which
largely determines the stability of the perovskite structure, and V+Ti generally increases
temperature stability, that can be estimated by calculating a tolerance factor t [6]. This factor
is defined as t = (rA + rO)/

√
(rB + rO) and for a stable structure t should be equal to 1.0.

Bond-valence modeling (BVM) can be used to calculate stable compositions in advance
before synthesis, hence saving a lot of time. One scientific goal of this project is to develop
a better understanding of the relationship between chemical composition, tolerance factor t,
critical radius rc, the free volume FV in the crystal and in the micro structure, temperature
T, and the binding energies of the metal–oxygen bonds. By combining available reference
data and BVM for data supply, and subsequent machine learning (ML) for the prediction of
promising chemical compositions, based on the supplied data, empirical trial-and-error
methods will be avoided and a systematic way for the development of new ceramic ionic
conductors will be established. Therefore, in this project structural parameters and conduc-
tivities of SrTiO3, SrVO3, Sr(Ti1−yVy)O3, Sr(Ti1−zFez)O3−δ, (Sr0.5Ba0.5)(Ti0.5Fe0.5)O3−δ,
(Sr1−xBax)(Ti1−yVy)O3, and (Sr1−xBax)(Ti1−y−zVyFez)O3−δ

solid solutions, as a function
of composition, temperature, and oxygen partial pressure were determined. The results
are largely based on experimental data, and to a small extent on BVM. Conductivities
are calculated, as far as possible, only for the practically relevant temperature range be-
tween 950 and 1223 K and oxygen partial pressures between 1 and 10−20 bar (depending
on composition).

2. Materials and Methods
2.1. Experimental Reference Data

Even if data are available (listed in Table 1), they are limited in temperature and/or
oxygen partial pressure in most cases. Because no experimental values for oxygen con-
ductivities are available for SrVO3, and just for electronic conductivities, calculations were
related to SrTiO3, O-O bond lengths (1. order), and the free volume. For Sr(Ti1−yVy)O3
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also no experimental values for oxygen conductivities are available, just for electronic con-
ductivities, and only at T = 1173 K. Therefore, calculations are also related to SrTiO3, O-O
bond lengths (1. order), and the free volume (FV). In case of Sr(Ti1−zFez)O3−δ conductivity
data are only available at T = 1123 K for the whole compositional range, and especially
conductivity data are available at T = 973 to 1223 K for z = 0.4 to 0.8. Here, the space
group is Pm− 3m even up to z = 0.8. Only data for oxidizing conditions (pO2 = 0.213 bar)
are available. For compositions containing the cations Sr, Ba, Ti, and Fe only data for
the specific composition (Sr0.5Ba0.5)(Ti0.5Fe0.5)O3−δ are available and only data for oxi-
dizing conditions (pO2 = 0.213 bar). For the two compositions (Sr1−xBax)(Ti1−yVy)O3
and (Sr1−xBax)(Ti1−y−zVyFez)O3−δ

no experimental data are available at all. Therefore,
cell constants and tolerance factors were calculated using BVM (see following section),
and only reducing conditions were considered. A first evaluation and analysis of the ex-
perimental data was performed with the statistical program R (https://www.r-project.org,
accessed on 1 April 2022 ), in order to detect outlier data and to select the most precise
and accurate reference data. The finally applied reference data are taken from the refer-
ences [8,9,14,16,17,20–33].

Table 1. Availability of experimental electronic conductivity data σe and ionic conductivity data σi,
respectively. For more details see Appendix A.

Composition σe σi

SrTiO3 YES YES
SrVO3 YES NO

Sr(Ti1−yVy)O3 YES NO
Sr(Ti1−zFez)O3−δ YES YES

(Sr0.5Ba0.5)(Ti0.5Fe0.5)O3−δ YES YES
(Sr1−xBax)(Ti1−yVy)O3 NO NO

(Sr1−xBax)(Ti1−y−zVyFez)O3−δ NO NO

2.2. Bond-Valence Modeling

The bond-valence method (BVM) is a standard procedure for analyzing and validating
crystal structures of inorganic materials [34–41]. BVM expresses the concept that bond
lengths and bond valences are related, and that the sum of bond valences sij to an atom
j is equal to its valence Vj. For an atom symmetrically coordinated by M similar atoms,
the relationship is sij = Vj/M. If the bonds are not equal, a relationship between bond
length and bond order is required, such as sij = exp[(d0 − dij)/b], where d0 is the length of
a single bond between atom j and atom i and dij is the actual distance [34–36]. The constant
b is assumed to be 0.37 for most structures. The method is good at assigning oxidation
states, and O2, OH, and H2O can be distinguished. Possible H and Li positions can
be predicted, and also conduction paths in ionic conductors [37–40]. Yamada et al. [42]
recently showed that the structural stability of SrTiO3 and CaTiO3 can be calculated equally
well by BVM and DFT. Inoue et al. [40] discovered a completely new family of oxide ionic
conductors Ca0.8Y2.4Sn0.8O6 by the combined application of synchrotron powder diffraction
experiments and BVM modeling. The SPuDS software [43,44] enables the prediction of
perovskite-type crystal structures with BVM. Modeling was performed using the following
strategy: Depending on composition one or two cations (Sr2+, Ba2+) were allowed on the
A-site of the perovskite crystal structure, and additionally one, two, or three cations on the
B-site (Ti4+, V4+, Fe2+/Fe3+). For a given temperature the correct space group was chosen
(e.g., Pm− 3m for SrTiO3 at T = 973 K), the Glazer tilt system (e.g., a0a0a0 for SrTiO3),
and the fractions of the different cations on the two possible sites, respectively. Because no
oxidizing conditions were relevant in this work for solid solutions containing vanadium,
no V5+ was considered. Cation ordering on the B-site was allowed, as well as a variation
of the average B-site volume. Tilt angles were not pre-defined, but were refined during
modeling. Calculated values (as a function of temperature) were for example the global
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instability index GII, the tolerance factor t, the tilt angle, the bond valence sum for each ion,
and the lattice parameters. The lattice parameters and the tolerance factor were used as
input for the program Pecon.py, which is described in the following section. For detailed
definitions of the parameters mentioned above see references [43,44].

2.3. Data Analysis and Python Programming

Reference data were analyzed using the new python program Pecon.py (short form
of Perovskite conductiviy). With this program the structural parameters and conductivi-
ties of the pure perovskite-type phases and the solid solutions of interest SrTiO3, SrVO3,
Sr(Ti1−yVy)O3, Sr(Ti1−zFez)O3−δ, (Sr0.5Ba0.5)(Ti0.5Fe0.5)O3−δ, (Sr1−xBax)(Ti1−yVy)O3,
and (Sr1−xBax)(Ti1−y−zVyFez)O3−δ

can be calculated as a function of composition, temper-
ature, and oxygen partial pressure. The results are largely based on fits and interpolation
of analyzed, experimental data [8,9,14,16,17,20–33], and to a small extent on bond-valence
modeling. Electronic and oxygen ion conductivities are calculated, as far as possible, only
for the practically relevant temperature range between T = 950 to 1223 K (depending on
composition). Appendix A shows the input that has to be given by the user: Chemical
composition (characterized by three dimensionless variables x, y and z), temperature (K),
and the oxygen partial pressure (bar). If the input parameters are outside pre-defined
limits, the user receives an error message. Based on the user input Pecon.py calculates the
space group and the related crystal data (cell constants, volume of the unit cell, atomic
number density, bond lengths, and inter atomic distances). Additionally, the tolerance
factor is calculated for the chosen temperature, as well as three conductivities (total, elec-
tronic, and ionic). Furthermore, parameter values that are related to conductivity are given
(critical radius, free volume, and oxygen diffusion saddle point [20]). For this purpose
within the program Pecon.py the data are fitted with polynomials of 2nd to 4th degree,
or with exponential functions. Only interpolations between known data boundaries take
place, but no extrapolations. Only experimental data were considered and no results from
quantum mechanics (e.g., DFT) or other sources. Gaps of structural data (especially cell
constants and tolerance factors) were filled with results achieved using BVM, as described
above. All results calculated by Pecon.py are written to separate text files, which can be
further used. One application is the generation of training data sets, that can be used
for subsequent machine learning simulations (see following section). The detailed use of
Pecon.py is shown in Appendix A and possible results are given in Appendix B.

2.4. Machine Learning

The training data set, that was generated using Pecon.py contained 26,916 data points,
where each data point consists of 15 numerical values, for the pure phases and solid solu-
tions mentioned above. The parameters used for machine learning are: T (K) (Temperature),
rA (Å) (Average ionic radius on the A-site), rB (Å) (Average ionic radius on the B-site),
log10 pO2 (bar) (logarithm of oxygen partial pressure), Vuc (Å3) (Volume of the unit cell),
N (atoms/Å3) (Atomic number density), rBO (Å) (B-O bond length), rAO (Å) (A-O bond
length), rBB (Å) (B-B inter atomic distance), rAB (Å) (A-B interatomic distance), t (Tolerance
factor), rc (Å) (Critical radius), FV (Å3) (Free volume), σe (S/cm) (Electronic conductiv-
ity), and σi (S/cm) (Ionic conductivity) (see also Appendix B). The chosen parameters
are suitable for the sufficient characterization of the crystal structures and the respective
dependencies of the conductivities on these structures. Missing conductivity (electronic
and ionic) values of SBTVO and SBTVFO were marked accordingly in the training dataset.
We used the most recent stable version 3.8.6 of the WEKA data mining tool kit [45,46],
that can be used very well for supervised machine learning with numerical data. Simula-
tions were performed on a single Linux-Workstation (Ubuntu 20.04 LTS, Intel i9, 20 cores,
64 GB RAM, Nvidia grafics card GeForce RTX 3080 (3000 cores, 10 GB RAM), 2 SSD (2 TB
each)). As part of the WEKA package we used the Explorer program,which is suitable for
preprocessing the data, for the application of chosen classifiers (training and testing) and
for the visualization of the simulation results (predictions), respectively. We have tried
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various classifiers such as SVM empirically, but we also used Auto-WEKA [47], in order to
find the most suitable classifiers automatically. It turned out, that for the electronic con-
ductivities lazy.IBK (K-nearest neighbour classifier [48]) can provide the most reasonable
predictions. Therefore, with lazy.IBK we performed ML applying cross-validation (20 folds).
The predicted values served as additional input for the training dataset. Afterwards, we
searched for the best classifier even for the ionic conductivities as described above, using
the modified training data. In this case a support-vector machine turned out to be the best
choice for the prediction, using a radial basis function as kernel-type [49,50]. Correlation
coefficients were 1.0 (σe) and 0.9962 (σi), mean absolute errors 0.0452 (σe) and 0.0005 (σi),
and finally the relative absolute errors were 0.0671% for σe predictions and 2.1164% for the
σi predictions. Selected results for the pure phases and some relevant compositions are
listed in Table 2. Figure 1 demonstrates the workflow applied in this work.

Figure 1. The workflow applied in this work, using the programs R, SPuDS, Pecon.py, WEKA, and
Auto-WEKA, respectively.

Table 2. Predicted electronic and ionic (oxygen) conductivities σe and σi at T = 1173 K, respectively.

Composition pO2 (bar) FV (Å3) σe (S/cm) σi (S/cm)

SrTiO3 1.0× 10−15 16.011 1.67× 10−2 2.51× 10−5

SrVO3 1.0× 10−15 13.377 545.09 2.27× 10−5

Sr(Ti0.5V0.5)O3 1.0× 10−15 15.320 20.01 1.22× 10−4

Sr(Ti0.5Fe0.5)O3−δ 0.213 13.360 1.67 0.05
(Sr0.5Ba0.5)(Ti0.5Fe0.5)O3−δ 0.213 17.904 1.56 0.13
(Sr0.5Ba0.5)(Ti0.8V0.1Fe0.1)O3−δ 1.0× 10−15 16.729 1.60 6.94× 10−3

(Sr0.5Ba0.5)(Ti0.7V0.1Fe0.2)O3−δ 1.0× 10−15 16.827 1.59 7.04× 10−3

(Sr0.5Ba0.5)(Ti0.7V0.2Fe0.1)O3−δ 1.0× 10−15 16.654 1.60 6.38× 10−3

(Sr0.5Ba0.5)(Ti0.6V0.3Fe0.1)O3−δ 1.0× 10−15 16.585 1.60 5.99× 10−3

(Sr0.5Ba0.5)(Ti0.6V0.2Fe0.2)O3−δ 1.0× 10−15 16.757 1.59 6.93× 10−3

(Sr0.5Ba0.5)(Ti0.6V0.1Fe0.3)O3−δ 1.0× 10−15 17.149 1.59 7.71× 10−3

(Sr0.5Ba0.5)(Ti0.5V0.3Fe0.2)O3−δ 1.0× 10−15 16.678 1.60 6.59× 10−3

(Sr0.5Ba0.5)(Ti0.5V0.2Fe0.3)O3−δ 1.0× 10−15 16.860 1.59 7.10× 10−3
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3. Results

Figure 2 shows the electronic conductivity of STO, that is typically low for a dielectric
material. The line in this figure has been calculated with Pecon.py, whereas the points
are predicted by ML using WEKA. Please note, that the line does not represent a fit to
the points, but is achieved independently. It can be clearly seen that the calculation and
simulation provide an almost identical result.

Figure 2. Electronic conductivity of SrTiO3 at pO2 = 10−15 bar (Line: calculated by Pecon.py; Points:
predicted by ML using WEKA).

In contrast, Figure 3 illustrates that pure SVO behaves like a metallic conductor, with
an increasing electrical resistance with increasing temperature and the resulting decreased
electronic conductivity. In the same temperature range, the electronic conductivity of
SVO is several orders of magnitude larger than that of STO. The partial substitution of Ti
by V on the B-site in the crystal structure of STVO increases the electronic conductivity
significantly compared to STO (three orders of magnitude), but it still remains almost two
orders of magnitude smaller than that of SVO (Figure 4). Compared to STVO the electronic
conductivity of STFO is clearly decreased. Considering the same average cation radius
rB = 0.6 Å for both phases, the electronic conductivity at T = 1173 K predicted for STVO is
σe = 0.47 S/cm (Figure 4), whereas for STFO it is only σe = 0.09 S/cm (Figure 5).

Figure 3. Electronic conductivity of SrVO3 at pO2 = 10−15 bar (Line: calculated; Points: predicted).
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Figure 4. Electronic conductivity of Sr(Ti1−yVy)O3 as a function of composition, expressed by the
variable average cation radius on the B-site, corresponding to a y-range from 0.48 down to 0 (from
left to right), at T = 1173 K and pO2 = 10−15 bar (Line: calculated; Points: predicted).

The partial substitution of Sr by Ba on the A-site in SBTFO decreases the electronic
conductivity compared to STFO (Table 2), but at the same time the ionic conductivity is
more than doubled. The ionic conductivity of STO is also very low (Figure 6) and here
calculation and prediction are again almost identical. A first explanation is the substantially
larger free volume (FV) within the crystal structure of SBTFO, a property that in many cases
increases ionic conductivity under otherwise comparable conditions. Analogous to SVO,
also for SBTFO a decrease in the electronic conductivity with increasing temperature can be
observed (Figure 7), whereas the ionic conductivity increases with increasing temperature
(Figure 8) as expected.

Figure 5. Electronic conductivity of Sr(Ti1−zFez)O3−δ as a function of composition, expressed by the
variable average cation radius on the B-site, corresponding to a z-range from 0.78 down to 0 (from
left to right), at T = 1173 K and pO2 = 0.213 bar (Line: calculated; Points: predicted).
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Figure 6. Ionic conductivity of SrTiO3 at pO2 = 10−15 bar (Line: calculated; Points: predicted).

In summary, for all phases for which experimental conductivities are available (Table 1),
the calculations with Pecon.py and the predictions using ML (WEKA) show a very good
agreement, which in turn gives promise to a high reliability of the predictions for other
similar phases, for which experimental data are missing. One important result to mention
is the significant increase in the ionic conductivity due to the partial substitution of Sr by
Ba on the A-site, especially compared to pure STO, in accordance to the results published
by Teraoka et al. [18]. Table 2 summarizes selected, most promising compositions and the
respective predictions of conductivities. Up to 50% Sr2+ can be substituted by Ba2+ on the
A-site without phase transitions occurring and our predictions favor this larger Ba amount
on the A-site in order to yield a larger ionic conductivity.

Figure 7. Electronic conductivity of (Sr0.5Ba0.5)(Ti0.5Fe0.5)O3−δ at pO2 = 0.213 bar (Line: calculated;
Points: predicted).
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Figure 8. Ionic conductivity of (Sr0.5Ba0.5)(Ti0.5Fe0.5)O3−δ at pO2 = 0.213 bar (Line: calculated;
Points: predicted).

4. Discussion

Compared to pure STO, the electronic and ionic conductivity can be increased by
about two orders of magnitude due to doping with Ba on the A-site [18] and V/Fe on the
B-site of the perovskite crystal structure, respectively. The predicted electronic conductivity
remains nearly constant at values of about σe ≈ 1.6 S/cm, independent of the given
V/Fe ratio (Table 2), even without any V on the B-site. Unfortunately, V on the B-site
reduces the ionic conductivity significantly compared to V-free phases. A key result of
our work is, that a large electronic and a large ionic conductivity are not possible within
the SBTVFO system at the same time. For MIEC membranes the ambivalent conduction
is the figure of merit. Figure 9 shows a three-dimensional plot of both conductivities σe
and σi related to the average cation radius rB on the B-site for perovskite-type phases of
composition (Sr0.5Ba0.5)(Ti1−y−zVyFez)O3−δ

at pO2 = 10−15 bar and T = 1173 K (see also
Table 2). This plot shows the optimum values for all three parameters in order to yield
large conductivities.

Figure 9. Figure of merit of the ambivalent conductivity of (Sr0.5Ba0.5)(Ti1−y−zVyFez)O3−δ
at

pO2 = 10−15 bar and T = 1173 K (see text and Table 2).
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Compared to SBTVFO achievable ionic conductivities with phases containing Co on
the B-site are at least one order of magnitude larger. Perovskite-type phases containing
25 or 35 mole percent Co on the B-site achieve ionic conductivities in air at T = 1123 K of
σi = 0.022 S/cm or σi = 0.06 S/cm, respectively, [16]. The incorporation of Co probably
increases the mobility of oxygen vacancies and that is more important for larger ionic
conductivities than the concentration of vacancies itself ([13], p. 185). However, the presence
of V enables the operation at reducing conditions and keeps the material stable without any
phase transformation. It generally remains difficult to replace Co and rare earths with other
elements and still achieve comparable ionic conductivities. The electronic conductivities of
Co-doped phases, however, are comparable to SBTVFO and of the same order. Thereby,
the influence of the oxygen partial pressure on the electronic conductivities in the system
SBTVFO seems to be rather small (Table 2). In the Fe-containing phases, on the other hand,
the oxygen partial pressure plays a greater role. With decreasing values for pO2, the ionic
conductivity also decreases significantly.

The method used in this work appears promising. The combination of available
experimental data and easy to perform bond-valence model calculations, as well as subse-
quent machine learning, allows reasonable predictions of physical properties for similar
ceramic phases, for which no corresponding experimental data are available. The applied
experimental data result from the properties of the respective crystal structures and from
the related micro structures. We see this as a clear advantage, since in this way all relevant
material information becomes part of the training data sets used for machine learning.
The training data set generated for this work with the new program Pecon.py is therefore
based exclusively on such (combined) data. For the calculations in the program Pecon.py,
as precise and accurate as possible basic crystallographic data are used as an essential
component. Since bond lengths, inter-atomic distances, and the chemical bonds (as well
as the resulting properties), do correlate directly with each other, it is essential to describe
these input features as accurate as possible. Thus, we searched the literature for high
quality, experimentally determined lattice constants to describe the unit cells. For STO,
for example, we used the very precise and accurate data of Schmidbauer et al. [24].

In this work, we followed the main steps and strategies of ML in materials research,
that is, sample representation by available experimental data and BVM, model building
by regressions and classification, and finally model evaluation by cross-validation [51,52].
Butler et al. [53] have already pointed out that big data can also be, and often is, crucial in
materials research using ML as a tool to achieve relevant and reasonable results. Especially
in materials research, one often has to be satisfied with comparatively small data sets with
a few hundred or thousand data points. Therefore, in this work we first tried to generate
a sufficiently large data set for the investigated system in the first place by means of the
new program Pecon.py. Alternatively, one can of course prefer DFT and the use of larger
databases with predominantly DFT- and/or MD-simulated data to obtain ML training
data [54–56], but often associated with a lack of accuracy for a specific system. We therefore
followed a semi-empirical approach in this work, similar to the work of Xu et al. [57],
with experimental data as the essential basis, combined with a deep analysis of the available
data before they became part of the Pecon.py program and the resulting training data
(Figure 1). We paid particular attention to structure-property relations [58] and limited
ourselves to a maximum of five different pre-selected cations at the A and B positions, as well
as two physical quantities to be predicted (electronic and ionic conductivity). Searching the
periodic table for suitable chemical compositions was explicitly not our goal. In the same
vein as other authors, we also see a clear advantage in the application of ML in materials
research [59] and consider the linkage of ML and BVM, especially for ionic conductors to
be particularly advantageous and promising [60], in order to achieve practically usable
results in a relatively short time. Similar approaches, although not comparable in all
aspects, have been followed in other work for the development of new perovskite phases in
different application fields [61–68], sometimes using robotic technologies [69]. The sharing
of available data is becoming increasingly important in order to continue to make progress
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in the design and discovery of new perovskite-type phases [70–72]. In the future, structure-
property relationships and their qualified evaluation will continue to play a large and
important role [73,74], which is why we have also followed this approach.

A central concern of this work is to be able to predict, in the simplest possible way,
the conductivities of ceramic oxygen membranes from a relatively small training data set
of experimental values using ML. In doing so, it is hoped to encourage materials scientists
who do not focus on simulations to use ML as a potential tool for their data analyses in
the future. Another alternative approach may be the use of Artificial Neural Networks
(ANN) for supervised learning in materials research [75,76]. ANN are a core component
of deep learning and are useful for highly complex ML tasks, such as classification of
billions of images, for speech recognition, or robotics. However, for an application in
this work, effort and return are out of proportion. With a training data set of only about
27000 numerical records, simpler and faster regression methods for supervised learning
are much more reasonable to use and also provide results much faster, since no neural
networks have to be trained in advance. In contrast, the use of ANN requires significantly
more know-how on the part of the user and the necessary infrastructure also makes higher
demands. For the reasons mentioned above, we have chosen the simplest possible way to
solve the task at hand and to demonstrate a practical example for the application of ML
in materials research. Accordingly, the use of ANN is not envisaged in this work and will
not be discussed further in detail, as such a discussion would go far beyond the focus of
this work. For more extensive introductions to ANNs and their use, especially in materials
research, we refer to some recent papers [77,78], among others.

5. Conclusions

Concluding, the presented approach enables the application of machine learning in
materials research in a comparatively simple way. The infrastructure required for the
implementation of this project was mainly limited to a powerful Linux workstation and
the necessary freely available software (Python 3, R, SPuDS, WEKA, and finally QtiPlot
(https://qtiplot.com, accessed on 1 April 2022 ) for the preparation of the presented
graphs). Based on available reference data, some additional bond-valence calculations
and the data analysis using the developed software Pecon.py enabled the generation of
a consistent training data set. In this way, available experimental conduction data for
the phases STO, SVO, STVO, STFO and SBTFO could be reproduced very well, and also
reasonable predictions of the electronic and ionic conductivities of cubic perovskite-type
ceramics (Sr1−xBax)(Ti1−y−zVyFez)O3−δ

were possible, for which no experimental data
are available. However, the maximum achievable conductivities are about one power
of ten smaller than for Co- and REE-bearing phases (σe = 1.6 S/cm, σi = 0.008 S/cm at
T = 1173 K and pO2 = 10−15 bar, predicted for (Sr0.5Ba0.5)(Ti0.6V0.1Fe0.3)O3−δ). Therefore,
the SBTVFO system can not compete with established MIEC phases in this respect. It
is thus not as promising as hoped, but could be used in dual-phase membranes as a
predominantly electronic mixed conductor with a slight ionic conductivity, e.g., as part of
a construction of so-called MIEC-MIEC composite membranes, which makes a practical
application possible in any case. Regardless of this, the presented strategy could be
adapted to similar phases and problems quite easily, without the need of prior and more
sophisticated electronic structure methods such as density functional theory (DFT) or
molecular dynamics simulations (MD). The latter could both be an alternative in some way,
but they require a much greater effort than the strategy presented here, and they require
significantly more time. Furthermore, the use of Artificial Neural Networks (ANN) is not
really necessary here, as the effort required for this is also greater than for the demonstrated
methods. ANNs make particular sense for significantly larger data sets and for real-time
applications, neither of which is the case in this work.

https://qtiplot.com
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Appendix A

The program Pecon.py has a simple command line interface (CLI). The following lines
show the screen output you will see in a terminal, when you start the program. The neces-
sary command is >python3 pecon.py (independent of the used operating system):

Program PECON

Structural parameters and conductivities of SrTiO3, SrVO3, SrTi(1-y)V(y)O3,
SrTi(1-z)Fe(z)O3, Sr(0.5)Ba(0.5)Ti(0.5)Fe(0.5)O3, Sr(1-x)Ba(x)Ti(1-y)V(y)O3,
and Sr(1-x)Ba(x)Ti(1-y-z)V(y)Fe(z) solid solutions, as a function of composition,
temperature and oxygen partial pressure.
The results are largely based on fits and interpolation of analyzed,
experimental data, and to a small extent on bond-valence modeling.
Conductivities are calculated, as far as possible, only for the practically
relevant temperature range between 950 and 1223 K (depending on composition).

(c) Written by Hartmut Schlenz (2022), Python 3.8.8
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Screen output is written to file pecon_∗.out
Complete results are saved as pecon_results_∗.txt
Graphics are saved as pecon_∗.png

TEMPERATURE LIMITS:

Structure data:
SrTiO3 -> T = 0 to 2313 K
SrVO3 -> T = 0 to 1956 K
SrTi(1-y)V(y)O3 -> T = 973 to 1173 K
SrTi(1-z)Fe(z)O3 -> T = 973 to 1173 K
Sr(0.5)Ba(0.5)Ti(0.5)Fe(0.5)O3 -> T = 1073 to 1223 K
Sr(1-x)Ba(x)Ti(1-y)V(y)O3 -> T = 973 to 1173 K
Sr(1-x)Ba(x)Ti(1-y-z)V(y)Fe(z)O3 -> T = 973 to 1173 K

Conductivities:
SrTiO3 -> T = 950 to 1173 K
SrVO3 -> T = 973 to 1173 K
SrTi(1-y)V(y)O3 -> T = 1173 K
SrTi(1-z)Fe(z)O3 -> T = 973 to 1223 K
Sr(0.5)Ba(0.5)Ti(0.5)Fe(0.5)O3 -> T = 1073 to 1223 K
Sr(1-x)Ba(x)Ti(1-y)V(y)O3 -> T = no data available
Sr(1-x)Ba(x)Ti(1-y-z)V(y)Fe(z)O3 -> T = no data available

LIMITS OF OXYGEN PARTIAL PRESSURE:
SrTiO3 -> pO2 = 1.0× 10−20 to 1.0 bar
SrVO3 -> pO2 = 1.0× 10−20 to 1.0× 10−15 bar
SrTi(1-y)V(y)O3 -> pO2 = 1.0× 10−20 to 1.0× 10−11 bar
SrTi(1-z)Fe(z)O3 -> pO2 = 0.213 bar
Sr(0.5)Ba(0.5)Ti(0.5)Fe(0.5)O3 -> pO2 = 0.213 bar
Sr(1-x)Ba(x)Ti(1-y)V(y)O3 -> pO2 = 1.0× 10−20 to 1.0× 10−15 bar
Sr(1-x)Ba(x)Ti(1-y-z)V(y)Fe(z)O3 -> pO2 = 1.0× 10−15 bar

Input x-value equal 0.0 (no Ba2+ on the A-site) or > 0.0 and <= 0.5:
Input y-value equal 0.0 (SrTiO3) or 1.0 (SrVO3) or > 0.0 and <= 0.5 (SrTi(1-y)V(y)O3):
Input z-value equal 0.0 (no Fe2+/3+ on the B-site) or > 0.0 and <= 0.5 or <= 0.8
(only SrTi(1-z)Fe(z)O3):
Input temperature T (K):
Input oxygen partial pressure pO2 (bar):

Appendix B

The following screen output shows the values that can be calculated for each phase,
in this case for the pure dielectric SrTiO3:

Program PECON—Results

Phase = SrTiO3
User input x = 0.000000
User input y = 0.000000
User input z = 0.000000
User input T = 973.000000 K
User input pO2 = 1.000000× 10−15 bar

Crystal data:
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Cubic crystal structure SG = Pm− 3m
Cell constant a = 3.918795 Å
Volume of the unit cell V = 60.180762 Å3

Atomic number density N = 0.083083 atoms/Å3

Tolerance factor t = 1.014169
O-O distance (1. order) = 2.771007 Å
O-O distance (2. order) = 3.918795 Å
Ti-O distance = 1.959398 Å
Sr-O distance = 2.771007 Å
Ti-Ti distance = 3.918795 Å
Sr-Sr distance = 3.918795 Å
Ti-Sr distance = 3.393776 Å

Conductivities:
Critical radius r(c) = 0.895343 Å
Free volume FV = 15.827530 Å3

O2- diffusion saddle point ODSP = 0.439857
Total conductivity Sigma(t) = 1.1316857455× 10−4 S/cm
Electronic conductivity Sigma(e-) = 1.0884879227× 10−4 S/cm
Oxygen conductivity Sigma(O2-) = 4.3197822829× 10−6 S/cm

In the background, the program additionally and automatically generates a training
data set with the following parameters: T (K) (Temperature), rA (Å) (Average ionic radius
on the A-site), rB (Å) (Average ionic radius on the B-site), log10 pO2 (bar) (logarithm of
oxygen partial pressure), Vuc (Å3) (Volume of the unit cell), N (atoms/Å3) (Atomic number
density), rTiO (Å) (Ti-O bond length), rSrO (Å) (Sr-O bond length), rTiTi (Å) (Ti-Ti inter
atomic distance), rTiSr (Å) (Ti-Sr inter atomic distance), t (Tolerance factor), rc (Å) (Critical
radius), FV (Å3) (Free volume), σe (S/cm) (Electronic conductivity) and σi (S/cm) (Ionic
conductivity) and graphs of the two conductivities. The step size for the temperature is 1 K
and for the logarithm to base 10 of the oxygen partial pressure is equal 1. Thus, just for pure
SrTiO3, a data set is generated for the temperature range from T = 950 K to T = 1173 K
with 4704 data points (lines) and a total of 70,560 numerical values.
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