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Abstract: This study focused on the chirality effects that control the lamellar bending sense in
self-assembled crystals of chiral 2-hydroxy-2-phenylacetic acids. 2-Hydroxy-2-phenylacetic acid
or mandelic acid (MA) was crystallized in the presence of poly(4-vinyl phenol) (PVPh), and its
crystalline structures and morphologies were assessed using polarized optical microscopy (POM) and
scanning electron microscopy (SEM). MA of two opposite chiral forms (S- and R-) was crystallized
with PVPh as the morphology modulator; with adjustment of the PVPh content, the morphology of
MA crystals transforms from ring-banded spherulites to highly dendritic spherulites. For MA/PVPh
(50/50 wt./wt.) blend and neat MA at same Tc, the dendritic spherulites are packed with single
crystals where the lamellae bend at a specific direction varying with Tc and chirality. Contrary to
conventional thought, the bending senses of the MA lamellae in the dendritic spherulites are not
solely governed by the MA molecular chirality (S or R), but also by Tc. Only at high Tc (>65 ◦C) is the
lamellar bending direction in dendritic spherulites of (S)-MA or (R)-MA blended with PVPh dictated
by the chirality, i.e., displaying counterclockwise and clockwise bending direction for (S)-MA/PVPh
and (R)-MA/PVPh, respectively. Nevertheless, at low Tc (45 ◦C), the bending sense of dendritic
spherulites displays an opposite direction from those at the higher Tc, which is to say that the chirality
alone does not control the lamellar bending direction.

Keywords: 2-hydroxy-2-phenylacetic acids; bending sense; chirality; lamellae assembly

1. Introduction

Chirality is a fascinating phenomenon in nature that has been observed in organic
and inorganic materials: small molecules [1–5], polymers [6–13], and more complex bio-
logical systems [14,15]. In 2007, Oaki and Imai [16] demonstrated that D- and L-aspartic
acid (D-Asp and L-Asp) exhibited helical morphologies following water evaporation in
an agar matrix (which acts as a modulating agent). D-Asp and L-Asp are two optically
isomeric forms of bioorganic aspartic acid (Asp) with identical physical properties. Addi-
tionally, with the aid of an agar matrix, the helical crystalline architecture’s handedness
was controlled by the chirality of Asp molecules: left- and right-handed twist from D-
and L-Asp, respectively. In 2014, Wang and Prud’homme [11] combined nonequimolar
poly(D-lactide) (PDLA) and poly(L-lactide) (PLLA). After mixing, mutual isomers form
PLA complexes (scPLA). An excess of PDLA or PLLA resulted in the flat-on branches
bending counterclockwise and clockwise, respectively. However, the rotation direction was
reversed when the film thickness increased. PLLA-rich films deflected clockwise, while
PDLA-rich films deflected counterclockwise. Maillard and Prud’homme [9] also observed
a blend of PDLA or PLLA with poly(ethylene glycol) (PEG) at composition 75/25 with
sample thickness 10 nm. PDLA/PEG (75/25) and PLLA/PEG (75/25) have star-shaped
crystal structures composed of edge-on lamellae radiating out from a central point with
counterclockwise and clockwise bending directions, respectively. These bending directions
are in opposition to PLA’s chirality. In addition, they reported that dendritic crystals in
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the trigonal shape of PLLA/PDLA blend with a sample thickness of 20 nm crystallizes in
counterclockwise- and clockwise-circularly bending sense for PDLA/PLLA (75/25) and
PDLA/PLLA (25/75) blends, respectively. This result is consistent with the chirality of
PLA; when PLLA is in excess, the bending direction is counterclockwise and when PDLA
is in excess, the bending direction is in the opposite direction [10]. Though considerable
effort has been expended on the subject, it remains a mystery how the chiral sense develops
on crystallization morphology.

The crystallization morphology is determined by the proximity of the equilibrium
state (i.e., the driving force for crystallization) and the growth condition [2,17,18], such as
temperature [19], the composition of diluents, preparation procedures [20], and tacticity or
chirality [9–11,21–23]. On the other hand, in the case of a chiral compound, other important
factors also play a role in the lamellar bending sense, such as film thickness [12,24,25] and
blend composition [9]. Poly(p-vinyl phenol) (PVPh) has been reported to have a high degree
of interaction with some semicrystalline polymers and further possesses the ability to form
dendritic patterns [26,27]. With increasing content of PVPh, poly(ethylene oxide) (PEO)
gradually transforms from regular Maltese-cross spherulites into dendritic spherulites
showing no Maltese-cross optical extinction. The intermolecular hydrogen bonding of
PVPh with PEO results in the formation of a variety of morphologies and reduces the
tendency of PEO crystallization [26]. 2-Hydroxyy-2-phenylacetic acid or mandelic acid
(MA) is a chiral molecule with R and S enantiomeric forms. MA has been reported to
exhibit a variety of morphologies as a result of evaporation-induced crystallization from
MA solutions, which is dependent on the evaporation conditions, including the solvent type
and evaporation temperature [28,29]. At medium evaporation rates, MA forms fractal-like
dendritic morphology when crystallized at 35 ◦C [28].

In this article, we blended MA with amorphous PVPh and crystallized it under
different evaporation temperatures to induce diversified lamellar-bending morphology.
The effect of chirality and evaporation temperature was examined to clarify the relation
of the corresponding morphology. Eventually, correlation between the bending sense of
the MA spherulite can be established via careful inspection of the crystal assembly of the
diversified MA crystals.

2. Materials and Methods

2-Hydroxy-2-phenylacetic acid or mandelic acid (MA) with molecular weight
(MW) = 152.15 g/mol, Tm = 131 ◦C was obtained from Sigma-Aldrich (St. Louis, MO,
USA). Poly(4-vinyl phenol) was purchased from Polyscience (City of Brotherly Love, PA,
USA), with molecular weight (MW) = 22,000 g/mol, and Tg = 150.5 ◦C. A binary mixture
of different compositions of (S)-MA/PVPh or (R)-MA/PVPh was prepared by dissolving in
p-dioxane with the concentration of 4 wt.%. A drop of solution was cast into a microglass
slide at various crystallization temperatures, and the solvent was allowed to evaporate
completely. Specimens were left on a hot stage at specified isothermal temperatures until
they crystallized completely.

2.1. Apparatus
2.1.1. Polarized-Light Optical Microscopy (POM and OM)

A polarized-light optical microscope (POM) was equipped with an automatic exposure
device (Nikon NFX-DX, Nikon Corp., Tokyo, Japan), a heating stage (Linkam THMS-600,
Linkam Scientific Instrument Ltd., Surrey, UK), a temperature control device (Linkam T95,
Linkam Scientific Instrument Ltd., Surrey, UK), and a digital image capture system (Nikon
Digital Sight DS-U1). The samples were crystallized at different isothermal temperatures
by solvent evaporation, and the fully grown MA spherulites were observed. The samples
were observed using 4× 10× , and 40× objective lenses with calibrated image scales.
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2.1.2. High-Resolution Field-Emission Scanning Electron Microscopy (HR-FESEM)

Scanning electron microscopy (Hitachi SU8010) was used for characterizing the top
surfaces of samples in better resolution and greater magnifications than results from POM.
Prior to SEM observation, samples were coated with platinum using vacuum sputtering
(10 mA, 300 s) and observed under 1 kV at an 8 mm working distance.

3. Results and Discussion
3.1. Effect of Chirality on Assembly Morphology

Mandelic acid (MA) films can form dendrites upon dilution with other polymers such
as PVPh via evaporation-induced crystallization. MA/PVPh blend systems at different
wt. ratios exist as dendritic spherulites, but the morphology is different, as shown in
Figure 1A,B. MA morphological pattern variation can be obtained in the MA/PVPh blends
of various compositions at 60 ◦C. Obviously, the bending sense of the lamellae in the
dendritic spherulite MA varies with respect to the specific composition and crystallization
temperature.
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Figure 1. POM graphs of (A) (R)-MA/PVPh and (B) (S)-MA/PVPh blends crystallized at Tc = 60 ◦C
for different compositions: (a) 90/10, (b) 85/15, (c) 80/20, (d) 75/25, (e) 70/30, (f) 60/40, and
(g) 50/50.

When the content of amorphous PVPh is less than 20 wt.%, MA exists as ring-banded
spherulites. As the content of PVPh increases, the size of spherulites decreases and the
crystallization rate also drops significantly. The MA spherulites exhibit spiral bands with
PVPh contents of 10–20 wt.% (with clockwise or counterclockwise spiral rotation). The
spiral band exists in the center but gradually vanishes at the periphery of spherulites with
increased PVPh content to 25–30 wt.% in MA/PVPh blends. At 40 wt.% of PVPh content,
MA exhibits dendritic spherulites with straight dendrites. Finally, with 50 wt.% content
the (R)-MA and (S)-MA forms fully dendritic spherulites with side branches curving in the
clockwise and counterclockwise directions, respectively. Therefore, MA/PVPh (50/50) is
used for an in-depth analysis.
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3.2. Lamellar Bending in Dendritic Spherulites

In 2014, Wang and Prud’homme [11] observed dendritic spherulite morphology of
PLLA/PDLA at various compositions and crystallization temperatures. The morphologies
exist as dendritic spherulites that have different curvature. The curvature sense of the
spherulites is determined by the film thickness, the chirality of the excess enantiomer, and
the crystallization temperature. Furthermore, evaporation parameters, predominantly
temperature, have been shown to significantly affect crystallization kinetics and the fi-
nal morphology of the crystals [21]. The crystal morphology is all dendritic spherulites,
as shown in Figures 2 and 3. At lower Tc (30–35 ◦C), (R)-MA (Figure 2a), and (S)-MA
(Figure 3a) crystals grow with straight dendrites. Nevertheless, (R)-MA (Figure 2i–k) and
(S)-MA (Figure 3i–k) crystals grow into fibrous dendritic spherulites with curved dendrites
at higher Tc (60–65 ◦C). However, the (R)-MA and (S)-MA crystal curvatures are opposite
to each other: (R)-MA shows clockwise dendrites and (S)-MA shows counterclockwise
dendrites. Moreover, the dendrites become less compact with increasing evaporation
temperature. A novel bending of fibrous dendrite spherulites exists at the intermediate Tc
(36–48 ◦C). Interestingly, the bending curvatures in MA at intermediate temperatures are
opposite to the MA dendrites at higher temperatures.
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To appreciate the time-evolution of the dendritic MA morphology from nucleation to
completion, an example of in situ monitoring is demonstrated in Figure 4. One sees that
the bending the bending starts at early stages with a lesser scale, but the bending becomes
more obvious in later stages toward completion.
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crystallization at 60 ◦C, from t to t + 4.5 min, where t = initiation of first trace of nuclei.

In 2016, Woo et al. [12] reported a similar phenomenon in chiral poly(lactic acid)
(PLA) by altering the Tc. Singfield et al. [7] demonstrated in 1995 that polyepichlorohydrin
exhibits clockwise (R-form) or counterclockwise (S-form) bending of what they termed
“pinwheel-like” dendrites; however, the straight dendrites appear in a racemic blend of
polyepichlorohydrin. They stated that the chirality of the polymer chains imposes signifi-
cant constraints on the lamellar organization in two chiral forms of polyepichlorohydrin (R
and S chirality).

Both rotation of the axis of Maltese-cross and bending sense of the lamellae packed
in the dendritic MA spherulites appear to depend on the temperature of crystallization.
Rotation of the Maltese-cross is depicted in the schematics for the POM birefringent mor-
phology in (R)-MA/PVPh and (S)-MA/PVPh, as shown in Figure 5a,b. Intriguingly, the
Maltese-cross rotates in just the opposite direction of the bending sense of lamellae in the
spherulites. Bending sense of lamellae appears to be opposite to that of the axis-rotation
direction. With an increase in Tc, the Maltese-cross rotates in the clockwise direction; oppo-
sitely, the lamellae in the dendritic spherulites bend in the counterclockwise direction and
vice versa. The schemes show that the chirality of MA induces exactly opposite rotation
and lamellae bending sense when crystallized at the same Tc.
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Apart from that, various thicknesses of samples were used to clarify the bending sense
on the MA crystalline morphology. We can conclude from Figure 6a,b that bending in
dendritic spherulites does not change with increasing sample thickness. According to
the POM results discussed above, the bending sense of MA spherulites can display three
different trends. These three categories are (i) straight dendrites, (ii) bend in line with
chirality, and (iii) bend opposite to chirality, which means that molecular chirality of MA
does not govern all aspects of crystallization. Therefore, the bending sense of spherulites
cannot be easily predicted as other essential factors also play a role, such as crystallization
temperature. MA/PVPh (50/50) at a crystallization temperature of 45 and 65 ◦C have the
clearest morphology, so these temperatures were chosen for an in-depth future discussion.
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3.3. Crystalline Morphology and Crystal Arrangement of Bending Dendritic Spherulites

According to previous POM results, the (R)-MA/PVPh and (S)-MA/PVPh systems
exhibit varying dendritic spherulite bending. Follow-up experiments were conducted
using an equimolar ratio (50/50) and crystallization conditions (Tc = 45 and 65 ◦C), and
SEM discussed the lamellae growth in detail. The comparison of POM and SEM images
of (R)-MA/PVPh (50/50) blend at Tc = 45 ◦C, as shown in Figure 7a, depicts the entire
spherulites, with Figure 7b zooming to the nucleus center. The initial crystallization stage
of the (R)-MA/PVPh (50/50) blend results in sheaf-like nuclei. When the crystallization
time increases, the sheaf-like nuclei evolve into dendritic spherulites with a curvature
or lamellar bending. Figure 7b depicts the nucleus’s lamellae bending to evolve from
nuclei. As it grows, it is bent in a tangential direction and fans out in a counterclockwise
direction, predominantly with multiple branches, to fill the (R)-MA spherulite. A unique
feature is observed in the lamellae bending near the nucleus of (R)-MA spherulites, where
a portion of the nucleus sheaves are spawned from straight bundles in perpendicular
direction but bent in counterclockwise sense toward the tangential direction, while the
straight sheaves grow radially before bending in counterclockwise sense to merge into the
same tangential direction.
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Obviously, the nucleus geometry governs the crystal growth in R- and S-MA. For
polymers, it is known that the initial geometry of the nucleus sheaf crystals may strongly
govern the patterns of subsequent crystal growth into final aggregated spherulites [30,31].
For poly(L-lactic acid) (PLLA) spherulites, Yeh and Woo [30] conducted delicate fracturing
across the thickness sections to expose the interior lamellae assembly, and discovered there
are three types of spherulites: (1) circularly ringed (Type 1), (2) hexagon-shaped (Type 2),
and (3) circularly core-striped (Type 3), and such morphological diversification originates
from three different types of initial nuclei geometries: poly(nonamethylene terephthalate)
(PNT) Type-1 and Type-2, are done with detailed analyses using polarized-light optical
microscopy (POM) in situ CCD recording; the periodic assembly morphologies are char-
acterized using atomic-force microscopy (AFM) and scanning electron microscopy (SEM).
Similarly, dual types of periodically ring-banded morphology in poly(nonamethylene
terephthalate) (PNT) (termed as Type-1 and Type-2) have been correlated with nuclei ge-
ometry [31], where a specific type of periodically banded PNT spherulite is initiated from
either highly elongated sheaf-like or well-rounded nuclei, and the nucleation geometry and
crystallization parameters collectively lead to development of multiple types of banded
PNT spherulites of different relative fractions.

Figure 8a shows each of the main stalks of (R)-MA exploded into closely packed side
branches that grow in the counterclockwise bending rhythm. As illustrated in Figure 8a,
numerous primary stalks extend from nuclei crystals and bend in unison from the start
to emerge into another primary stalk. They all bend counterclockwise in unison up to
the terminating peripherals. Figure 8b–d depicts the entire branch, the primary and
secondary branches, and the secondary branch’s edge region, respectively. The secondary
branch of spherulites grows from the primary (Figure 8c), which is indicated by a yellow
dashed line. Figure 8c illustrates this phenomenon, with primary and secondary branches
denoted by black and yellow dashed lines, respectively. Another branch grows (red line)
from secondary branches, resulting in closely packed side branches. Zoomed-in detailed
lamellar arrangement of dendritic spherulites is shown in Figure 8d, which depicts that the
dendritic spherulites are composed of discrete single-crystal-like flat-on lamellae.

A comparison of POM and SEM micrographs of crystallized (R)-MA/PVPh (50/50)
blend crystallized at Tc = 65 ◦C is demonstrated in Figure 9a depicting the entire spherulite,
while Figure 9b depicts the spherulites’ center. As illustrated in Figure 9b, dendrites origi-
nate from the nucleus region, where a single strand of initially straight nuclei resembling
fibers splays out spontaneously into four or more arms, all growing in clockwise-bending
sense in the dendritic spherulites. Divergence is observed in the dendritic spherulites at var-
ious crystallization temperatures. At an intermediate temperature (Tc = 45 ◦C), numerous
main stalks explode outward from the nucleus center. In contrast, at higher temperature
(Tc = 65 ◦C), fewer main stalks grow from the nucleus center, and entire spherulites are less
compact than at intermediate temperatures. This difference is due to the depression of the
(R)-MA spherulite growth rate at higher temperatures.
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An intriguing feature is observed in the different birefringence bands if one zooms
into one single sector of the (R)-MA spherulite. The POM and SEM images in Figure 10a,b
demonstrate a correlation between a single branch’s three distinct types of birefringence of
lamellar spots. As illustrated in Figure 10c–e, orange and blue birefringence corresponds to
the periodic bending in flat-on lamellae (see scheme in lower-right). The flat-on lamellae
of dendritic spherulites are organized by single crystals for orange and blue birefringence.
Crystal orientation differences do not cause the alternate optical orange or blue birefrin-
gence observed in POM micrographs; instead, the periodic branching to different bending
directions is responsible for the alternate optical bands.

It has been established that (R)-MA contains a chiral optical center (R-form), and the
molecules of (R)-MA in crystal lattices are right-handed [32]. Lamellar bending occurs in
the counterclockwise direction in the (R)-MA/PVPh (50/50) blend at Tc = 45 ◦C, indicating
that the lamellae grow oppositely with the optical chiral center of MA. Nonetheless, the
clockwise lamellar bending in the (R)-MA/PVPh (50/50) blend at Tc = 65 ◦C indicates
that the lamellae grow in line with the optical chiral center of MA at higher crystallization
temperatures. It is quite fascinating that the bending direction of MA spherulites in
the (R)-MA/PVPh (50/50) blend corresponds to their chirality, which is right-handed
or clockwise at higher temperatures but reversible at lower temperatures. Furthermore,
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the crystallization of the (S)-MA/PVPh (50/50) blend is observed to determine whether
chirality and temperature both could dictate the bending direction. Effect of chirality
on the bending sense of lamellae in crystal self-assembly was also observed in other
organic compounds. As previously reported by Oaki et al. [16], chiral aspartic acid had
the same structure but faced opposite directions: D-Asp was left-handed, while L-Asp
was right-handed. Thus, if chirality affects the bending sense of dendritic spherulites in
the (R)-MA/PVPh blend, the spherulites in the (S)-MA/PVPh blend should bend in the
opposite direction as that in the (R)-MA/PVPh blend. It is worth noting that the bending is
related to the chirality of MA only at higher temperatures (60–65 ◦C), not at intermediate
temperatures (36–48 ◦C). This indicates that other factors, in addition to molecular chirality,
might cause lamellae to bend in (R)-MA/PVPh vs. (S)-MA/PVPh. These factors are almost
certainly related to crystallization temperature.
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For comparison with the (R)-MA/PVPh system’s lamellar bending behavior, the mor-
phology of (S)-MA/PVPh was also examined. Figure 11a,b shows POM and SEM images
of dendritic spherulites crystallized at Tc = 45 and 65 ◦C, respectively. It demonstrates un-
equivocally that this blend contains the same crystal pattern observed in (R)-MA at the same
crystallization temperature. However, the dendritic spherulites in the (S)-MA/PVPh blend
bend in a clockwise direction at Tc = 45 ◦C and in a counterclockwise direction at Tc = 65 ◦C.
That is, the lamellae with clockwise and counterclockwise bending in (S)-MA/PVPh (50/50)
are oriented in the opposite direction to those with clockwise and counterclockwise bend-
ing in (R)-MA/PVPh (50/50), as previously discussed. (R)-MA/PVPh and (S)-MA/PVPh
have identical patterns, but the lamellae bend in the opposite direction of the lamellar
packed in the spherulites. As illustrated in the SEM micrograph of Figure 11b, both types
of spherulites begin with sheaf-like nuclei. The stalks grow in a specific bending direc-
tion as primary branches throughout the crystallization process. The final morphology in
(R)-MA/PVPh and (S)-MA/PVPh appears to be identical.

The detailed lamellar structure of the (S)-MA dendritic spherulites in (S)-MA/PVPh
(50/50) blend has also been observed by using SEM analysis. Figure 12a shows detailed
lamellae of the (S)-MA/PVPh (50/50) blend crystallized at Tc = 45 ◦C. Figure 12b–d depicts
the entire branch, the primary and secondary branches, and the secondary branch’s edge
region, respectively. As shown in Figure 12d, the lamellae of (S)-MA/PVPh (50/50) are
composed of flat-on single crystals, which are similar to those of (R)-MA/PVPh (50/50).
Nonetheless, there is a slight difference in the detailed branching patterns of the flat-on
lamellae in the (S)-MA/PVPh and (R)-MA/PVPh blends. The secondary branching extends
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out from the right- and left-hand-side from primary branches, where these secondary
branches are indicated by yellow dashed-lines. In contrast, the secondary branches in
left-hand-side stop growing when the branches impinge on other secondary branches due
to competition between their growth rates.
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Figure 12. (a) SEM micrographs: (b–d) enlarged zoomed-in images of the squared regions—c′ and d′

of (S)-MA/PVPh (50/50) dendritic spherulite crystallized at Tc = 45 ◦C.

The comparison of POM and SEM images of (R)-MA/PVPh (50/50) blend at Tc = 65 ◦C
are demonstrated in Figure 13. Dendritic lamellae spontaneously splay out into three to
four or more arms, which grow counterclockwise, as shown in Figure 13b. The POM
and SEM images in Figure 13c,d demonstrate a clear correlation between two distinct
types of birefringence of lamellar spots. As illustrated in Figure 13e,f, the alternate optical
orange or blue birefringence bands are due to periodic branching in the tangential direction,
and this assembly pattern is similar to that of the (R)-MA/PVPh (50/50). The detailed
morphology indicates that lamellae of the (S)-MA/PVPh (50/50) are composed of flat-on
single crystals. The direction of lamellar bending in dendritic spherulites of (R)-MA/PVPh
(50/50) and (S)-MA/PVPh (50/50) at Tc = 65 ◦C appears to be determined by the chirality
of the mandelic acid.
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Significant findings are summarized and compared for the (R)-MA/PVPh and (S)-
MA/PVPh systems where chirality- and temperature-dependent lamellar bending is ob-
served during crystallization. However, the dendritic bending direction in (R)-MA or
(S)-MA blended with PVPh is determined by the chirality of mandelic acid and the crys-
tallization temperature. Contrary to the conventional thoughts, the dendritic spherulites
in the (R)-MA/PVPh and (S)-MA/PVPh blends are predominantly characterized by flat-
on lamellae, which undergo specific bending sense with respect to the kinetic factor of
temperature and the thermodynamic factor of molecular chirality.

4. Conclusions

The effect of molecular chirality on the bending sense of lamellar MA crystal in MA
(modulated with PVPh) can exhibit three distinct trends. These three categories are: (i) no
effect with chirality (Tc = 30~35 and 50 ◦C), (ii) bending in line with chirality (Tc = 60~65 ◦C),
and (iii) bending opposite to chirality (Tc = 36~48 ◦C). Both POM and SEM analyses confirm
correlation of the different bending sense. From the nucleus core, sheaf-like nuclei evolve
into dendritic spherulites that bend in a tangential direction and fan out predominantly
with multiple branches in a counterclockwise or clockwise direction, collectively controlled
by both crystallization temperature and chirality. Furthermore, all dendritic MA spherulites
are packed by single-crystal-like lamellae with purely flat-on orientation without any twist,
unlike many other systems showing mixed flat-on/edge-on or twist lamellae to oblique
angles between these two orientations.

This work, by examining MA of two chiral forms crystallized at different values of Tc,
discovered that the lamellar bending in the firewheel-like dendritic MA crystal aggregates
is not fully dictated by molecular chirality. Only at high Tc (>65 ◦C) is the lamellar bending
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direction in dendritic spherulites of (S)-MA or (R)-MA blended with PVPh dictated by
the chirality, i.e., displaying counterclockwise and clockwise bending direction for (S)-
MA/PVPh and (R)-MA/PVPh, respectively. Nevertheless, at low Tc (45 ◦C), the bending
sense of dendritic spherulites display an opposite direction from those at the higher Tc,
which indicates that chirality alone does not control the lamellar bending direction.
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