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Abstract: Functionally graded materials (FGMs), which constitute a new type of composite material,
have received considerable attention in industry because of the spatial gradient of their composition
and the microstructure-induced gradient in their material performance, which make them better
suited for high-performance multifunctional applications. Additive manufacturing (AM) has become
one of the most promising techniques for the manufacture of materials and structures because of
its high flexibility. The combination of advanced materials (FGMs) and advanced manufacturing
methods (AM) is expected to facilitate the further development of such engineering materials. In this
paper, the definition, historical development and material gradient types of FGMs are introduced. The
classification, process principle and typical research results of the AM of metal FGMs are summarized
and discussed. In particular, the research status of wire and arc additive manufacture (WAAM),
which is more suitable for the preparation of large-scale metal FGMs, is reviewed in detail according
to the types of FGMs, and a double-wire bypass plasma arc additive manufacturing technique, which
is suitable for inducing a gradient along the direction of single-pass cladding, is proposed. On the
basis of this summary of the important achievements made to date, future research is proposed.

Keywords: functionally graded materials (FGMs); material gradient type; functionally graded
additive manufacturing; wire and arc additive manufacture (WAAM)

1. Introduction

Materials are an important basis for human scientific and technological progress and
social development, and the development and innovation of advanced materials are the
core of modern manufacturing [1]. With the rapid development of the manufacturing in-
dustry, traditional homogeneous materials have been unable to meet the sophistication and
diversification requirements of component structure and function. For example, different
parts of a structure with different densities, thermal expansion coefficients, ferromagnetism,
crystal structures, strengths, etc. are needed [2], which has inspired the gradual introduc-
tion of FGMs. FGMs are new biomimetic materials with special functions whose chemical
composition, microstructure and atomic order change continuously or quasicontinuously
along the length, thickness or other specific direction of the materials, and the physical,
chemical and mechanical properties of the materials change continuously or quasicontinu-
ously along the same direction [3–5]. These materials have strong designability, and the
properties and functions of the materials change with the material position to satisfy the
complex and diversified structural and functional requirements to achieve wide use in the
aerospace, electronic optics, energy engineering, petrochemical engineering, biomedical
engineering and other fields [6–13].
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FGMs were first discovered by Bever et al. in 1972, and this concept was formally
proposed by the Japanese scientists Masayuki Shinano and Toshio Hirai et al. in 1987 in
an aerospace project at the National Aerospace Laboratory [5,14,15]. Since then, many
researchers have carried out research on FGMs. Traditional methods for preparing FGMs
mainly include plasma spraying, chemical vapour deposition, physical vapour deposition,
centrifugal casting, powder metallurgy and self-propagating high-temperature synthe-
sis [16–26]. Although these traditional preparation methods have many advantages, they
also have many limitations in practical applications. For example, physical and chemical
vapour deposition methods can form only surface coatings and are not suitable for form-
ing block coatings, centrifugal casting can produce only cylindrical components, powder
metallurgy can produce only relatively simple structures with high porosity and the self-
propagating high-temperature synthesis method is limited by material selection. These
limitations have become an obstacle to the further development and industrial application
of FGMs. It is thus necessary to explore new methods for the preparation of FGMs.

Additive manufacturing (AM), a strategic emerging industry, is rapidly changing the
traditional manufacturing mode [27]. AM is a technique based on the principle of discrete
stacking, which accumulatively generates three-dimensional entities through continuous
physical layer stacking and can better control the components and performance of metal
components than any previous metallurgical techniques. This process provides designers
with greater freedom to design according to their own needs, achieve higher production
speed and maximum material utilization, and produce more personalized products [5]. The
common metal AM techniques based on different heat sources (laser, electron beam and
arc) and different raw material supplies (powder bed, powder feeding and wire feeding)
are derived from a number of technical routes, but most AM techniques work for a single
metal material [28–30]. The AM techniques of FGMs involves the preparation of a FGM
structure with multiple material properties by changing the ratio of the filling materials
and process parameters of the accumulation layer. Based on common metal AM techniques,
many researchers have reformed/optimized the manufacturing system and carried out
extensive research on the AM of metal FGMs with heterogeneous metal materials [31–36].

Because the AM for large-scale metal FGMs has wide application potential, the research
status of this technique is reviewed in this paper. The types of FGMs prepared by AM in
recent years are introduced, and the classification, process principle and typical research
results of metal FGM AM are summarized and discussed. In particular, the research
status of WAAM, which is more suitable for the preparation of large-scale metal FGMs, is
reviewed in detail according to the types of FGMs. Finally, future research is proposed,
especially for the WAAM of FGMs.

2. Types of FGMs Prepared by AM

Different from traditional materials, FGMs have the great advantage of material gra-
dients designed according to requirements to achieve functional gradient characteristics.
Fundamentally, material gradients are related to changes in material composition and mi-
crostructural characteristics. According to the nature of the gradient, material gradients can
be divided into four types: fraction gradient, shape gradient, size gradient and orientation
gradient, as shown in Figure 1 [5,37]. According to the material, FGMs prepared by AM
can be divided into two types: homogeneous materials and heterogeneous materials [38].

Homogeneous materials are obtained by using the same filling material (powder or
wire) and adjusting the process or structural design parameters in the AM process, forming
a single-phase material with a gradient distribution of microstructural characteristics or
macroscopic structure size, which can be divided into four types: solid solution enhance-
ment, grain size, grain orientation and lattice structure [2,38]. Solid-solution-enhancement
FGMs (Figure 2a) have the same basic substance phase, and the gradient distribution of
solid solution gases is created by the adjustment of the shielding gas composition dur-
ing the AM process. Grain-size and grain-orientation FGMs (Figure 2b,c) are obtained
by adjusting the process parameters during AM, such as heat input, scanning path and
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scanning rate [38]. Lattice-structure FGMs (Figure 2d) have lattice structure size gradient
distributions and are prepared by AM techniques through structural design.
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Heterogeneous gradient materials are obtained by using two or more kinds of fill-
ing material (powders or wires) and adjusting the powder/wire feeding speeds during
the AM process, resulting in the formation of a material with a gradient distribution of
alloying elements or the second phase, which can be divided into four types: contin-
uous components, gradient components, insoluble particles and fusible particles [2,38].
Continuous-component FGMs (Figure 2e) are gradient materials with a smooth transition
of the composition gradient of the multiphase alloy, which is formed by gradually adjusting
the feeding speed for two or more kinds of powders or wires during the AM process [38].
Gradient-component FGMs (Figure 2f) are gradient materials with a steep transition of
the multiphase alloy composition achieved by adjusting the feeding speed for two or
more kinds of powders or wires during the AM process under metallurgy conditions [38].
Insoluble-particle FGMs (Figure 2g) are gradient materials with a volume fraction or size
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gradient distribution of insoluble particles prepared by adjusting the ratio between insolu-
ble reinforced particles and matrix materials during the AM process. Fusible-particle FGMs
(Figure 2h) are gradient materials with volume fraction or size gradient distribution of
fusible particles achieved by adjusting the ratio between the dissolved reinforced particles
and matrix materials during the AM process.

3. AM Techniques for Metal FGMs

AM has become the most promising and efficient method for the preparation of
FGMs due to its discrete-stacking manufacturing concept. At present, common metal AM
techniques can be divided into laser AM, electron beam AM and WAAM techniques based
on the different heat sources. In this section, their applications in the preparation of FGMs
are discussed in turn, with a focus on the WAAM technique, which is suitable for large-scale
metal FGM AM.

3.1. Laser AM Techniques for Metal FGMs

The laser AM technique uses a high-energy laser as the heat source and a metal wire
or powder as the raw material, stacking the materials layer by layer until finally forming
complete parts directly. According to the different methods of raw material supply, this
technique can be divided into laser-directed energy deposition (DED) and laser powder
bed fusion (LPBF) [39–43]. The laser DED technique uses a laser as the heat source to
generate a molten pool in the deposition area moving at a high speed. The raw materials
(wire or powder) are directly fed into the high-temperature melt area for rapid melting–
solidification, ultimately resulting in complete parts via layer-by-layer deposition, as shown
in Figure 3 [44,45]. It can be further subdivided into laser metal deposition (LMD), direct
laser metal deposition (DLMD), laser-engineered net shaping (LENS), laser cladding (LC),
etc. [46–48]. By applying the DED technique, FGMs can be prepared by controlling the
feeding rate ratio of two or more kinds of raw materials (powder, wire) or controlling the
laser scanning strategy, which is currently the most suitable AM process for preparing
metal FGMs [49].
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Kim et al. [50] used the DED technique and Inconel 718 and SS 316L powders as raw
materials, and continuous-component FGMs with a gradient from pure Inconel 718 to pure
SS 316L were prepared by controlling the feeding speed of the two powders, as shown in
Figure 4. It was found that defects (pores and cracks) caused by ceramic oxides (Al2O3
and TiO2) occurred due to the presence of carbide and intermetallic compounds, and the
defects were formed further since the thermal and residual stresses became concentrated at
the grain boundaries, causing the constitutional supercooling and columnar-to-equiaxial
transition (CET). Bobbio et al. [51] applied the DED technique and selected Ti-6Al-4V
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powder and prealloyed Invar powder as raw materials to prepare continuous-component
FGMs with a gradient from Ti-6Al-4V to Invar 36 (64 wt.% Fe, 36 wt.% Ni). They found that
the intermetallic phases (FeTi, Fe2Ti, Ni3Ti and NiTi2) formed in the gradient zone of Ti-6Al-
4V and Invar may have led to cracking in the gradient zone, and the composition gradient
type was recommended to avoid harmful phases. Zhang et al. [47] adopted the LENS
technique and selected austenitic stainless-steel ASS (0Cr18Ni9) powder and martensitic
stainless-steel MSS (0Cr16Ni5Mo1) powder as raw materials. Continuous-component
FGMs with a gradient from 100% MSS to 100% ASS were prepared with a 25% composition
gradient, as shown in Figure 5. It was found that there was no clear preferential orientation
for the FGM specimens with different mass fractions, and the grains tended to grow with
the increase in austenite (from 100% MSS to 100% ASS); large grains were observed in the
regions dominated by austenite (100% ASS, 25% MSS/75% ASS) and the grain size began
to grow in the 50% MSS/50% ASS region and the grains were fine-grained with equiaxed
grain morphology in the regions dominated by martensite (75% MSS/25% ASS, 100%MSS).
The precipitation of α-ferrite in austenite results in a decrease in the ductility of MSS/ASS
graded materials. By applying the DLMD technique and using stainless-steel 316L and
Inconel 718 powders as raw materials, Reza et al. [52] prepared continuous-component
and gradient-component FGMs with a gradient from 100% SS316L to 100% IN718, as
shown in Figure 6. It was found that the microstructure morphology alternated between
cellular, columnar dendritic and equiaxed dendritic in the building direction, and the
coarsest microstructure was observed in the final layers. The element distribution in the
continuous-component FGMs changed gradually, while the gradient-component FGMs
formed a mixing zone at the interface of SS316L and IN 718, and a gradient was formed
due to dilution between the adjacent layers. The gradual distribution of components is
beneficial to the mechanical properties of structures. Li et al. [53] prepared continuous-
component FGMs with a gradient from Ti2AlNb to TiC + Ti3SiC2 by using Ti, SiC, Si and C
powders as raw materials and LC technology. They found that the mixed transition layer
of Ti + SiC was mainly composed of TiC and Ti5Si3 and retained the residual Ti-rich phase,
and the Ti + Si + C ceramic composite was mainly composed of Ti5Si3, TiC and Ti3SiC2.
The mechanical properties increased gradually from Ti2AlNb to TiC + Ti3SiC2. By applying
the DED technique and using TC4 powder as the raw material, Zhang et al. [54] obtained
solid-solution-enhancement FGMs by changing the composition of the shielding gas. The
powder carrier gas was changed from Ar to N2 to produce titanium nitride (TiN) with high
hardness when depositing the enhanced region of titanium alloy.
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The LPBF technique uses a laser beam under the control of a scanning vibrator to
rapidly irradiate the prelaid metal powder layer according to the planned path, resulting in
rapid melting and solidification to form a metallurgical cladding layer, and the complete
structure is obtained via layer-by-layer cladding. This technique can be further subdivided
into selective laser melting (SLM), selective laser sintering (SLS), etc. [55,56]. By applying
the LPBF technique, FGMs can be prepared by successively laying powders with different
components in the powder bed or adjusting the process parameters, such as the filling
method; this method has great advantages in terms of the formation accuracy, surface
quality and breadth of applied materials [57].

Narvan et al. [55] selected tool steel H13 powder and vanadium carbide (VC) powder
as raw materials and used the LPBF technique to prepare nearly fully compact gradient-
component FGMs with a gradient from H13 to VC-H13 (1, 3 and 5 wt.% VC-H13), as shown
in Figure 7. It was found that the microstructure of the component was mainly martensite,
and V and C existed in the matrix as a supersaturated solid solution, which improved
the microhardness, nano-hardness and wear resistance of the component. By applying
SLM and using pure iron and Al-12Si powder as raw materials, Demir et al. [58] prepared
gradient-component FGMs with a gradient from pure iron to Fe/Al-12Si (55v %Fe and 45v
% Al-12Si) to pure Al-12Si, as shown in Figure 8. It was found that the microhardness of the
Fe/Al-12Si region was significantly higher than those of pure Fe and pure Al-12Si due to
the generation of the intermetallic compound FeAl in the Fe/Al-12Si region, but the high
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brittleness of the intermetallic compound FeAl could induce cracks, and the microstructure
and properties of FGMs could be improved by adjusting the process parameters, such
as laser power. Niendorf et al. [56] prepared AISI316L FGMs with different grain sizes
and grain orientations by using different laser powers in different areas during the AM
process by applying SLM, as shown in Figure 9. They found that fine crystals were present
in the 400 W laser region and columnar crystals were present in the 1000 W laser region.
The corresponding texture also varied considerably, and the <001> fibre strength of the
columnar crystals was greater than that of the fine crystals.
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3.2. Electron Beam AM Techniques for Metal FGMs

The electron beam AM technique uses a high-energy-density electron beam as a heat
source, and wire or powder as raw materials; these materials are placed in a vacuum
environment and deposited in a preplanned path to produce complete parts [59,60]. This
technique can be further subdivided into electron beam formation (EBF), electron beam
selective melting (EBSM), etc. [36,61]. The electron beam AM technique can be used to
fabricate FGMs by controlling the ratio of two or more raw materials, which has great
advantages in the AM of refractory metals and active metals at high temperatures.

By applying EBSM, Guo et al. [62] used Ti6Al4V and Ti47Al-2Cr2Nb powders as
raw materials to prepare gradient-component FGMs with a gradient from Ti47Al2Cr2Nb
to Ti6Al4V. The brittle material Ti47Al2Cr2Nb and the plastic material Ti6Al4V were
combined, which is difficult to achieve using traditional processes. It was found that the
γ-TiAl was formed on the Ti47Al2Cr2Nb side and a coarse basket-weave microstructure
was formed on the Ti6Al4V side. The thickness of the interface layer without cracks was
approximately 300 µm, and Ti and Al were distributed in a stepped manner at the interface.
Hinojos et al. [63] selected IN718 powder and 316L SS powder as raw materials and applied
EBSM to prepare gradient-component FGMs with gradients from IN718 to 316L SS and
from 316L SS to IN718. It was found that the preferred direction of the grains growing was
the <001> direction and the grains in the fabricated material were growing epitaxially in
a columnar fashion. The abundance of NbC and the sparse amount of low-melting-point
phases indicated that the thermal process at the interface of the two alloys was favourable
for their mixing, but the corrosion resistance and brittleness of the fusion zone (FZ) were
reduced due to the formation of a large number of carbides and precipitates. Rock et al. [64]
adopted EB-PBF and selected pure Mo and titanium carbide (TiC) powders as raw materials
to prepare gradient-component FGMs with a gradient from pure Mo to Mo + TiC (the
Mo and TiC powders were mixed at a volumetric ratio of 60:40) to pure TiC, as shown
in Figure 10. They found that the Mo + TiC solid phase was composed of a mixture of
Mo with discrete TiC particles, eutectic Mo + TiC and Mo dendrites (with Ti- and C-rich
interdendritic regions), and the unexpected phase in this system could be avoided by
accurately controlling the powder input. Based on EBSM and the concept of element
evaporation, Zhou et al. [36] used Ti47Al2Cr2Nb alloy powder as a raw material to prepare
one-dimensional gradient-component FGMs with a gradient from (α2 + γ) TiAl alloy to
(α + β) Ti alloy by controlling the electron beam power, as shown in Figure 11. It was found
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that α2, α and β phases formed in the interface transition zone (ITZ) of the FGMs. The
interface transition zone (ITZ) mainly consisted of non-uniform basket-weave structures
when the overlap was 0.5 mm, and ITZs mainly consisted of fine basket-weave structures
when the overlaps were 1.0 mm and 2.0 mm. The (α + β) Ti alloy mainly consisted of
lamellar and basket-weave (α + β) structures with a small α number when the overlap
was 0.5 mm and 1.0 mm, and completely consisted of lamellar and basket-weave (α + β)
structures when the overlap was 2.0 mm.
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Utyaganova et al. [65] adopted the electron-beam wire-feed additive technique (EB-
WAM) with Al-Mg alloy 5356 (AA5356) wire as the raw material and deposited AA5356
on an AA7075 (Al-Zn-Mg-Cu Alloy 7075) substrate to form gradient-component FGMs.
They found that the Mg content gradually increased and the Cu and Zn contents gradually
decreased in the transition region, and the microstructure changed from a thick intergrain
intermetallic network to a uniform distribution of intermetallic particles. By applying
EBWAM, Osipovich et al. [66] used copper C11000 and AISI 304 SS wires as raw materials
to prepare continuous-component FGMs with a gradient from 304 SS to Cu, as shown in
Figure 12. It was found that the uneven distribution of steel and copper in the gradient
region was caused by the solidification and precipitation of copper. With an increase in the
copper content, the presence of copper in the gradient region could be divided into three
stages: the copper distributed into the iron matrix as a grid, the combination of copper
and elements near the dendrite boundary and the formation of secondary-phase Cu and
nano-Cu particles precipitated from a supersaturated solid solution of Cu in austenite.
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3.3. Wire and Arc AM for Large-Scale Metal FGMs

WAAM uses an arc as the heat source and a metal wire as the raw material to fabricate
metal parts layer by layer. According to the form of the arc heat source, this technique
can be subdivided into the gas metal arc (GMA) AM technique, gas tungsten arc (GTA)
AM technique and plasma arc (PA) AM technique [29,67,68]. By applying the WAAM
technique, FGMs can be fabricated by controlling the ratio of the wire feeding speed for
two or more wires and other process parameters (shielding gas composition, etc.). Because
of its advantages in terms of formation efficiency, formation size and manufacturing cost,
WAAM has become one of the most promising manufacturing methods for preparing
large-scale metal FGM components.

At present, the FGM components prepared by the WAAM technique can be divided
into three types, solid solution enhancement, continuous component and gradient com-
ponent, among which the multidimensional heterogeneous type is derived based on the
gradient component type.

Solid solution enhancement type. Huang et al. [69,70] applied GTA as a heat source
and the TiN enhanced phase was generated in situ by adding N2 to the Ar shielding gas
(Figure 13). Titanium alloy (TC4) FGMs were fabricated by WAAM with different contents
of the TiN strengthened phase in different parts of the structure, which was controlled by
the percentage of N2 in the Ar shielding gas. They found that the cladding layers were
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composed of α-Ti phases and β-Ti phases when no N2 was contained in the shielding
gas, and the lamellar α-Ti phase transformed to the TiN phase with particle or dendrite
shapes when the percentage content of N2 in the shielding gas increased. The gradually
enhanced in situ reinforcement, which was caused by the gradual increase in N2, resulted
in a gradient distribution of the composition and microstructure, and the Vickers hardness
and compressive strength of the titanium alloy were enhanced. Huang et al. [33] applied
GTA as the heat source and Ti6Al4V alloy wire as the raw material, and changed the ratio
of TiOx and TiC phases in the cladding layer by controlling the content of CO2 gas in the
shielding gas with the other parameters held constant. The cladding layer was mainly
composed of lath, a small amount of basket-woven α + β grains and coarse α, and the TiOx
and TiC phases gradually increased with the increase in CO2 flow rate.
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Continuous component type. Shen et al. [71] used a double-wire arc AM system
(Figure 14a) based on the GTA-AM technique and selected 99.5% purity annealed iron
wire and 1080-grade aluminium wire as raw materials. Continuous-component FGMs
with a gradient from Fe to FeAl and aluminium contents from 0 to more than 50% were
fabricated. It was found that the Fe-rich large columnar grains were present at the bottom,
the Fe-rich equiaxed grains were present in the upper section and Al-rich lump-shaped
grains were present at the very top; the grains in the sample showed an epitaxial growth
trend, as shown in Figure 14b. The actual composition presented a smooth transition, rather
than the designed ladder composition curve. By applying the GTA-AM technique, Wang
et al. [72] used pure titanium wire and pure aluminium 1080 wire as raw materials and
successfully prepared continuous-component FGMs with a gradient from pure Ti to Ti-50 at
% Al, as shown in Figures 15 and 16. With an increase in the Al content along the gradient
direction, the bulk exhibited a layered structure consisting of α–β duplex structure, α-α2
lamellar structure, large α2 grains, α2-γ duplex lamellar structure and γ interdendrite
structure in sequence from the bottom to the top. Chen et al. [73] prepared continuous-
component FGMs with a gradient from TC4 to 316L by using TC4 and ER-316L wires as raw
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materials and the GTA-AM technique. They found that cracks appeared on TC4-316L FGM
components when the iron content reached 50%, and the microstructure evolution with
increasing iron content was as follows: α-Ti + FeTi→ Fe2Ti + FeTi + Cr2Ti→ Fe2Ti + Cr2Ti.
By applying the GTA-AM technique, Lu et al. [74] used TA1 and Inconel 625 wires as raw
materials to prepare continuous-component FGMs with a gradient from TiA1 to Inconel
625 by WAAM. It was found that the microstructure changed from α-Ti + β-Ti + NiTi2 to
β-Ti + NiTi2 + NiTi, NiTi + Ni3Ti + (Cr, Mo) and γ-Ni + NiTi + Ni3Ti + Laves + (Cr,Mo),
and the microhardness of the FGMs changed significantly with changing composition.
Chen et al. [75] used 99.9% purity iron (FE005180 grade) and nickel (NI005171 grade) wires
as raw materials and adopted the GTA-AM technique to prepare continuous-component
FGMs with a gradient from Fe to Fe3Ni. They found that Fcc-Fe3Ni and Bcc-α-Fe were
present in the Fe-Fe3Ni FGMs and that Bcc-α-Fe dissolved in the Fe3Ni matrix after heat
treatment. Gao Jia [76] developed the auxiliary wire-feeding GMA-AM technique and
selected H08Mn2SiA and H06MnNiCrMoA wires as raw materials to prepare continuous-
component FGMs by adjusting the main wire-feeding speed, auxiliary wire material and
wire feeding speed. It was found that the auxiliary wire feeding speed was inversely
correlated with the substrate thermal input and that the maximum melting rate of the
auxiliary wire was positively correlated with the total energy/current. EIMER et al. [77]
applied the wire laser arc additive manufacture (WLAAM) technique (Figure 17) by using a
laser–MIG composite arc as the heat source and adding a second wire. The deposition of an
aluminium copper zinc matrix with a continuous change in the zinc content was fabricated
by using 2319 aluminium wire and zinc wire as raw materials. A deposition layer with
high zinc content and without macroscopic segregation was obtained.
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Gradient component type. Dharmendra et al. [78] fabricated gradient-component
FGMs with a gradient from 316L stainless steel to nickel–aluminium bronze (NAB) by
cladding AWS A5.7 ER CuNiAl wire on a 10 mm-thick 316L stainless steel substrate and
applying the GTA-AM technique. They found that the interface did not exhibit any strong
texture orientation owing to the control of the thermal gradient and intermetallic Fe3Al
was formed at the NAB/SS interface. Coarse and rosette-like κI particles were formed
on the NAB side in the first deposited layer only. By applying the GTA-AM technique,
Liu et al. [79] used 7055 aluminium alloy wire and 2024 aluminium alloy wire as raw
materials to prepare gradient-component FGMs with a gradient from 7055 aluminium
alloy to 2024 aluminium alloy, filling the gap in the field of preparation of aluminium-
alloy-gradient structural parts [80]. Rodrigues et al. [81] applied the GTA-AM technique
and used Er CuAl-A2 (Cu-Al alloy) and ER-120S-G (HSLA steel) wires as raw materials
to prepare gradient-component FGMs with a gradient from HSLA steel to CuAl alloy. It
was found that the mixture of retained δ-ferrite (BCC) and Cu (FCC) was found in the
interface region and no brittle metal phase formed in the interface region. Wu et al. [82]
adopted the GMA-AM technique and prepared transverse-gradient component FGMs with
a gradient from steel to nickel by adding ER70S-6 steel and ERNi-1 (Ni-3.5 wt.%Ti) nickel
wires, as shown in Figure 18. They found that a relatively fine and cellular microstructure
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was observed on both the Fe and Ni sides, and the dendrite orientation was aligned with
the maximum heat flux, which was along the feedstock delivery direction. Additionally, the
strength of the interface increased due to the gradient of Fe–Ni solid solution strengthening,
which was produced by the intermixing of the Fe and Ni. By applying the GMA-AM
technique, Liu et al. [83] used ER70s-6 and SG-CuSi3 wires as raw materials to prepare
gradient-component FGMs with a gradient from-low carbon steel to silicon bronze. They
found that Cu was not present on the steel side, while Fe entered the bronze side in the forms
of particles and large chunks. The interface between the steel and bronze was well bonded
without cracks or pores, and metallurgical bonding was achieved. AHSAN et al. [84]
adopted the WAAM technique based on the CMT welding process and used ER70s-6 wire
and ER316L wire as raw materials. Gradient-component FGMs with a gradient from low-
carbon steel (LCS) to AISI 316L stainless steel (SS) were prepared, as shown in Figure 19.
The results showed that directional columnar grain growth was shown in the LCS, and
the predominant microstructural feature was acicular ferrite in the middle section; the
microstructural feature at the inner side was Widmanstatten ferrite along with polygonal
and grain-boundary ferrite, and the microstructural feature at the outer surface was fine
grains. A vertical columnar growth was shown in the SS, and small columnar dendrites
growing toward the surfaces were shown on the inner side and the outer surface. For
the interface, acicular ferrite was observed on the LCS side and typical FA transformation
microstructure was observed on the SS side. Liu et al. [85] adopted the WAAM technique
based on the CMT welding process and selected and prepared gradient-component FGMs
with ER80S-G wire as the matrix raw material and OK Tubrodur 15.50 wire as the hard-
zone raw material. They found that the structure of the matrix was evenly distributed
and consisted of granular bainite, ferrite and carbide particles. The microstructure of
each layer in the hard zone differed considerably: the bottom layer was dominated by
lamellar tempered martensite, in which the tempered martensite volume decreased and
the quenched martensite volume increased with increasing layers, and the last layer was
dominated by quenched martensite. Srinivasan et al. [86] adopted the WAAM technique
based on the CMT welding process and selected ER70S-6 and ER 2209 wires as raw materials
to prepare gradient-component FGMs with a gradient from duplex stainless steel to carbon
manganese steel, as shown in Figure 20. The results found that the volume fractions of
secondary phases were seen in the microstructure at the carbon manganese steel side,
which comprised pearlite, bainite and martensite in the ferrite matrix. Additionally, the
formation of martensite in the carbon manganese steel was evident at the interface and
in the carbon manganese steel near the interface. A typical solidified duplex stainless
steel microstructure with austenitic ferritic grains was observed on the duplex stainless
steel side. Miao et al. [87,88] adopted the WAAM technique based on a bypass plasma arc
and selected 304 stainless steel wire and S201 red copper wire as raw materials to prepare
gradient-component FGMs with a gradient from stainless steel to red copper, as shown
in Figure 21. They found that the cladding sequence of copper first, followed by stainless
steel, was conducive to formation, and the interfacial layer region was characterized by an
α + ε duplex structure.
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Multidimensional heterogeneous type. Guo [89] adopted double-sided AM based on
the CMT welding process and selected ER316L wire and high-nitrogen steel (HNS) wire as
raw materials to prepare a 30◦ interlayer staggered bimetal multilayer interwoven member.
Based on the CMT welding process, E [90] adopted the mode with the heterogeneous wires
entering the same molten pool and selected ER316L, ER50-6 and HNS wires as raw materials
to prepare the multidimensional heterogeneous materials by overlapping cladding of the
hard layer with high strength and high hardness (which consisted of stainless steel and
low-carbon steel) and the high-plastic soft layer (which consisted of stainless steel and
high-nitrogen steel), as shown in Figure 22. There was a large amount of lath martensite
and small amounts of ferrite, carbide and austenite in the hard layer, and a large amount of
austenite with small amounts of ferrite and nitride in the soft layer. By applying the PA-AM
technique, Xu et al. [91] used ER316L stainless-steel wire and ER130SG high-strength steel
wire to prepare multidimensional heterogeneous stainless steel/high-strength steel, which
adopted a sandwich structure (high strength steel + (one layer, two layers, three layers)
stainless steel + high strength steel) and alternating superposition structure (one layer, two
layers) high strength steel + stainless steel). They found that there were two transition
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forms of austenite dendrite transition and martensite structure transition in this part.
Guo et al. [92] adopted the PA-AM technique to prepare multidimensional heterogeneous
high-carbon steel/high-strength steel by alternating cladding of high-nitrogen austenitic
steel wire and 18Ni high-strength steel wire (where the ratio was 1:2, that is, cladding one
layer of high-nitrogen austenitic steel and then cladding two layers of high-strength steel),
and the angle between the two cladding layers was 90◦, as shown in Figure 23. They found
that the microstructure of high-nitrogen steel was mainly austenitic isometric and dendrites,
and that of high-strength steel was strip martensite. Treutler et al. [93] selected FeNi36
wire and high-strength fine-grained structural steels (DIN EN ISO 16844-AG 69 6M21
Mn4Ni1.5CrMo) as the raw materials, and the FGMs shown in Figure 24 were fabricated
by WAAM. They found that the martensitic and austenitic microstructures existed side by
side without a pronounced interface region, the martensitic microstructure was observed
in the top layer and the tempered martensite was observed in the two layers beneath the
top layer.
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It can be seen from the above studies that, although the FGMs prepared by WAAM
present different gradient types, the components in each cladding layer are evenly dis-
tributed. The authors carried out a systematic study on the properties of a twin-body
plasma arc [94–96], and the results showed that the heat input of the substrate reduced and
the melting amount of the wire increased due to the separation of the wire current from
the plasma arc. The amount of wire melting was approximately proportional to the wire
current, and the heat input of the substrate was mainly determined by the substrate current.
Based on this and by combining the advantages of the plasma arc of high energy density
and strong stability, the double-wire bypass plasma arc AM technique, which is suitable
for achieving a gradient along the direction of single-pass cladding, was proposed. FGMs
whose composition changes along the direction of single-pass cladding were prepared
by coordinating each bypass current and controlling the bypass current and wire-feeding
speed independently; that is, the change in the material composition gradient for the
single-pass cladding occurred along the direction of the single-pass cladding.

A schematic diagram of the double-wire bypass plasma arc AM technique is shown
in Figure 25. The main arc supplied by the PAW power supply is established between
the tungsten electrode (which is contained in the PAW torch, cathode) and workpiece
(anode). One bypass arc supplied by GTAW power supply 1 is established between the
tungsten electrode (which is contained in the PAW torch, cathode) and wire 1 (anode). The
other bypass arc supplied by GTAW power supply 2 is established between the tungsten
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electrode (which is contained in the PAW torch, cathode) and wire 2 (anode). The total
current (I) includes the main current (I1), wire 1 current (I2) and wire 2 current (I3). Under
the premise that I and I1 remain unchanged, the change in the material composition gradient
for the single-pass cladding is obtained by the coordinated control of I2 and I3 and the
corresponding real-time adjustment of the wire-feeding speed, and the FGMs prepared by
this technique are obtained. This will enrich WAAM, which is suitable for metal FGMs, and
improve the flexibility of large-scale metal material–structure–function (large-scale metal
FGMs) integrated manufacturing.
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In summary, the WAAM technique can be used to fabricate FGM parts, and FGMs
with different gradient types (solid solution enhanced type, continuous component type,
gradient component type and multidimensional heterogeneous type) can be fabricated by
changing the wire-feeding speed or shielding gas composition according to the designed
material composition. At present, most of the WAAM techniques applied to metal FGMs
are based on traditional arc heat sources, namely GMA, GTA and PA. However, with the
continuous emergence of novel arc processes/heat sources, the CMT process, laser–MIG
composite arc heat source, bypass plasma arc heat source and other arc heat sources have
been gradually applied to the WAAM technique for FGMs. The material adaptability will
be broadened and the forming quality will be further optimized. Compared with the
laser AM technique and electron beam AM technique, the WAAM technique has unique
advantages and great potential in the field of large-scale metal material–structure–function
integrated manufacturing due to its advantages in formation quality, manufacturing effi-
ciency, material utilization and manufacturing cost. However, it needs to be combined with
a mechanical processing technique to avoid the problem of poor formation accuracy.

4. Summary and Future Work

In recent years, studies on metal FGMs have increased, especially FGMs fabricated by
the AM technique. In this way, compositional gradient metallurgy allows for the strategic
mixing of materials, and a larger material property space is obtained, breaking through
the traditional preparation or metallurgical combination of materials. By controlling the
shielding gas composition, heat input, input ratio of raw materials and other parameters,
FGMs with different gradient types (solid solution enhanced type, grain size type, grain
orientation type, continuous component type, gradient component type and multidimen-
sional heterogeneous type) are fabricated by the AM technique, which results in high wear
resistance, hardness and other excellent mechanical properties. Defects such as porosity
and cracks can be avoided effectively by adjusting the composition of the gradient region
and process parameters.
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The laser AM technique is one of the earlier techniques for the preparation of FGMs,
and it is also one of the techniques that can be applied to a wide range of materials.
The WAAM technique was later applied to the preparation of FGMs. It breaks the strict
requirements of the environment, part size and part shape in traditional manufacturing
methods and laser/electron beam additive manufacturing and integrates the advantages
of high efficiency and high adaptability, which has unique advantages in large-scale metal
material–structure–function (large-scale metal FGMs) integrated manufacturing.

Research on the preparation of FGMs by the WAAM technique has attracted increasing
attention from researchers. Most of the research is about the basic theoretical aspects, such
as the microstructure, texture, composition distribution, interface region characteristics
and new AM technique of FGMs with a single wall. There have been few engineering
application-oriented studies, such as process parameter optimization and engineering
preparation of FGM components. In the future, it will be necessary to focus on engineering
applications, extend the research from the laboratory to production workshops and seek
a process scheme suitable for engineering applications. Making full use of the computer-
aided function can play a role in the establishment of a FGM database and the simulation
and prediction of the structure and properties of FGMs. It can not only save the cost of
materials, but also guide the design and performance optimization of FGMs and help to
further expand the application field of FGMs fabricated by the AM technique. Moreover, it
is necessary to develop comprehensive material–product–manufacturing principles [13],
guidelines and standards for all steps of FGMs fabricated by the WAAM technique to
further develop the commercial potential and value of FGMs.
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