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Abstract: Perovskite quantum dots (PQDs), as the promising materials for the blue light-emitting
diodes (LEDs), own huge advantages as ultra-high color purity, flexibility and whole-spectrum
tunability. Through dimensional and compositional engineering, PQD-LEDs have shown superiority
in deep-blue light emission. However, compared with the fast development of red and green PeLEDs,
the electroluminescent performance of PQD-LEDs has faced more obstacles. In this review, we aim
to explore and state the uniqueness and the possible solutions for the bottleneck problems of the
PQD-LEDs.

Keywords: perovskite quantum dots; blue-light emission; light-emitting diodes; dimensional engineering;
compositional engineering

1. Introduction

When talking about the state-of-art perovskite light-emitting diodes (PeLEDs), per-
ovskite quantum dots (PQDs) will never be neglected. Perovskite-related nanocrystals
(NCs) with quantum-confinement effect are generally considered as quantum dots in this
short review on the research frontier of blue perovskite quantum-dot LEDs (PQD-LEDs).

The developing tendency of the electroluminescence devices provides a hint to the
design of light-emitting perovskites, namely, the wide color gamut, flexibility [1], stability
and high color purity. Compared with the maturely commercialized organic LEDs (OLEDs),
PQD-LEDs are outstanding for their ultra-high color purity, high luminance and much
shorter response time. Additionally, the easy production with solution process and cost
effectiveness add a bonus. The high-quality display requires precise segmentation of the
color map by pixels. Since the first room-temperature PeLED appeared in public view, the
device luminance, external quantum efficiency (EQE) and stability of the red and green
PeLEDs began to thrive rapidly and may approach the dawn of practical application.
However, the blue PeLEDs emitting the remaining one of the three primary colors are still
in their infancy, which is roughly presented in Figure 1 and Table 1. Unlike the red and
green PeLEDs, the highest EQEs of blue PeLEDs still lie in the range of 10–15% without
balanced luminance, the full width at half maxima (FWHM) and device lifetime. From
the conventional three-dimensional to the low-dimensional perovskites, from the bulk
perovskites to perovskite nanocrystals, piles of experiments using different strategies to
achieve high-performance blue PeLEDs gradually clarify the reasons for this disparity,
which will be demonstrated later.
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pure-blue and deep-blue are based on the criteria by Rec. 2020 [1].

In this short review, other than enumerating the status quo of blue PQD-LEDs, we
focus on the uniqueness of PQD-LEDs among the PeLEDs and the possible solutions for
the bottle-neck problems of PQD-LEDs.

2. Basic
2.1. Blue Light-Emitting Perovskite Quantum Dot Materials

Despite the size-dependent quantum-confinement effect, PQDs share the same ABX3
chemical formula as conventional metal halide perovskites, possessing a three-dimensional
(3D) inorganic framework formed by corner-sharing [BX6]4− octahedra. In the case of blue
light-emitting PQDs, B-site is Pb2+ by default and X-site stands for Cl− Br−, or I−. PQDs
have several advantages over traditional 3D bulk perovskites regarding the light-emitting
properties, which are the following: (1) PQDs exhibit enhanced radiative recombination
over the nonradiative recombination, thus effectively improving the corresponding photolu-
minescence quantum yield (PLQY); (2) The maximum radiative recombination probability
can be achieved by the highly spatially confined excitons; (3) The excitons in PQDs could
generate strong symmetry-breaking perturbation, which further leads to light-activated
forbidden exciton transition. All these characters can be attributed to the quantum con-
finement effect, resulting in outstanding potentials of PQDs in the blue light-emitting
device [2].

2.2. The Basic Stack of PQD-LEDs

The device structures of PQD-LEDs are similar to that of other PeLEDs, including
n-i-p or p-i-n architectures (Figure 2). In general, the fabrication of PQD-LEDs begins with
the fabrication of electron-transport layers (n-i-p architectures) or hole-transport layers
(p-i-n architectures) on the transparent electrode. Then, the PQD layers are deposited by
methods including solution spin-coating or vacuum deposition, followed by the successful
fabrication of the corresponding hole- or electron-transport layers and electrodes.
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Figure 2. (a) Typical p-i-n architecture of PeLED; (b) Typical n-i-p architecture of PeLED. Reprinted
with permission from Ref. [1]. 2020, China Association for Science and Technology.

The commonly used electron transport materials and hole transport materials with
their energy levels are summarized in Figure 3. The transporting layer materials include
inorganic metal oxide materials with high stability and low cost and organic materials
with the facile fabrication process and good conductivity [3–5]. The most commonly ap-
plied hole transport layer (HTL), poly(3,4-ethylenedioxythiophene):polystyrene sulfonate
(PEDOT:PSS), has high conductivity, but suffers from hydrophilicity and luminescence
quenching at the perovskite/PEDOT:PSS interface due to the charge energy transport
barrier [6,7]. ZnO, as a commonly used inorganic electron transport layer (ETL) material,
shows priority in water- and oxygen-resistance, assisting the fabrication of PQD-LEDs with
relatively long lifetime [8,9]. To attain effective electroluminescence devices, the energy-
level matching of the functional layers, the conductivity and stability of charge transport
materials and the interfacial reactions should be carefully evaluated.
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Table 1. The overview of the performance of some blue PQD-LEDs in recent years.

Perovskites Device Structure EL Peak [nm] Vturn-on [V] Lmax [cd·m−2] EQEmax [%] FWHM
[nm] LT50 Year Ref.

Sky-blue PeLEDs
CsPbBrxCl3−x ITO/PEDOT:PSS/poly-TPD/perovskite/TPBi/Ca/Ag 496 3.2 603 2.6 18 2020 [10]

CsPb (Br1−xClx)3 ITO/TiO2/perovskite/F8/MoO3/Au 495 4 750 0.075 2016 [11]
CsPbBr2.4Cl0.6 ITO/PEDOT:PSS/PVK/perovskite/TPBi/LiF/Al 495 7.8 2452 1.13 21 2016 [12]
CsPbBrxCl3−x ITO/:ZnO/b-PEI/perovskite/PVK/V2O5/Al 492 143.1 0.053 26 2021 [13]
CsPbBrxCl3−x ITO/PEDOT:PSS/polyTPD/PVK/perovskite/B3PYMPM/TPBi/LiF/Al 490 <3.4 2063 3.5 18–20 26 s@100 cd·m−2 2019 [14]

RbxCs1−xPbBr3 ITO/PEDOT:PSS/poly-TPD/perovskite/TPBi/LiF/Al 490 4 186 0.87 22 2019 [15]
CsPb (Br1−xClx)3 ITO/PEDOT:PSS/perovskite/TPBi/LiF/Al 490 3 35 1.9 19 2016 [16]

(Cs/FA)PbBrxCl3−x:Cu ITO/PEDOT:PSS/PTAA/perovskite/TOPO/TPBi/LiF/Al 490 2.6 130 5.02 19 2020 [17]
CsPbBrxCl3−x ITO/PEDOT:PSS/poly-TPD/perovskite/TPBi/Ca/Ag 489 3.4 182 1.8 18 2020 [10]

CsPbBrxCl4−x:La ITO/PEDOT:PSS/PVK/perovskite/TPBi/LiF/Al 489 4 192.6 3.25 21 2020 [18]
CsPbBrxCl3−x ITO/PEDOT:PSS/TFB/PFI/perovskite/TPBI/LiF/Al 488 830 1.41 23 2018 [19]
CsPbBrxCl3−x ITO/ZnO/b-PEI/perovskite/PVK/V2O5/Al 486 94.2 0.045 25 2021 [13]
CsPbBrxCl3−x ITO/ZnO/b-PEI/perovskite/PVK/V2O5/Al 484 95.1 0.04 25 2021 [13]
CsPbBrxCl3−x ITO/PEDOT:PSS/TFB/PFI/perovskite/TPBI/LiF/Al 481 212 0.44 23 2018 [19]

CsPbBrxCl3−x:Nd ITO/PEDOT:PSS/TFB/perovskite/TPBi/Liq/Al 481 3 138 2.7 14 2020 [20]
CsPbBrxCl3−x:La ITO/PEDOT:PSS/PVK/perovskite/TPBi/LiF/Al 480 4 292.7 2.17 22 2020 [18]

CsPbBr3 (nanoplates) ITO/PEDOT:PSS/Poly-TPD/perovskite/TPBi/LiF/Al 480 25 0.1 2018 [21]
CsPbBrxCl3−x ITO/PEDOT:PSS/poly-TPD/perovskite/TPBi/Ca/Ag 479 3.2 119 1 18 2020 [10]
CsPbBrxCl3−x ITO/PEDOT:PSS/poly-TPD/perovskite/TPBi/LiF/Al 479 3.5 29.95 0.864 18 2019 [22]

CsPbBr3 ITO/PEDOT:PSS/PTAA/perovskite/MoOx/Ag 479 90 12.3 20 20 min@90 cd·m−2 2020 [23]
(K/Cs)PbBrxCl3−x ITO/PEDOT:PSS/poly-TPD/perovskite/TPBi/LiF/Al 477 3.2 86.95 1.96 19 2020 [24]

CsPbBrxCl3−x ITO/PEDOT:PSS/polyTPD/PVK/perovskite/B3PYMPM/TPBi/LiF/Al 476 <3.4 678 2.25 18–20 26 s@100 cd·m−2 2019 [14]

Pure-blue PeLEDs
CsPbBrxCl3−x ITO/ZnO/b-PEI/perovskite/PVK/V2O5/Al 472 46.6 0.027 25 2021 [13]

CsPb (BrxCl1−x)3 ITO/TFB/PFI/MHP perovskite/3TPYMB/Liq/Al/Pt 471 465 6.3 17 2020 [25]
CsPbBrxCl3−x:Mn ITO/TFB/PFI/perovskite/TPBi/LiF/Al 470 ~4.8 389 1.46 17 2018 [26]

Ni2+-CsPbClxBr3−x ITO/PEDOT:PSS/TFB/PFI/perovskite/TPBi/LiF/Al 470 3.2 612 2.4 2020 [27]
CsPbClxBr3−x ITO/PEDOT:PSS/polyTPD/PVK/perovskite/TmPyPB/TPBi/LiF/Al 470 4.9 507 2.15 21 2020 [28]
CsPbClxBr3−x ITO/NiOx/perovskite/TPBi/LiF/Al 470 350 0.07 20 2017 [29]

CsPbBr3 ITO/PEDOT:PSS/PVK/perovskite/ZnO/Ag 470 3850 4.7 27 12 h@102 cd·m−2 2021 [30]
CsPbBrxCl3−x ITO/PEDOT:PSS/poly-TPD/perovskite/TPBi/Ca/Ag 469 3.8 30 0.65 18 2020 [10]
CsPbBrxCl3−x ITO/PEDOT:PSS/poly-TPD/perovskite/TPBi/LiF/Al 469 4 11.95 0.44 18 2019 [22]
CsPbBrxCl3−x ITO/PEDOT:PSS/TFB:PFI/perovskite/TPBi/LiF/Al 469 111 0.5 24 2018 [19]
CsPbBrxCl3−x ITO/PEDOT:PSS/polyTPD/PVK/perovskite/TmPyPB/TPBi/LiF/Al 468 4.8 620 1.53 20 2020 [28]

(Rb/Cs)PbBrxCl3−x:Ni ITO/PEDOT:PSS/poly-TPD/perovskite/TPBi/LiF/Al 467 3.5 10.4 2.14 16 2020 [31]
CsMnyPb1−yBrxCl3−x ITO/TFB/PFI/perovskite/TPBi/LiF/Al 466 245 2.12 18 2018 [26]
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Table 1. Cont.

Perovskites Device Structure EL Peak [nm] Vturn-on [V] Lmax [cd·m−2] EQEmax [%] FWHM
[nm] LT50 Year Ref.

Deep-blue PeLEDs
CsPbBrxCl3−x ITO/PEDOT:PSS/polyTPD/PVK/perovskite/TmPyPB/TPBi/LiF/Al 465 4.6 518 0.92 19 2020 [28]

RbxCs1−xPbBr3 ITO/PEDOT:PSS/poly-TPD/perovskite/TPBi/LiF/Al 464 4 63 0.11 18 2019 [15]
CsPb (Br/Cl)3 ITO/PEDOT:PSS/Poly-TPD/CBP/perovskite/B3PYMPM/LiF/Al 463 2.9 318 1.4 14 2019 [32]

CsPbBr3 ITO/PEDOT:PSS/Poly-TPD/perovskite/TPBi/LiF/Al 463 62 0.124 12 2018 [33]
CsPbBrxCl3−x ITO/ZnO/b-PEI/perovskite/PVK/V2O5/Al 462 5 32.5 0.02 24 2021 [13]
CsPbBrxCl3−x ITO/PEDOT:PSS/polyTPD/PVK/perovskite/B3PYMPM/TPBi/LiF/Al 462 <3.4 193 1 18–20 26 s@100 cd·m−2 2019 [14]
CsPbBrxCl3−x ITO/PEDOT:PSS/polyTPD/PVK/perovskite/TmPyPB/TPBi/LiF/Al 462 4.4 450 0.77 19 2020 [28]
CsPbBrxCl3−x ITO/PEDOT:PSS/poly-TPD/perovskite/TPBi/LiF/Al 461 4 763 0.8 16 2019 [34]
CsPbClxBr3−x ITO/PEDOT:PSS/Poly-TPD/perovskite/TPBi/LiF/Al 460 3.8 33 1.35 15 51.5 s@3.7 V 2019 [35]
CsPbBrxCl3−x ITO/PEDOT:PSS/poly-TPD/perovskite/TPBi/LiF/Al 458 4.5 3.865 0.101 17 2019 [22]
CsPb (Cl/Br)3 ITO/PEDOT:PSS/TFB/perovskite/TPBi/Liq/Al 456 5.4 43.2 1.1 16 5 s@10 cd·m−2 2020 [36]
CsPb (Cl/Br)3 ITO/PEDOT:PSS/PVK/perovskite/TPBi/LiF/Al 455 5.1 742 0.07 20 2015 [37]
CsPbBr1.5Cl1.5 ITO/PEDOT:PSS/PVK/perovskite/TPBi/LiF/Al 445 7.8 2673 1.38 <30 2016 [12]
CsPbBrxCl3−x ITO/ZnO/b-PEI/perovskite/PVK/V2O5/Al 435 5 12.3 0.01 25 2021 [13]
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3. Uniqueness of Blue PQDs and PQD-LEDs
3.1. High-Quality Blue Light Emission
3.1.1. LIGHT Tuning Strategies

As Table 2 depicts, there are two main paths to achieving the blue light emission of
perovskite materials, which are compositional engineering and dimensional engineering
(quantum-confinement engineering) of conventional bulk perovskite.

Table 2. Two strategies to achieve blue light-emitting perovskites and comparison in several aspects.

Performance 2D/Quasi-2D Perovskites PQDs 3D Bulk Perovskites

Defects Relatively passivated More surface defects Surface and bulk defects
FWHM Relatively large Small Relatively large

PL performance Good Good Poor
EL performance Good Poor Poor

Stability High Moderate Low

Compositional engineering tunes the A-, B- or X- sites individually or simultaneously
for perovskites with the ABX3 formula. Replacing the bromide with broader-bandgap
chloride will efficiently enlarge the bandgap and thus blue-shifting the emission spectrum.
However, all-chloride perovskites are rare to find in blue PeLEDs due to their naturally
poor PLQY and stability. For mixed halide perovskites, manipulating the ratio of halides in
ABX3 can effectively tune the bandgap in the blue-light regions. However, the negative
impacts brought by chloride are inevitable as well, such as the phase separation and ion
migration under applied voltage, especially for the deep-blue PeLED devices. Another
method of compositional engineering includes cation doping in A- or B-sites, individually
or simultaneously. The doping-tuning is achieved by twisting the perovskite crystal
structure and changing the metal–halide bond strengths/angles. More specifically, a
broader bandgap is achieved by the decreased orbital overlap in a more distorted crystal
lattice [38]. The major problem comes from the size discrepancy with the cation substitution,
rewriting the tolerance factor of perovskites, and may lead to stability issues.

Dimensional engineering includes the structural-dimensional modification to de-
velop two-dimensional/quasi-two-dimensional (2D/quasi-2D) perovskites with multiple-
quantum-well structures and the morphological-dimensional modification to develop
perovskite nanocrystals including quantum dots, which are nano-sized crystals keeping
the same crystallographic feature with 3D perovskites. In general, the dimensional modi-
fied perovskites own better optical properties compared with 3D bulk perovskites due to
their efficient radiative recombination and unique charge or energy transfer process [1].
Emission color tuning is achieved either by size control for perovskite nanocrystals or layer
number control for quasi-2D perovskites. Other factors such as defects, surface ligands,
morphology, and so on, also contribute to their spectral behavior.

PQDs could combine and balance the merits of both dimensional and compositional
engineering to achieve best-performance PQD-LEDs. For example, Pan et al. [27] doped
2.5% Ni2+ into the CsPbBrxCl3−x and sophisticated set the x at 2.01, attaining a high PLQY
(89%) at 470 nm emission. The blue LED based on the modified PQDs exhibits an EQE of
2.4% and a max luminance of 612 cd·m−2.

3.1.2. Deep-Blue Emission

As Figure 1 demonstrates, among the rapidly developing blue PeLEDs, the EQEs
of the deep-blue and pure-blue devices are lagging behind that of the sky-blue devices.
To achieve highly efficient deep-blue and pure-blue LEDs for display applications, the
strategy using PQD materials is most likely to succeed based on the following analysis.
For 3D bulk PeLEDs: (1) Deep-blue emission requires a large bandgap and high ratio of
chloride content, leading to deep trap states and poor EL performance; (2) Under high
applied bias and high carrier density (Figure 4), the increased ion-migration and phase
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separation brings instability to the system. For 2D/quasi-2D PeLEDs: (1) Large bandgap
requires a low-n structure (n means the inorganic layer number for quasi-2D perovskites
B2An−1PbnX3n+1 [39]), which requires an elaborate film fabrication process to obtain a
narrow distribution of n; (2) Due to the energy funneling effect, the emission of the quasi-
2D PeLEDs represents the emission of quasi-2D composition with the highest n value,
which set obstacles to achieving deep-blue emission.
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On the other hand, PQDs hold gorgeous potential in the blue and deep-blue region
since their emission can be tuned through the size-dependent quantum confinement ef-
fect, which escapes the thread brought by the mixed halide. The size and morphology
of the PQDs can be precisely manipulated using proper synthetic methods. For instance,
Dong et al. [40] developed a unique size-controlling method from the aspect of thermo-
dynamic equilibrium in the synthesis process and achieved CsPbX3 QDs with high size-
uniformity. Meanwhile, Parobek et al. [41] reported another direct hot-injection synthesis
method for Mn2+ doped CsPbBr3 NCs and demonstrated the relationship between the
addition of HBr and the particle sizes. Yang et al. [42] applied a more complex method
to precisely control the CsPbClxBr3−x (0 < x ≤ 3) QDs by forming polymer gel networks
with CsPbBr3 precursors combined with the utilization of passivators. Additionally, the
surrounding organic chain can efficiently alleviate the ion migration, and thus improve
the stability under high applied bias. In the case, PQDs own a much greater stake in the
application possibility.

3.2. Stability of PQD-LEDs
3.2.1. Material Stability

• Ambient stability

PQDs have intrinsic advantages in ambient stability owing to the protection of the
surrounding organic ligands or the unique core/shell structures. Ge et al. [43] demonstrated
that the 0D Cs4PbX6 can serve as a nice choice for encapsulating the CsPbX3 QDs. This kind
of encapsulation effectively prolongs the operation stability in the ambient environment [44]
meanwhile increases the PLQY [45]. The ambient stability could also be improved through
ion doping. For example, Zou et al. [46] reported a structurally unchanged outcome under
a temperature as high as 200 ◦C by means of Mn2+ doping to CsPbBr3 QDs. Conversely, if
the protective layer of the PQDs is damaged for some reason, the PQDs could easily go
through aggregation or degradation which is detrimental for PQD-LED devices.

• Spectral stability
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Spectral shift is always induced by intrinsic factors, including phase separation, ag-
gregation and degradation of PQDs, or by extrinsic factors such as heat, light, electric
field, film morphology, etc. [47]. To solve the phase separation problem of the mix-halide
PQD-LEDs, using all-bromide PQDs is proven to be an effective method to obtain better
spectral stability. Additionally, interfacial engineering is considered to be another efficient
way to mitigate defect-induced spectral instability. On the other hand, by optimizing
the film quality and thickness, the extrinsic risks can be largely reduced. Heat or light
stimulation could also induce aggregation by surface ligands desorption of the PQDs [30].
This problem can be solved by ligand modification to a large extent.

3.2.2. Device Stability

Device stability, quantified by the operation time for devices to retain half of the initial
luminance (LT50), received extension by defect passivation and ligand exchange as well. Ion
migration, as stated above, appears within almost all kinds of perovskites and PeLEDs and
induces overshoot of luminance over operation time. Due to the ionic nature of halogen-
perovskites, this inherent drawback weighs more on the mixed-halide perovskites [48].
The bulky organic ligand on the surface of PQDs effectively blocks the ion migration
channel, thus significantly improving the operational stability of the devices [49]. From
Chen et al. [50], another lifetime limitation factor for blue PQD-LEDs should be attributed
to the fast degradation at the QD-ETL junction. They emphasized that excited electrons in
blue QDs are prone to accumulating in the QD-ETL junction and therefore induced an inner
voltage rise in the ETL. The possible solution could be ETL engineering or introducing
multiple layers for energy cascade. Therefore, it is necessary to further investigate the
influence brought by the interfacial energy mismatch and possible electrochemical reaction
on the PQD-LED devices. The design of chemical and electrochemical inert transport
layer materials also plays a critical role in achieving PQD-LED devices with long-term
stability [51,52].

3.3. Defect Passivation

As stated above, all bromide or mixed-halide PQDs are promising candidates for
high-efficiency blue PQD-LEDs. However, the existing LED devices based on PQDs still
have relatively poor performance compared with the state-of-art devices based on quasi-2D
perovskites. One main reason is that the surface defect density of PQDs is extremely high
due to the ultra-high surface-to-volume ratio. Another reason is that deep defect states
are likely to form in the large bandgap of the blue emitters. Meanwhile, to achieve deep-
blue emission, a small particle size of PQDs is needed, thus requiring a lower synthesis
temperature accompanied by slower growth kinetics. As a result, not only a large surface-
to-volume ratio is inevitable, but the fast crystal growth also generates additional defect
sites on the PQDs. The defects in PQDs could serve as traps in the recombination process,
which are detrimental to their luminescence performance [53]. The defect problem is one of
the main obstacles for developing high-performance PQD-LEDs for practical application.
Conversely, defect engineering enables valuable opportunities to further improve their
photoluminescence and electroluminescence properties. In fact, some PQDs are reported to
have near-unity PLQY after surface passivation as illustrated below.

The A site and B site vacancies can be passivated by ion doping. As Chiba et al. [20]
summarized in their work, transition metals (including Mn2+, Ni2+, Cd2+, Y3+, etc.), alkaline
metals (include Ca2+, Sr2+), Lanthanoids (include Ce3+ and Eu3+) and some other bivalent
or trivalent metal ions such as Sn2+, Mg2+ and Bi3+ are capable of defect passivation. They
found that the Nd3+ cation can effectively incorporate with CsPbBrxCl3−x to suppress the
nonradiative recombination, reaching a high PLQY of 97% and exhibiting a maximum EQE
of 2.7% for the corresponding PQD-LED devices.

The ammonium functional group has strong interaction with lead halide octahedrons,
which is capable of passivating the A-site vacancies. Lewis-base ligands with lone-pair
electrons or additional halide anions in turn can interact with lead dangling bonds and
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passivate the halogen vacancies [54]. Therefore, OAm (oleylamine) and OA (oleic acid)
are commonly used in the synthesis of perovskite quantum dots. OA can prevent the
agglomeration of PQDs and OAm controls the large grain formation [10]. However, these
ligands bind weakly to the QD-surface and interchangeable dynamic equilibrium exists,
resulting in the reagglomeration and more surface defects during device fabrication [30].
Different alkyl ammoniums and carboxylic acids were tested for their defect passivation
ability. Other types of ligands such as phosphonic acids, zwitterions, or even polymers
are also considered as stability-guarantee candidates due to their neutralization-resist
ability [10] or strong binding ability with the PQD surface, which simultaneously improves
the device performance and stability of PQD-LEDs [36]. In a representative case [30],
HBr etching was first applied to remove the surface imperfect [PbX6]4− octahedrons, then
didodecylamine and phenethylamine were induced to provide a shorter-chain environment
for charge injection. The resulting CsPbBr3 QDs achieved a near-unity PLQY of 97% and
a considerable EQE (4.7%) of the device. Additionally, a delightful operation lifetime
(LT50 > 12 h@105 cd·m−2) at 470 nm was attained.

3.4. The Balance between Photoluminescence and Electroluminescence

Some tags are always tightly linked with PQDs nearly since it was invented, typically
high PLQY and poor EQE. The different mechanism between photoluminescence and
electroluminescence of PQD-LEDs is responsible for this discrepancy. The participation
of long-chain ligands such as commonly used OA/OAm is inevitable in the synthetic
methods of PQDs. These long-chain ligands benefit room-temperature preservation and
are sometimes helpful for their PLQY due to minimized interfacial energy loss. However,
in contrast to the photoluminescence process triggered by direct excitation of photons,
the electroluminescence process involves charge injection from outside the PQDs. The
long-chain ligands usually possess poor conductivity resulting in a much higher internal
resistance and Joule heat during operation, eventually leading to the high turn-on voltage
and poor stability of PQD-LEDs, especially for the deep-blue devices. To solve this problem,
short ligands or dilute-ligand structures are brought in to improve the preferable electrical
properties of the PQDs [55]. As an illustration, ligands with benzene rings could enhance the
charge transport between adjacent QDs through π-conjugation [30]. Pu et al. [55] modified
their core/shell PQDs with the method of electrochemically-inert ligand replacement,
sacrificing the PLQY from ~80% to ~60%, but significantly enhancing the peak EQE from
lower than 4% to approximately 10%. The balance between the photoluminescence and
electroluminescence properties of PQDs should be comprehensively taken into account to
meet various application scenarios.

3.5. Superior Light Purity

Among the light-emitting parameters of LEDs, color purity determined by the FWHM
of the emission peak is essential for high-quality display applications. The high color purity
could be the most predominant advantage of PQD-LEDs over commercially available
LEDs, where the FWHM for most PeLEDs is generally as small as ~20 nm (Table 1), much
narrower than the commercial FWHM criteria. The core-shell structure together with
the quantum-confinement effect bring in this outstanding feature [55]. For PQDs, the
uniform size distribution, homogenous crystal structure and low trap density [30] are the
key factors for narrow FWHM. Ultra-narrow FWHMs are witnessed for PQD-LEDs based
on Nd3+ modified CsPbBrxCl3−x with merely 14 nm at 481 nm [20], 14 nm at 463 nm for
undoped CsPbBrxCl3–x [32] and inspiring 12 nm at 463 nm for CsPbBr3 [33], while most
blue 2D/quasi-2D PeLEDs are with mediate-narrow FWHMs of around 25 nm.

4. Summary and Outlook

In conclusion, enhanced electroluminescence performance of PQD-LEDs can be
achieved by ligand engineering, morphology control, transporting layers design, etc. [30]
However, as shown in Table 3, the state-of-the-art PQD-LEDs still possess unsatisfactory
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EQE and device lifetime, far from the stage of real applications [55]. The basic commercial
requirements for displays should be at least several tens of thousands of hours [56]. Fur-
thermore, the long-term spectral stability under high luminance also put forward a huge
challenge for PQD-LEDs.

Table 3. Lifetime comparison of PeLEDs and OLEDs Reprinted with permission from Ref. [56]. 2021,
Springer Nature.

PeLEDs OLEDs

LT50 (hours)
Blue Green Red Blue Green Red

0.4 11 112 11,000 400,000 250,000

L0 (initial luminance) = 1000 cd·m−2.

Although industrialization seems too early for PQD-LEDs, we evaluate its rise in space
and commercial value with unbounded optimism. As Woo et al. [56] mentioned in their
work, compared with the 30 years of development of OLEDs before commercialization,
PeLEDs needed less than 10 years to burst into a consideration-worthy level. Prompted by
the increasing research intensity in this field, we believe the PQD-LED technology could
eventually make breakthroughs and embrace its bright future.
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