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Abstract: In this paper, an analytical method of solving the integro-differential system of kinetic and
balance equations describing the evolution of an ensemble of crystals during the intermediate phase
of the bulk crystallization process is described. The theory is developed for kinetic equations of the
first- and second order corresponding to the absence and presence of fluctuations in particle growth
rates. The crystal-size distribution function as well as the dynamics of metastability reduction in a
supercooled melt (supersaturated solution) are analytically found using the saddle-point and the
Laplace transform methods. The theory enables us to obtain the crystal-size distribution function
that establishes in a supercooled (supersaturated) liquid at the beginning of the final stage of a phase
transformation process when Ostwald ripening, coagulation and fragmentation of crystals are able
to occur.

Keywords: nucleation; crystal growth; phase transformation; supercooled liquid; crystal-size
distribution

1. Introduction

The phase transformations from a metastable to a thermodynamically stable state are
accompanied by the growth of new phase particles on microscopic inclusions or impurities.
In the early stages of a phase transformation, the evolution of nuclei can be considered
independently of each other, whereas in the later stages of the process it is necessary to
take into account the interaction between growing crystallites, which affects the degree of
liquid metastability (its supercooling or supersaturation) [1–5]. The dynamic process of
evolution of a metastable zone filled with the crystals at all stages of the phase transition is
important from the theoretical and applied points of view. In particular, this applies to crys-
tallization from supercooled melts or supersaturated solutions, where the phase transition
is maintained by fluctuations in the growth rates of particles, and the contribution from
impurity (representing nucleation sites) is rather small [6,7]. Note that crystal nucleation
and growth processes control the size distributions obtained in laboratory and industrial
crystallizers [8–13]. As this occurs, the growth rate of solid phase particles also plays a key
role in the evolution of the metastable system and, thus, in the physico-chemical properties
of the produced materials [14,15].

Generally speaking, the process of bulk phase transformation from a supercooled melt
or supersaturated solution may be described by four main stages [16,17]. The supercooled
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(supersaturated) state is established in the preliminary stage. Then, in the initial stage,
the formation of new phase nuclei occurs (in a heterogeneous or homogeneous manner).
Next, nucleation, crystal growth, and partial supercooling (or desupersaturation) occur
in the intermediate stage. A final stage describes the relaxation processes of Ostwald
ripening, coagulation, and particle fragmentation [18]. The study of the initial stages of
the phase transition is generally based on kinetic nucleation theory and on the assumption
that the growth of individual particles is independent [19–21]. The final stage of a phase
transformation is analyzed according to the Lifshitz-Slyozov theory, which is based on the
assumptions that no particles of a new phase appear and that large crystals grow at the
expense of small ones [22–28].

The present paper is focused on the study of the intermediate stage when the processes
of nucleation of the new phase elements and the growth of already existing crystals are of
same importance. The general theory of this stage is incomplete, however the intermediate
stage often takes most of the time of the whole phase transition process. This is caused, in
particular, since the corresponding mathematical model of the process is integro-differential,
and some of the boundary conditions are put on the moving growth boundaries. Note that
complete information on the dynamics of metastability removal and evolution of the new
phase may be derived by analyzing just this stage. The absence of universal methods for
solving the integrodifferential equations is the reason why the dynamics of desupercooling
(or desupersaturation) is completely ignored in several evolutionary models [29,30]. Note
that the necessity of simultaneous accounting for the processes of nucleation and growth
of a new phase is described, for example, in Refs. [31,32]. Nevertheless, many models are
based on stationary approximations (see, e.g., [33,34]), which may occur only at the very
initial stages or in the case of particular system parameters.

The earliest attempt to overcome the above described difficulties of formulating and
solving a mathematical model was undertaken in Ref. [35] using the saddle-point method
of calculating a Laplace-type integral. A similar approach was then used to solve problems
about the evolution of aggregates in magnetic fluids and metastable colloids [36,37]. The
approach and solutions [35] were then applied to describe protein crystallization [38] and
to verify von Weimarn theory describing the average size of crystals [39]. It is important to
note that the analytical solutions were obtained only for the main contribution to the Laplace
integral [35]. This contribution leads to the zero-order approximation of the Laplace integral
in the neighborhood of the saddle point. In this case, the dimensionless Gibbs number p
included in the nucleation frequency I = I∗ exp

(
−p/υ2) formally tends to infinity, where υ

and I∗ denote the dimensionless supercooling/supersaturation and pre-exponential factor.
Since p varies from ∼10−1 to ∼103 for real supercooled melts or supersaturated solutions,
the theory of Ref. [35] must be developed to describe such systems. It is also important
to note that even in the case of sufficiently large p ∼ 102 − 103 the zero-order solution of
Ref. [35] differs significantly from the complete solution containing the following terms.
Here we develop the nucleation and growth theory at the intermediate stage with allowance
for additional terms to the aforementioned zero-order solution and possible fluctuations in
crystal growth rates.

2. The Model of Nucleation and Crystal Growth

The molecular-kinetic theory is based on the assumption that micronuclei of a new phase
may form as a result of density fluctuations in metastable melts or solutions [19,20,40–42].
If the characteristic size of such nuclei exceeds some critical value r∗, they are able to
grow further and it will take work to form a new spherical particle of radius r in a one-
component system

Y(r) = 4πr2γi −
4
3

πr3ρs(µl − µs), (1)

where ρs is the solid phase density, γi is the surface tension, µs and µl are the chemical
potentials of the solid and liquid phases, respectively, and µl > µs for a metastable melt.
However, the critical radius r∗ of a particle can be achieved when Y(r) reaches a maximum.
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In this case, particals with radii r = r∗ are unstable, and the work Y∗ of their formation can
be written as

Y∗ =
16πγ3

i
3ρ2

s (µl − µs)2 . (2)

The chemical potential difference may be calculated using the Gibbs-Helmholtz equa-
tion and has a form [43]

µl − µs =
L∆T
Tp

, ∆T = Tp − Tl , (3)

where L represents the latent heat of the phase transition, and Tp and Tl are the phase tran-
sition and melt temperatures, respectively. Nucleation of a new phase occurs if the energy
barrier Y∗ that prevents nucleation is overcome. In this case, the nucleation frequency can
be represented as an exponential function of the energy barrier height [16,42,44]. Thus,
we obtain

I = I∗ exp
(
−Y∗
kBTl

)
= I∗ exp

(
−16πγ3

i T2
p

3ρ2
s L2∆T2kBTl

)
, (4)

where kB stands for the Boltzmann constant. The pre-exponential factor I∗ weakly depends
on supercooling/supersaturation (metastability degree) [20,40,41,45] and can be a function
of r [33]. However, in the present paper I∗ is assumed to be a constant, because the
nucleation frequency is included only in the boundary condition at r = r∗. Considering
∆T � Tp, expression (4) can be rewritten as

I = I∗ exp

(
−16πγ3

i Tp

3ρ2
s L2∆T2kB

)
. (5)

The model is applicable for single-component melts and should be modified for binary
systems. In that case, the phase transition temperature Tp must be replaced by the function
Tp(Cl), as it depends on the impurity concentration Cl . Equation (5) can be rewritten as

I = I∗ exp
[

−p
(∆T/∆T0)2

]
, p =

16πγ3
i Tp

3ρ2
s L2∆T2

0 kB
, (6)

where ∆T0 is the characteristic supercooling. Expression (6) defines the nucleation frequency
as a function of dimensionless supercooling υ = ∆T

∆T0
, and in the case of supersaturated

solutions has a form [46]

I = I∗ exp

[
−p

ln2(Cl/Cp)

]
, p =

16πγ3
i M2

s

3ρ2
s R2

gT3
s kB

. (7)

Here Cp is the supersaturation concentration, Ms is the molecular weight, Rg is the
universal gas constant, and Ts is the solution temperature.

Further, we will use a quasi-stationary approximation to solve a Stefan-type problem
with a moving phase transition boundary, which occurs as a result of nucleus growth. The
temperature/concentration field T around the growing spherical particle and a growth rate
dr
dτ take a form

∇2T = 0, ρ > r(τ),
dr
dτ

= − λl
ρsL

∂T
∂ρ

= β∗(Tp − T),

ρ = r(τ), ρ/r(τ)� 1, T → Tl , (8)
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where ρ represents the spherical coordinate, λl is the thermal conductivity coefficient of
the liquid phase, β∗ is the kinematic parameter, and τ stands for time. The solution of
Equation (8) defines the particle growth rate as

dr
dτ

=
β∗∆T

1 + β∗qr
, q =

ρsL
λl

. (9)

Expression (9) represents the growth rate as a linear function of supercooling that has
two regimes. When the crystal size is small, r � (β∗q)

−1, growth regime is called kinetic,
since it is entirely determined by surface processes. The other regime occurs when the
crystals significantly exceed the value of (β∗q)

−1, and the growth rate is controlled by heat
dissipation velocity. In the case of liquid solutions, Equation (9) can be rewritten as [47]

dr
dτ

=
β∗∆C

1 + β∗qCr
, qC =

Cp(k0 − 1)
D

, (10)

where k0 is the partition coefficient, D and ∆C represent the diffusion coefficient and the
liquid supersaturation, respectively.

Next, consider a system of spherical solid crystals in a macroscopically homogeneous
one-component supercooled (supersaturated) system. The evolution of the system can be
described by the Fokker-Planck type kinetic equation. Neglecting random fluctuations
in the crystal growth rate and considering a temperature distribution in the system as
homogeneous, we get

∂φ

∂τ
+

∂

∂r

(
dr
dτ

φ

)
= 0, r > r∗, (11)

ρmCm
d∆T
dτ

= −4πρsL
∞∫

r∗

r2 dr
dτ

φdr, (12)

where φ is a number size density, Cm and ρm are heat capacity and constant density of a
melt, respectively. We also suppose that the liquid instantaneously cools down below the
crystallization temperature by ∆T0 at the initial moment. The boundary conditions for
Equations (11) and (12) can be written as

τ = 0, ∆T = ∆T0, φ = 0, (13)

r = r∗,
dr
dτ

φ = I(∆T). (14)

Expressions (4)–(7) and (9)–(14) represent a complete system of equations describing
the intermediate stage of bulk phase transitions.

3. Kinetics of Supercooling (Supersaturation) Removal

Let us introduce the following dimensionless parameters and variables

ζ =
r
l0

, t =
τ

τ0
, υ =

∆T
∆T0

, Φ = l4
0φ, (15)

τ0 =
(

β3
∗∆T3

0 I0

)−1/4
, l0 = (β∗∆T0)

1/4 I−1/4
0 , α∗ =

β∗ρsLl0
λl

, B1 =
4πρsL

ρmCm∆T0
, (16)

where I0 = I(∆T0). Rewriting the statement of the problem (r∗ → 0) in dimensionless
variables (16), we arrive at

∂Φ
∂t

+ υ
∂

∂ζ

(
Φ

1 + α∗ζ

)
= 0, ζ > 0, (17)
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dυ

dt
= −B1υ

∞∫
0

ζ2Φ(t, ζ)

1 + α∗ζ
dζ, (18)

Φ = 0, t = 0, υ = 1, (19)

Φ =
1
υ

exp[pg(υ)], ζ = 0. (20)

Note that the dimensionless model (17)–(20) defines an intermediate stage of phase
transitions both for supercooled melts and supersaturated solutions. The function g(υ)
determines the kinetic law of the process in Equation (20) that can be used for both homo-
geneous and heterogeneous nucleation [48].

In the case of supercooled melt (lower index “sm”) and Weber-Volmer-Frenkel-Zel’dovich
kinetics (WVFZ), we obtain the function g(υ) from Equation (6) as

g(υ) = gsm = 1− υ−2. (21)

Using the empirical law I = I∗(∆T)p for the nucleation frequency, (see [49]), we have

g(υ) = gsm = ln υ. (22)

In the case a supersaturated solution (lower index “ss”), υ represents dimensionless
supersaturation, and dimensionless parameters can be defined as

υ =
∆C
∆C0

, α∗ =
β∗Cpl0

D
, B1 =

4πCp

∆C0
, τ0 =

(
β3
∗∆C3

0 I0

)−1/4
, l0 = (β∗∆C0)

1/4 I−1/4
0 , (23)

where ∆C0 is the initial supersaturation.
Further, for a supersaturated solution with WVFZ kinetics, we obtain from

expression (7)

g(υ) = gss = ln−2
(

1 +
1

υp

)
− ln−2

(
1 +

υ

υp

)
, (24)

where υp =
Cp

∆C0
.

In the case of a supersaturated solution with Meirs kinetics I = I∗(∆C)p [44], we have

g(υ) = gss = ln υ. (25)

The kinetics of metastability removal is described by the nonlinear integro-differential
Equations (17) and (18). The analytical solution of the model is obtained from the saddle-
point method for calculating a Laplace-type integral [50,51]. The solution to Equation (17)
with boundary and initial conditions (19) and (20) is given by

Φ(t, ζ) = (1 + α∗ζ)ϕ(ξ(t)− η(ζ))Heav(ξ(t)− η(ζ)), (26)

where

ϕ(ξ(t)) =
1

υ(t)
exp[pg(υ(t))], ξ(t) =

t∫
0

υ(t)dt, η(ζ) =

ζ∫
0

(1 + α∗ζ)dζ = ζ +
α∗ζ2

2
,

and Heav(ξ) denotes the Heaviside function.
Integration of the dimensionless growth rate from Equations (9) and (10) using vari-

ables (16) and (23) we arrive at
dζ

dt
=

υ(t)
1 + α∗ζ

,
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and with the initial condition ζ = 0 at t = ν, we obtain

α∗ζ =
√

1 + 2α∗[ξ(t)− ξ(ν)]− 1. (27)

Expression (27) determines the crystal radius ζm(t) in a dimensionless form (at ν = 0)
appearing as a function of time t.

Now we replace the variable ζ at any constant time t by the new variable ν as

ξ(ν) = ξ(t)− η(ζ).

Note that the limits ζ = ζm(t) and ζ = 0 of the integration over ζ correspond to
the limits ν = t and ν = 0 of the integration over ν, respectively. Hence, by substituting
Equations (26) and (27) into expression (7), we arrive at

dυ

dt
= −B1υ

t∫
0

h(ν, t) exp[pg(ν)]dν, (28)

where

h(ν, t) =

{√
1 + 2α∗[ξ(t)− ξ(ν)]− 1

}2

α2∗
√

1 + 2α∗[ξ(t)− ξ(ν)]
, (29)

and g(ν) = g(υ(ν)) is defined by Equations (21), (22), (24) or (25).
The integro-differential Equation (28) can be simplified if the dimensionless Gibbs

number p is higher than unity and the nucleation is sufficiently intense. In this case, the
Laplace-type integral (28) can be calculated using the saddle-point method.

Equations (21), (22), (24) and (25) introduce dg
dν < 0 for all kinetic mechanisms. This

represents that the function g(ν) reaches the maximum at the boundary ν = 0. Using the
Equation (28) and calculating the derivatives of the function υ over ν, we arrive at first
three derivatives that are equal to zero at ν = 0, and g(n)|ν=0 6= 0 at n ≥ 4.

The first four derivatives are given in Table 1, where

χ =

(
6
B1

)1/4
, κ =

1(
1 + υp

)
ln3
(

1 + υ−1
p

) .

Thus, the saddle point method for an integral of Laplace type (28) gives the solution
to the problem as follows [50]

t∫
0

h(ν, t) exp[pg(ν)]dν ≈
∞

∑
k=0

p−(k+1)/4ak(ξ(t)), (30)

ak(ξ(t)) = (−1)k+1 4k

k!
Γ
(

k + 1
4

)
Hk(0)

dk

dνk [h(ν, t)H(ν)]ν=0, (31)

where Γ represents the Euler gamma function, and

H(ν) =
[g(ν)]3/4

g′(ν)
.
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Table 1. Functions and parameters of the analytic solution for various kinetics. Here z = z(ξ(t)) =
1 + 2α∗ξ(t), and φ0, φ1, φ2 and φ3 are given below.

Supercooled Melts Supersaturated Solutions
WVFZ Kinetics Meirs Kinetics WVFZ Kinetics Meirs Kinetics

I = I∗ exp
[

−p
(∆T/∆T0)

2

]
I = I∗(∆T)p

I = I∗ exp
[

−p
ln2(Cl /Cp)

]
I = I∗(∆C)p

Values (6) and (16) (16) (7) and (23) (23)
g(υ) (21) (22) (24) (25)

g(IV)|ν=0 −4B1 −2B1 −4κB1 −2B1
g(V)|ν=0 24B1α∗ 12B1α∗ 24κB1α∗ 12B1α∗
g(VI)|ν=0 −180B1α2

∗ −90B1α2
∗ −180κB1α2

∗ −90B1α2
∗

g(VII)|ν=0 1680B1α3
∗ 840B1α3

∗ 1680κB1α3
∗ 840B1α3

∗
H|ν=0 −χ/4 −21/4χ/4 −κ−1/4χ/4 −21/4χ/4
H′|ν=0 −3α∗χ/20 −3α∗21/4χ/20 −3κ−1/4α∗χ/20 −3α∗21/4χ/20
H′′|ν=0 9α2

∗χ/50 9α2
∗21/4χ/50 9κ−1/4α2

∗χ/50 9α2
∗21/4χ/50

H′′′|ν=0 −57α3
∗χ/100 −57α3

∗21/4χ/100 −57κ−1/4α3
∗χ/100 −57α3

∗21/4χ/100
υ0(z) 1− φ0(z) 1− 21/4φ0(z) 1− κ−1/4φ0(z) 1− 21/4φ0(z)
υ1(z) υ0(z) + φ1(z) υ0(z) +

√
2φ1(z) υ0(z) + κ−1/2φ1(z) υ0(z) +

√
2φ1(z)

υ2(z) υ1(z) + φ2(z) υ1(z) + 23/4φ2(z) υ1(z) + κ−3/4φ2(z) υ1(z) + 23/4φ2(z)
υ3(z) υ2(z) + φ3(z) υ2(z) + 2φ3(z) υ2(z) + κ−1φ3(z) υ2(z) + 2φ3(z)

The first four coefficients in expression (31) have the form (z = z(ξ(t)))

a0(z) = −Γ
(

1
4

)
h(0, t)H(0), a1(z) = 4Γ

(
1
2

)
H(0)

[
H(0)

(
∂h
∂ν

)
ν=0

+ h(0, t)H′(0)
]

,

a2(z) = −8Γ
(

3
4

)
H2(0)

[
2H′(0)

(
∂h
∂ν

)
ν=0

+H(0)
(

∂2h
∂ν2

)
ν=0

+ h(0, t)H′′(0)
]

,

a3(z) =
32
3

H3(0)
[

3H′′(0)
(

∂h
∂ν

)
ν=0

+ h(0, t)H′′′(0) +3H′(0)
(

∂2h
∂ν2

)
ν=0

+ H(0)
(

∂3h
∂ν3

)
ν=0

]
,

where H and its derivatives at the point ν = 0 are given in Table 1, and

h(0, t) =
(√

z− 1
)2

α2∗
√

z
,
(

∂h
∂ν

)
ν=0

=

(√
z− 1

)2

α∗z3/2 − 2
√

z− 1
α∗z

,

(
∂2h
∂ν2

)
ν=0

=
3

z5/2 −
1

z3/2 ,
(

∂3h
∂ν3

)
ν=0

=
15α∗
z7/2 −

3α∗
z5/2 .

The functions φ0(z), φ1(z), φ2(z), and φ3(z) in Table 1, have the form

φ0 = Γ
(

1
4

)
B1χ

(√
z− 1

)3

12α3∗p1/4
, φ1 =

√
6πB1

(√
z− 1

)2(√z− z + 5
)

20α2∗
√

pz
,

φ2 = Γ
(

3
4

)
B1χ3

200α∗p3/4z3/2

(
25 + 5z− 66z3/2 + 48z2 − 18z5/2 + 6z3

)
,

φ3 =
75 + 20z− 99z2 + 77z5/2 − 111z3 + 57z7/2 − 19z4

100pz5/2 .

Note that

z = z(ξ(t)) = 1 + 2α∗ξ(t), ξ(t) =
t∫

0

υ(t)dt.
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Substituting now
dυ

dt
=

dυ

dξ

dξ

dt
= υ

dυ

dξ

to the left side of Equation (28) and taking expression (30) into account, we obtain the
differential equation for dimensionless metastability degree

dυ

dξ
= −B1

∞

∑
k=0

p−(k+1)/4ak(ξ).

By integrating it, we obtain the solution for υ as

υ(ξ) = −B1 p−1/4
ξ∫

0

∞

∑
k=0

p−k/4ak(ξ)dξ + 1. (32)

Further, we find an expression for t(ξ) to determine υ as a function of time t. Substi-
tuting υ(ξ) from (32) into the relation υ = dξ/dt, we obtain

t(ξ) =
ξ∫

0

dξ

υ(ξ)
. (33)

The Equations (32) and (33) determine the dimensionless metastability degree υ as a
function of time t in parametric form. Figure 1 shows this function for the two mechanisms
of kinetic crystal growth from supercooled melt, where υ = υ0 is the main contribution
to the sum in expression (32) and υ = υi (i = 1, 2, 3) represents the i-approximation of the
complete solution for υ

υ = υi = −B1 p−1/4
ξ∫

0

i

∑
k=0

p−k/4ak(ξ)dξ + 1.

Figure 1 illustrates dimensionless supercooling υ to the dimensionless time t. If the
melt was initially supercooled (see Figure 1a,b), the rate of supercooling removal is high
(this can be explained mathematically by the inflection point in the Figure 1b for small t).
Otherwise, υ2 and υ3 in Figure 1b,c show that the initially fast rate of metastability removal
decreases with time as nucleation slows and coarsening of existing crystallites continues.

The given solutions allow us to determine an equation for the density function of
crystal size distribution. Considering the maximum size of crystals appearing at the zero
moment of time

ζm(ξ(t)) =
√

1 + 2α∗ξ(t)− 1
α∗

, (34)

we arrive at

Φ(ξ(t), ζ) = (1 + α∗ζ)E−1
1 (t, ζ) exp

[
−

p(1− E2
1)

E2
1

]
, (35)

where

E1(ξ(t), ζ) = 1− B1

ξ(t)−ζ−α∗ζ2/2∫
0

∞

∑
k=0

p−(k+1)/4ak(ξ)dξ.

Here ζ is limited by ζm, ξ(t) is defined by (33) as an inverse function.
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Figure 1. Dimensionless supercooling υ = ∆T
∆T0

as a function of dimensionless time t = τ
τ0

: (a) WVFZ
kinetics at ∆T0 = 373 K, p = 66.9; (b) WVFZ kinetics at ∆T0 = 573 K, p = 7.4; (c) Meirs kinet-
ics at ∆T0 = 573 K, p = 4. The physical parameters are typical for supercooled melts [52–54]:
γi = 0.3 J m−2, LV = 7× 109 J m−3, Tp = 1273 K, ρs = 7.8× 103 kg m−3, ρm = ρl = 7× 103 kg m−3,
β∗ = 0.5× 10−7 m/s−1 K−1, λl = 63 J m−1 K−1 s−1, I0 = 1011 m−3 s−1, Cm = 840 Jkg−1 K−1.

Figure 2 represents the evolution of the dimensionless density of the distribution
function Φ. It can be seen that weak inflection points appear as time increases. This
means that the high nucleation rate is typical for the initial stage of the process when
supercooling/supersaturation is close to the value υ = 1. The nucleation process is
followed by coarsening of the crystallites, which reduces the metastability degree of the
system, slows down the intensity of nucleation, and leads to inflection points on the density
graphs of the distribution function. It is important to note that such behavior was previously
observed in experiments (see, for example, [55–58]).

The total number of crystals in the metastable system is an important parameter for
the intermediate stage of phase transitions

N(ξ(t)) =
1
l3
0

ζm(ξ(t))∫
0

Φ(ξ(t), ζ)dζ, (36)

where ζm(ξ) and ξ(t) are defined by expressions (33) and (34). The other important
parameter of evolving particulate ensembles is the average size of crystals

L̄(ξ(t)) = l0

ζm(ξ(t))∫
0

ζΦdζ

 ζm(ξ(t))∫
0

Φdζ


−1

. (37)

Equations (36) and (37) are complete solutions written in parametric form.
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The dimensionless number of crystals ni(t) and average crystal size ui(t), correspond-
ing to the i-approximation of the solution (35), are shown in Figure 3 (functions ui and
ni are defined below). It is easy to see that approximations n2 and u2 correspond to the
third-order solutions n3 and u3. It is important to note the stability of the characteristics
with increasing time at the intermediate stage of the phase transformation process, while
the main contributions n0 and u0 previously found in [35], give only a rough approximation
to the solution behavior.

Figure 2. The dimensionless distribution function Φ(t, ζ) as a function of ζ = r
l0

at different times
t = τ

τ0
for supercooled melts with WVFZ kinetics: (a) p = 669, ∆T0 = 373 K, (1) t = 0.05, ξ = 0.05,

(2) t = 0.254, ξ = 0.25, (3) t = 0.503, ξ = 0.45, and (4) t = 1.513, ξ = 0.591; (b) p = 7.4, ∆T0 = 573
K, (1) t = 0.051, ξ = 0.05, (2) t = 0.263, ξ = 0.25, (3) t = 0.496, ξ = 0.45, and (4) t = 1.95, ξ = 0.71.
The maximal size ζm of crystals is shown by vertical lines at different moments of time. The curves
denoted by simbole (4) corresponding to the moment when supercooling is removed (υ = 0).

Figure 3. The dimensionless number of crystals ni =
Ni(ξ)

N3(ξ∗)
(a) and average crystal size ui =

L̄i(ξ)
L̄3(ξ∗)

(b) as a function of dimensionless time t = τ
τ0

for supercooled melts with WVFZ kinetics, p = 7.4,
∆T0 = 573 K. The vertical lines show the time of the process when supercooling is totally removed.

The number Ni of crystals and the average crystal size L̄i, corresponding to the i-
approximation of the solution can be written as

Ni(ξ(t)) =
1
l3
0

ζm(ξ(t))∫
0

Φi(ξ(t), ζ)dζ, L̄i(ξ(t)) = l0

ζm(ξ(t))∫
0

ζΦidζ

 ζm(ξ(t))∫
0

Φidζ


−1

,

where

Φi(ξ(t), ζ) = (1 + α∗ζ)E−1
1i (t, ζ) exp

[
−

p(1− E2
1i)

E2
1i

]
,
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E1i(ξ(t), ζ) = 1− B1

ξ(t)−ζ−α∗ζ2/2∫
0

i

∑
k=0

p−(k+1)/4ak(ξ)dξ.

The relative number of particles ni and the average crystal radius ui, shown in Figure 3,
can be written in the form

ni(ξ(t)) =
Ni(ξ(t))
N3(ξ∗)

, ui(ξ(t)) =
L̄i(ξ(t))
L̄3(ξ∗)

,

where, the parameter ξ∗ corresponds to the time t∗ when supercooling/supersaturation of
the system is completely removed. This dependence is defined by Equation (33), where
t∗ = t(ξ∗).

4. The Model with Fluctuations in Crystal Growth Rates

Experiments demonstrate that the crystal growth rate has random fluctuations [59–62]
occuring a random crystal radius r(τ). Thus, the kinetic equation for the density φ can be
written as

∂φ

∂τ
+

∂

∂r

(
dr
dτ

φ

)
=

∂

∂r

(
D

∂φ

∂r

)
, τ > 0, r > r∗, (38)

where D is a function determining fluctuation rate. Then, equating the crystal flux of
minimum size r∗ to the nucleation frequency I, the boundary conditions are found as

dr
dτ

φ− D
∂φ

∂r
= I(∆T), r = r∗, τ > 0, (39)

φ = 0, r → ∞, (40)

where
dr
dτ

= β∗∆T, (41)

D = d1
dr
dτ

= β∗d1∆T. (42)

Parameter d1 is the proportionality constant. Note that this theoretical assumption is
also confirmed experimentally [63]. Thus, the equations and conditions (12), (13), (38)–(42)
represent the complete statement of the problem.

Let us now rewrite this problem statement in dimensionless variables (16) (Φ = Φ(t, ζ),
r∗ → 0, υ = υ(t)) as

∂Φ
∂t

+ υ
∂Φ
∂ζ

= u0υ
∂2Φ
∂ζ2 , t > 0, ζ > 0, (43)

Φ = 0, ζ → ∞, (44)

υ = 1− B
∞∫

0

ζ3Φ(t, ζ)dζ, t > 0, (45)

J(υ) ≡ 1
υ

exp[pϕ(υ)] = Φ− u0
∂Φ
∂ζ

, ζ = 0. (46)

Here B = B1/3, u0 = d1/l0, Equation (45) is time-integrated with (38). Initial condi-
tions (19) in the case of WVFZ kinetics can be written as ϕ(υ) = 1− υ−2 and in the case of
Meirs kinetic as ϕ(υ) = ln(υ).

Entering the modified time

ξ(t) =
t∫

0

υ(t1)dt1,
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we rewrite Equation (43) in the following form (υ = υ(ξ), Φ = Φ(ξ, ζ))

∂Φ
∂ξ

+
∂Φ
∂ζ

= u0
∂2Φ
∂ζ2 , ξ > 0, ζ > 0. (47)

The equation may be solved using the Laplace integral method (the initial condition
gives ξ = 0 and Φ = 0).

Considering the boundary conditions (44) and (46), we write the final solution of
Equation (47) as

Φ(ξ, ζ) = exp
(

ζ

2u0

) ξ∫
0

J[υ(ξ − η)]√
u0

exp
(
− η

4u0

)[
1
√

πη
exp

(
− ζ2

4u0η

)

− 1
2
√

u0
exp

(
ζ

2u0
+

η

4u0

)
erfc

(
ζ

2
√

u0η
+

√
η

2
√

u0

)]
dη. (48)

Substituting the Equation (48) into (45) and evaluating the integral over ζ, we obtain

υ(ξ) = 1− B
ξ∫

0

J[υ(ξ − η)]h(η)dη, (49)

where

h(η) =
2√
π

[
exp

(
− η

4u0

)(
1
2

u1/2
0 η5/2 +

7
2

u3/2
0 η3/2 − 3u5/2

0 η1/2
)

+
√

π

(
9
2

u0η2 + 3u3
0 +

η3

2

)]
− erfc

( √
η

2
√

u0

)[
6u3

0 +
9
2

u0η2 +
η3

2

]
,

J[υ(ξ − η)] =
1

υ(ξ − η)
exp{pϕ[υ(ξ − η)]}.

Next, we replace the variable by the inverse function η = η(υ) to solve the Equation (49)
and arrive at

υ = 1− B
υ∫

1

J(υ1)h[η(υ1)]
dη

dυ1
dυ1. (50)

Differentiating the Equation (50) over the variable υ gives an equation with separate
variables, the integration of which determines the implicit expression for υ(ξ) as

υ∫
1

dυ1

J(υ1)
=

υ∫
1

υ1 exp[−pϕ(υ1)]dυ1 = −B
ξ∫

0

h(η)dη ≡ H(ξ). (51)

Substituting the expressions for ϕ, we find υ(ξ) for WVFZ kinetics in a form

υ2 exp
[
−p
(

1− 1
υ2

)]
− 1− p exp(−p)Ep(υ) = 2H(ξ), (52)

and for Meirs kinetics

υ(ξ) = [(2− p)H(ξ) + 1]1/(2−p), p 6= 2; υ(ξ) = exp[H(ξ)], p = 2. (53)

Here Ep(ζ) denotes the integral function

Ep(υ) =

p/υ2∫
p

exp(v)dv
v

.
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The analytical solutions (51)–(53) satisfy the integral Equation (49).
Given the density of the distribution function (48), find the number N of crystals as a

function of the parameter ξ

N =

∞∫
0

φ(τ, r)dr =
1
l3
0

∞∫
0

Φ(ξ, ζ)dζ =
1
l3
0

ξ∫
0

J[υ(ξ − η)]dη. (54)

Now rewriting ξ(t), we obtain the solution with parameter ξ as

t(ξ) =
ξ∫

0

dξ1

υ(ξ1)
. (55)

Equations (48), (51)–(55) are exact analytical solutions of the integro-differential model
describing nucleation and growth of crystals at the intermediate stage of phase transitions.
The solution is expressed in a general form that is valid for various kinetic mechanisms.

Figures 4 and 5 show an exact analytical solutions according to expressions (48), (53),
and (55) for Meirs nucleation kinetics. It can be seen that the removal of supercooling slows
down with time when the nucleation process is not intense enough (when ξ is greater than
or near unity in Figure 4), while the density of the distribution function becomes larger
with increasing time (when ξ increases in Figure 5).

Figure 4. The dimensionless supercooling υ = ∆T
∆T0

and time t = τ
τ0

depending on the modified time ξ.
The physical parameters are typical for metallic alloys: u0 = 10−2, B = 14.92, ∆T0 = 300 oC, p = 2.2.

Figure 6 demonstrates the transition from a bell-shaped distribution to a distribution
with a break point as the parameter u0 decreases. When u0 is small enough, the distribution
function has the behavior described, for example, in [64], where the early stages of the
Ostwald ripening process were observed. It shows that the diffusion term in Equation (38)
is important in the initial stages of the intermediate phase transition. Figure 7 compares
the theory with experimental data on crystallization kinetics of lysozyme and canavalin.
The metastability reduction is in good agreement with experimental data for a broad
range of time changes, as can easily be seen. Significantly, the analytical method defining
the intermediate stage of phase transitions can be applied to determine the initial crystal
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distribution at the final stage of phase transformation and the Ostwald ripening stage
(when the supercooling of the system tends to zero).

Figure 5. The dimensionless density of the distribution function Φ as a function of the crystal radius
at different time moments.

Figure 6. The dimensionless density of the distribution function Φ as a function of the crystal radius
at different values of the parameter u0 (ξ = 1).
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Figure 7. Comparison of theory (solid line) with experiment (dots) [65]. Calculated parameters in
Equation (53): u0 = 10−1, p = 4.5.

5. Conclusions

This paper deals with the intermediate stage of a phase transformation in one-component
metastable systems (melts or solutions). The main results are as follows:

(i) A complete analytic solution of the integro-differential model that describes the inter-
mediate phase transition in one-component melts and solutions without taking into
account fluctuations in the crystal growth rate has been found. Within the framework
of this model, an exact analytical solution of the kinetic equation is obtained, and
the density of the crystal size distribution function is found. An integro-differential
equation for the metastability degree has been derived. A complete analytical solution
to this equation is constructed based on the saddle-point method for calculating the
Laplace-type integral.

(ii) Our studies show that the found second approximation of the asymptotic solution
is sufficient for quantitative analysis of the solution to the problem. In other words,
our study demonstrates the sign-variable convergence of solutions to the second
approximation, which indicates the fundamental importance of taking into account
the first and second corrections in the asymptotic solution of the problem. The
convergence of the found solution is ensured by a large value of the dimensionless
Gibbs number p and/or by the smallness of the parameter α∗, which is typical for a
wide class of real systems. An explicit form of the first four coefficients of the found
asymptotic solutions for the Weber-Volmer-Frenkel-Zel’dovich and Meiers nucleation
kinetics is derived.

(iii) Within the framework of the obtained solution, it is shown that the metastability
degree and density of the distribution function have inflection points (observed
experimentally) responsible for different stages of the phase transition process. At the
initial times, when supercooling/supersaturation is large, the appearance of nuclei is
the dominant process; then this process is followed by the growth of crystallites, which
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becomes dominant at the final stages of the intermediate phase transition when the
metastability of the system is sufficiently small and nucleation proceeds unintensively.

(iv) An exact analytical solution has been found for an integro-differential model de-
scribing the intermediate stage of the phase transition in one-component melts and
solutions taking fluctuations in the crystal growth rate into account. Namely, the
density of the crystal size distribution function has been determined and an implicit
expression for metastability degree of the system in the case of different nucleation
kinetics has been driven. The parametric solution to the problem constructed in this
work is detailed for the frequently encountered Weber-Volmer-Frenkel-Zel’dovich
and Meirs nucleation kinetics.

(v) It is shown that the exact analytical solution to the integro-differential model with
allowance for the “diffusion” term in the Fokker-Planck equation passes into a com-
plete solution of the “non-diffusion” model (when the “diffusion” term in the kinetic
equation is small enough). The analytical solutions, describing the evolution of the
phase transformation at the intermediate stage, can be used as initial conditions at the
final stage of the phase transition (e.g., at the stage of Ostwald ripening or coagulation
of crystals).

In general, the paper shows methods for solving the kinetic and balance equations for
the intermediate stage of phase transformation with and without considering fluctuations
in crystal growth rates (respectively in the case of the kinetic equation of second and
first orders). The solutions found can be used as initial conditions for the final phase of
the phase transformation, which is described by different models with consideration of
Ostwald ripening of the particles, their possible coagulation, and fragmentation [66–70].
The theory developed in this paper may be generalized to the case of a simultaneous phase
transformation in the volume of the metastable phase and in a given spatial direction
(directional phase transition), which is caused by the presence of temperature gradients.
This situation occurs when crystals grow in the moving region of the phase transformation—
the two-phase layer. A theory combining volumetric and directional phase transformation
can be developed in the spirit of Refs. [71–80].
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